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De Branges–Rovnyak spaces and generalized Dirichlet spaces

By BARTOSZ  LANUCHA (Lublin) and MARIA NOWAK (Lublin)

Abstract. We consider the relations between the generalized Dirichlet spaces

D(µ) and de Branges–Rovnyak spaces H(b). Such relations were studied in the pa-

pers [10], [11], and more recently, in [2] and [3]. Here we obtain further results in this

direction.

1. Introduction

Let H2 be the standard Hardy space of the open unit disk D. For µ a finite

positive Borel measure on T = ∂D and f a holomorphic function in D, the Dirich-

let integral of f with respect to µ is defined by

Dµ(f) =

∫
D
|f ′(z)|2Pµ(z)dA(z),

where Pµ is the Poisson integral of µ, and dA denotes area measure on D, nor-

malized to have unit total mass.

For λ ∈ T, we define the local Dirichlet integral of f at λ by

Dλ(f) =
1

2π

∫ 2π

0

∣∣∣∣f(λ)− f(eit)

λ− eit

∣∣∣∣2 dt,
where f(λ) is the nontangential limit of f at λ. If f(λ) does not exist, then we

set Dλ(f) =∞. It is known that if f ∈ H2, then

Dµ(f) =

∫
T
Dλ(f)dµ(λ) (see, e.g., [8]).
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The generalized Dirichlet space D(µ) consists of those functions f ∈ H2 for

which Dµ(f) is finite. The space D(µ) is a Hilbert space with the norm

‖f‖2D(µ) = ‖f‖22 +Dµ(f).

If µ = δλ, λ ∈ T, then Dµ(f) = Dλ(f) and D(δλ) is called the local Dirichlet

space at λ. The more general case when µ is a finitely atomic measure, that is,

µ =
∑n
j=1 µjδλj , where λ1, . . . , λn are distinct points of T and µ1, . . . , µn are

positive numbers, was considered by Sarason in [11]. In this case,

‖f‖2D(µ) = ‖f‖22 +

n∑
j=1

µj

∥∥∥∥f(λj)− f(z)

λj − z

∥∥∥∥2
2

.

It has been shown in [8] that if f(z) =
∑∞
k=0 f̂(k)zk belongs to D(δλ), then

the series
∑∞
k=0 f̂(k)λk converges. Consequently, if f is in D(µ), with µ as above,

then all the series
∑∞
k=0 f̂(k)λkj converge.

In [11], the author considered the function

Kµ(z) = 1−
n∑
j=1

µj
λjz

(1− λjz)2
, (1.1)

and proved that if w1, . . . , wn are the zeros of Kµ in D, and

ã(z) =

n∏
j=1

(1− λjz), (1.2)

then

D(µ) =M(ã)⊕D(µ) KB̃ , (1.3)

where KB̃ = H2 	 B̃H2 is the model space corresponding to the finite Blaschke

product B̃ with zero sequence w1, . . . , wn andM(ã) = ãH2, see [11, Corollary 1].

For χ ∈ L∞(T), let Tχ denote the bounded Toeplitz operator on H2, that

is, Tχf = P (χf), where P is the orthogonal projection of L2(T) onto H2. Given

a function b in the unit ball of H∞, the de Branges–Rovnyak space H(b) is the

image of H2 under the operator (I−TbTb)1/2. The space H(b) is given the Hilbert

space structure that makes the operator (I − TbTb)1/2 a coisometry of H2 onto

H(b), namely,

〈(I − TbTb)
1/2f, (I − TbTb)

1/2g〉b = 〈f, g〉2 (f, g ∈ (ker(I − TbTb)
1/2)⊥).
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It is known [12, p. 10] that H(b) is a Hilbert space with reproducing kernel

kbw(z) =
1− b(w)b(z)

1− wz
(z, w ∈ D).

