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A new characterization of Clifford torus

By FABIO R. DOS SANTOS (Parafba), HENRIQUE F. DE LIMA (Paraiba)
and MARCO A. L. VELASQUEZ (Paraiba)

Abstract. We extend a previous sharp upper bound of the first strong stability
eigenvalue due to ALAS et al. [1], for the context of a closed submanifold immersed with
nonzero parallel mean curvature vector field in the Euclidean sphere, and through this
result, we obtain a new characterization for the Clifford torus.

1. Introduction

Given a closed submanifold M"™ immersed in the unit Euclidean sphere S™**?
with parallel mean curvature vector field h (which means that h is parallel as
a section of the normal bundle of M™), its strong stability operator is defined by

J= A [~ n(1+ H), (1)

where A stands for the Laplacian operator on M™, |®| denotes the length of the
traceless second fundamental ®, and H = |h| is the mean curvature of M"™. We
observe that, when p = 1, J arises to the classical Jacobi operator established
in [2].

We note that J belongs to a class of operators which are usually referred
to as Schrodinger operators, that is, operators of the form A + ¢, where ¢ is
any continuous function on M™. The first strong stability eigenvalue \{ of M™ is
defined as being the smallest real number A which satisfies the equation Jf—\f =
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0 in M™, for some nonzero f € C*(M). As it is well known, \{ has the following
min-max characterization:

/ fJfdM

M
[

where dM stands for the volume element with respect to the metric induced of M™.

A/ = inf

afECOO(M)»f#O ) (2)

In his seminal work [9], SIMONS studied the first strong stability eigenvalue of
a minimal closed hypersurface M™ immersed in S**!. In this setting, he proved
that either \{ = —n, and M" is a totally geodesic sphere, or \{ < —2n, otherwise.
Later on, WU in [10] characterized the equality A{ = —2n by showing that it holds
only for the minimal Clifford torus. Shortly thereafter, PERDOMO [7] provides
a new proof of this spectral characterization by the value of \{. Afterwards,
Avrfas, BARROS and BRASIL JR. [1] extended these results to the case of constant
mean curvature hypersurfaces in S**!, characterizing Clifford torus via the value
of A{.

Proceeding with this picture, we obtain the following extension of the main
result of [1] for the context of higher codimension.

Theorem 1.1. Let M™ be a closed submanifold immersed in S**?, n > 4,
with nonzero parallel mean curvature vector field. If the normalized scalar cur-
vature of M™ satisfies R > 1, then

(i) either \{ = —n(1+ H?) (and M™ is totally umbilical),
(ii) or
n(n —2)

M < —2n(l+ H?*) + ———=
n(n—1)

H max |P|.
M

Moreover, the equality occurs if and only if M™ is a Clifford torus S*~!(r) x
-2

SY(V1 —r2), with r? < o
n

The proof of Theorem 1.1 is given in Section 3.

2. Some preliminaries and key lemmas

Let M™ be an n-dimensional connected submanifold immersed in a unit Eu-
clidean sphere S"*P. Let {wp} be the corresponding dual coframe, and {wpc}
the connection 1-forms on S™™P. We choose a local field of orthonormal frame
{€1,. .. entp}in S"P with dual coframe {wi, ..., wn1p}, such that, at each point
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of M", eq,..., e, are tangent to M", and €,41,...,€en4p are normal to M". We
will use the following convection for indices

1<ABC,...<n+p, 1<ijk,...<n and n+1<a,B,7,...n+p.

With restricting on M™, the second fundamental form A, the curvature ten-
sor R and the normal curvature tensor R+ of M" are given by

wia = Y hfw;, A= hfw ®w; ® ea,

J 4,0
1
dwij =Y win Awkj — 3 > Rijuawr Awi,
k k1
1 i
dwapg = ;wa7 A Wy — 2 ;Raﬁklwk A wy.

The Gauss equation is

Rijrr = (Binjs — 6udj) + Y _(hghy — hihsh).

[0}

In particular, the components of the Ricci tensor R;; and the normalized scalar
curvature R are given, respectively, by

Rip = (n—1)0x +n Y H WG — > hhS, (3)
« a,j

and

1
R= m;Ru. (4)

From (3) and (4), we get the following relation
nin—1R=n(n—1)+n’*H* - S, (5)

where S = 37 . (h{)? is the squared norm of the second fundamental form,
and, being h =Y  H% o = =3 (3, h},) € the mean curvature vector field,
H = |h| is the mean curvature function of M™.

The Ricci equation is given by

Ri—ﬁij = Z( ?khgj - ?khgz) (6)
k
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From now on, we will deal with submanifolds M™ of S*™? having nonzero
parallel mean curvature vector field, which means that the mean curvature func-
tion H is, in fact, a positive constant, and that the corresponding mean curvature
vector field h is parallel as a section of the normal bundle. In this context, we

h
can choose a local orthonormal frame {e1,...,e,4,} such that e,11 = T Thus,

1 1
H" W = —tr(h"™) =H and H*= —tr(h*) =0,a > n+2. (7)
n n
We will also consider the following symmetric tensor
=) Phw; Dw; D eq, (8)
a,i,j
where ®7; = h{; — H%4;;. Consequently, we have that

oI = p2 — HS;; and % =h%, n+2<a<n+tp 9)

Let |®[* =3, ; ;(®F)? be the square of the length of ®. From (5), it is not
difficult to verify that & is traceless with
B> =S —nH?. (10)
From [5, Lemma 4.1] we obtain the following Simons type formula:

Lemma 1. Let M™ be an n-dimensional (n > 2) submanifold immersed
with nonzero parallel mean curvature vector field in the Euclidean sphere S"*P.
Then, we have

2
]‘ n [e3 [e3%
FAIRP=VOPtn|df*+n Hhij“hfkhi—Z@hU M>—Z (Ragis)*-

Byizg,k (RN AN ,5,0,8
The next key lemma is due to BARROS et al. (see [3, Lemma 1]).

Lemma 2. Let M" be a Riemannian manifold isometrically immersed into
a Riemannian manifold N"*P. Consider ¥ = Z Viiw ®w; ®eq a traceless sym-
«,1,]
metric tensor satisfying Codazzi equation. Then the following inequality holds:

4
VPP < P v,
n

where |V|? = Z(\I’%)2 and |[VU|? = Z (U$,,)?. In particular, the conclusion
i gk

holds for the tensor ® defined in (8).
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In order to prove Theorem 1.1, we will also need two algebraic lemmas. The
proof of them can be found in [8] and [6], respectively.

Lemma 3. Let B,C : R — R" be symmetric linear maps such that
BC —CB =0 and trB =trC =0, then

n—2 n—2
——— % |BPC| < tr(B%C) < ——=—|B]?|C]|.
rn_l)l I*|C] < tr(BC) < rn_l)\ I%1C|

Lemma 4. Let B', B2 ..., B" be symmetric (n x n)-matrices. Set Sap =
tr(B*B?), S = Saa, S = > o Sa, then

2
(0% (03 3
> |B*B? - BB |2+ZS§B§2<ZSQ> .

o, a,

3. Proof of Theorem 1.1

From Lemma 1 we have that

1 n B 1B
5A|<I>|2 = |VO|? +n|®|? + nﬂzk HRES RS, Yy,
FX2V R

- Z (thag gl) - Z (R(Jx_ﬁij)Q‘ (11)

3kl \ @ ,5,0,8
From (7) and (9) we get

n+p
Y HRSTGRG = HRGPRST RS Y HAH e e
i4,k,8 i4.k B=n+21i,j,k
n+p n+p
= Htr(@" '+ HI)P+ Y Y HORM o) o)+ > |0l
B=n+21,j,k B=n+2
n-+p
= Htr(®" )3 + 3BH|O" T2 4 nHY + > H?|OP)?
B=n+2
n+p
n+1506 50
+ >0 N HEL S 0 (12)
B=n+21,j5,k
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Since tr ®* = 0 and ®" @8 — PP+ = 0,n+2 < B < n+p, from Lemma 3
we obtain
n+p n+p
Hir(®"H)? + 3H? |02 4 nH + > HOPP+ > N HeLe) o),
f=n+2 B=n+2ijk

_9 )
TS et 4 2H2 |0 4 BRG] + nH*
n(n—1)

n+p
Y He"|@f?
)B:n+2

n—2
n(n —

n—2

Vn(n —1)

=2H?|®" 2 + H?|®|* + nH* - H|®" || @2 (13)

Hence, from (12) and (13) we have

—2
ST HWS A, > 2 P R 0 T - —

H|®"|®[2. (14)
Blivjsk n(n—1)

From Ricci equation (6) we get

2
Z (thj gl) + Z (Ri/%j)Q
i,9,k,1 a a,B,i,]
=) (tr(A%A%))% + > (Ragis)?

B a#n+1,8#n+1,i,5
= [tr(A"T AT 12 Y [er(AT AR

B#n+1
+ > [AMAP—APAP YT (r(A%AR)) (15)
a#n+1,8#n+1 a#n+1,8#n+1

But, using (9) and Lemma 4, we obtain
2 2

% S jef g > (AP A”)

B#n+1 B#n+1

S m(ArANP+ YT A2 A-AP AP (16)
a#n+1,8#n+1 a#n+1,8#n+1

Hence, from (15) and (16) we have

> (Zh%h?l> + > (Rapiy)’

4,3,k,0 a a,B,1,j

Vv

Vv
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B#n+1

= [@" " 4 2nH @ TP 4 P H 42 ) (@)
BAn+1

< (AT AT 42 3 (At A% + g 1372
ﬂ#n+1
3 n+1,2
3P — oy

@ 2n |8 Pt 4 D B2l (0 @7 ) sl

"t fonHA " 4 2 HY — |B 0" + 5|<1>| . (17)
Therefore, from (11), (14) and (17) we get

1

~A|P|?