Here, we are interested in the case when the function b is not an extreme

point of the unit ball of H∞, that is, the case when the function log(1 − |b|) is

integrable on T ([7, p. 138]). Then, there exists an outer function a ∈ H∞ for

which |a|2 + |b|2 = 1 a.e. on T. Moreover, if we suppose that a(0) > 0, then a is

uniquely determined, and we say that (b, a) is a pair.

Recall now that the Smirnov class N+ consists of the holomorphic functions

in D that are quotients of functions in H∞ in which the denominators are outer

functions. If (b, a) is a pair, then the quotient ϕ = b
a is in N+. Conversely, for

every nonzero function ϕ ∈ N+, there exists a unique pair (b, a) such that ϕ = b
a .

It is worth noting here that if ϕ is rational, then the functions a and b in the

representation of ϕ are also rational (see [13]).

For a function ϕ that is holomorphic on D, we define Tϕ to be the operator of

multiplication by ϕ on the domain D(Tϕ) = {f ∈ H2 : ϕf ∈ H2}. We note that

Tϕ is bounded on H2 if and only if ϕ ∈ H∞. It was proved in [13] that D(Tϕ) is

dense in H2 if and only if ϕ ∈ N+. Moreover, if ϕ is a nonzero function in N+

with canonical representation ϕ = b
a , then D(Tϕ) = aH2. In this case, Tϕ has

a unique adjoint T ∗ϕ. Following Sarason [13, p. 286], we define Tϕ = T ∗ϕ. The

next theorem says that the de Branges–Rovnyak space H(b) is the domain of Tϕ.

Theorem 1.1 ([13]). Let (b, a) be a pair, and let ϕ = b
a . Then the domain

of Tϕ is H(b) and for f ∈ H(b),

‖f‖2b = ‖f‖22 + ‖Tϕf‖22.

In 1997, D. Sarason [10] proved that for λ ∈ T and

bλ(z) =
(1− α)λz

1− αλz
, α =

3−
√

5

2
,

the space D(δλ) coincides with H(bλ), with equality of norms. In 2010,

N. Chevrot, D. Guillot and T. Ransford [2] identified all the functions b

and the measures µ for which D(µ) = H(b) with equality of norms.

In their recent paper [3], C. Costara and T. Ransford proved that if (b, a)

is a rational pair, then D(µ) = H(b), without supposing equality of norms, if and

only if:
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(i) the zeros of the function a on T are all simple, and

(ii) the support of µ is exactly equal to this set of zeros.

In the proof of this result, the following theorem due to Ball and Kriete [1]

was used.

Theorem 1.2 ([1], [3]). Let (b1, a1) and (b2, a2) be pairs. Then H(b1) ⊂
H(b2) if and only if the following two conditions both hold:

(i) there exist g, h ∈ H∞ such that b2 = gb1 + ha2,

(ii) there exists γ > 0 such that |a1| ≤ γ|a2| m-a.e. on T.

In this paper, we will use also the following description ofH(b) obtained in [3]:

Theorem 1.3 ([3]). Let (b, a) be a rational pair, and let λ1, . . . , λn be the

zeros of a on T, listed according to multiplicity. Then

H(b) =

p+

n∏
j=1

(z − λj)g : p ∈ Pn−1, g ∈ H2

 , (1.4)

where Pn−1 denotes the set of polynomials of degree at most n− 1.

Here, we mainly concentrate on pairs (b, a) for which ϕ = b/a =
∏n
j=1(1 −

λjz)
−1, where λ1, . . . , λn are distinct points from T. We find an explicit formula

for Tϕf , f ∈ H(D), which implies the equality of the spaces D(µ) = H(b) and

some inequalities between their norms. Moreover, in Theorem 2.3, we obtain the

following result on the structure of H(b):

H(b) =M(a)⊕H(b) span{kbλ1
, . . . , kbλn},

where kbλj are the corresponding kernel functions. Next, we show that

span{kbλ1
, . . . , kbλn} = KB ,

where B is a Blaschke product of order n. From this, we get a description of H(b)

analogous to that obtained by Sarason for D(µ), when µ is a finitely atomic

measure on T. It turns out that in the special case when ϕ(z) = (1− zn)−1 and

µ = 1
n2

∑n
j=1 δej , where ej are the n-th roots of 1, the model space KB equals to

the model space KB̃ in (1.3).