2

n(n—2)

vn(n—1)

— (2] ~ o) (”(”‘2)H|<I>|2 — 2]~ (] + |<1>”“|>2>

1 3
> n|®f*— HI@" |0 4-nH? |0 — 2 [0 114 |2 |@n T2 — J]af!

n(n —1)

+ |®? <—|<I>2—n(n_2)H|<I>|+n(1+H2)>. (18)

vn(n—1)

On the other hand, we note that the following algebraic inequality (3.5) of [4]
also holds:

n " 32
([@] = [@" (@] + [@"TH])? < |, (19)
Moreover, since R > 1, we use (5) and (10), in order to obtain
n*H? =S +nn—-1)(R-1)> 8 = |®* +nH?,

which gives us
1
H> ——|9|. (20)
n(n—1)

Thus, from (19) and (20) we conclude that

nin — 2 1 n " n—2 16
022 g Lge) - e e) 4 et > (222 18 g (o)

But, taking into account our assumption that n > 4, we have that

n727E
n—1 27

> 0. (22)
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Consequently, inserting (13), (21) and (22) in (18), we get that

1 n—2 16
ZA|D)?2 > [VO|? — |9|2Py (|® o —|o" T —= - =) |9?
SAIRP > [Vl — |2 Py (1)) + (@] — &™) (—— — - ] |2

> |VO|* — |02 Py (|9]) (23)
where
n(n —2)
n(n —1)
If M™ is totally umbilical, then |®*> = 0 and J = —A — n(1 + H?), where
H is constant, so \{ = )\IA —n(l+ H?) = —n(1 + H?), whose corresponding
eigenfunctions are the constant functions. On the other hand, following the ideas

of [1], when M™ is not umbilical, for an arbitrary ¢ > 0, we consider the positive
smooth function f. € C°°(M) given by

fe=e+ D2 (24)

With a straightforward computation, from (24) we have that

Py (z) = |®* + H|®| — n(1+ H?).

_ 1 2_# 212
Thus, from (25) and (23) we get
1
> |Vo|? — |®? ) — ———— |V|®|*°.

Hence, applying Lemma 2 to @, from (26) we obtain

2 2 n ki 2
feAfe > _|(I)‘ PH(|<I)D + |V(I)| - (n+2) (€+ |q)|2) ‘V(I)‘
_ n @]

n 2
> o Pa((ol)+ (1= ) (V0 = —[aPPa(jel)+-2 Vo, 1)

Then, from (27) we have that

fsJ(fs): _fsAfe - (|(I)|2 + n(l + Hz))(g + ‘(I)|2)

< B2 Pa(19]) — — [VOP — (+[BP)(|BP +n(1+ H2)(e+[0?) . (25)
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From (2) and (28) we obtain
)\i]/ fssz:)‘iI/ (e +[2) dMS/ fed(fe) dM
M M M
2
< [ |®*Py(|®|)dM — —— ®|?dM
< [ 1ekra(ana - — [ |val
_/ (e +10]%) (|02 + n(1 + H2)) dM.
M
Finally, letting ¢ — 0 in this last inequality, we have

2
A [ jopaar < [ (9P Pa(e)- ol —atr+ el i - [ varan
M M n+2Ju
n(n —2)

vn(n—1)

< 72n(H2+1)/ |®|2dM + H/ |®|>dM. (29)
M M

Hence, from (29) we get

n(n — 2)

N < —2n(H? 4+ 1) +
nin—1)

H max |P|.
M

Now, suppose A\{ = —2n(1 + H?) + \;%H maxps |®|. Thus, from (29)
n(n—

we get that |[V®| = 0, and using once more Lemma 2, we conclude that |®| must

be a positive constant.
On the other hand, from equation (1) it follows that

-2
M2 = (192 4+ n(1+ H?) =) = —2n(1 + H?) + MH@L
n(n —1)
Thus, since M™ is closed, we obtain
n(n —2)

Vn(n —1)

Hence, all the inequalities along this proof must be equalities. In particular,

0=\ 2=+ H|®| — n(1+ H?) = Py (|®)).

taking into account (22), from (23) we conclude that |®| = [®"*!| and conse-
quently, ®* = 0, for all n + 2 < o < n + p. Thus, since e,41 is parallel in the
normal bundle of M™ we are in position to apply [11, Theorem 1] to conclude
that M™ is, in fact, isometrically immersed in a (n 4 1)-dimensional totally geo-
desic submanifold S**1 of S*"*P. Therefore, we can use [1, Theorem 2.2] to finish

our proof.
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