We remark that in view of Theorem 1.2, the same argument as in [3] can

be used to show that some of the results obtained for these special H(b) can be

extended to the case when (b, a) are rational pairs such that λ1, . . . , λn are the

simple zeros of a on T.
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In Section 4, we apply Theorem 1.3 to show a relation between two spaces

H(b) and H(b1) in the case when the sets of zeros on T of the corresponding

functions a and a1 differ by a single point. In particular, we show that if λ is

a zero of the function a of order k ≥ 2 and f ∈ H(b), then the derivative f (k−1)

has a nontangential limit at λ. We would like to mention that the existence of

the nontangential limits of derivatives of the functions in H(b) is discussed in [5]

and [6].

After preparing this manuscript, we found that our Theorem 4.1 is contained

in Theorem 1.2 in the recent work [4]. However, our approach and proofs are

different than those in [4].

2. Main results

In this section, we deal with the function ϕ ∈ N+ defined by

ϕ(z) =
1∏n

j=1(1− λjz)
, (2.1)

where λ1, . . . , λn are distinct points from T. By the Riesz–Fejér theorem (see [9,

p. 118]), there is a unique polynomial r of degree n, without zeros in D, such that

r(0) > 0, and

1 + |
n∏
j=1

(1− λjz)|2 = |r(z)|2 on T.

Then the functions in the corresponding pair (b, a) are given by

a(z) =

∏n
j=1(1− λjz)

r(z)
, b(z) =

1

r(z)
.

We observe that b ∈ H(D), and since λj , 1 ≤ j ≤ n, are the zeros of a on T, we

have |b(λj)| = 1 for every 1 ≤ j ≤ n. It then follows (see [12, p. 48]) that b has

an angular derivative in the sense of Carathéodory at every λj , and consequently,

every function f ∈ H(b) has a nontangential limit at λj , 1 ≤ j ≤ n. Moreover,

f(λj) = 〈f, kbλj 〉b,

where

kbλj (z) =
1− b(λj)b(z)

1− λjz
.

We first prove the following:
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Lemma 2.1. Let ϕ be given by (2.1). Then, for every f in H(D),

Tϕf(z) = f(z) +

n∑
j=1

ajλj
f(λj)− f(z)

λj − z
, (2.2)

where aj =
(∏n

l=1,l 6=j(1− λlλj)
)−1

.

Proof. Clearly,

ϕ(z) =

n∑
j=1

aj

1− λjz
,

where aj is defined in the Lemma. It is also known that Tϕ is well defined

on H(D). Moreover, using the formula

Tϕf(z) =

∞∑
m=0

∞∑
l=0

ϕ̂(l)f̂(l +m)zm (see, e.g., [13, Lemma 6.1]), (2.3)

one can easily check that

Tϕf(z) =

n∑
j=1

ajTkλj
f(z),

where kλj (z) = (1− λjz)−1. Since kλj (z) =
∑∞
l=0 λ

l

jz
l, we get, by (2.3),

Tkλj
f(z) =

∞∑
m=0

( ∞∑
l=0

λlj f̂(l +m)

)
zm =

∞∑
m=0

rmz
m,

where rm = f̂(m) + λj f̂(m+ 1) + λ2j f̂(m+ 2) + · · · . Consequently,

(λj − z)Tkλj f(z) =

∞∑
m=0

λjrmz
m −

∞∑
m=0

rmz
m+1

= λjf(λj)+

∞∑
m=1

(λjrm−rm−1)zm=λjf(λj)−
∞∑
m=1

f̂(m−1)zm

= λjf(λj)−z
∞∑
m=0

f̂(m)zm=λj(f(λj)−f(z))+(λj−z)f(z).

Hence,

Tkλj
f(z) = f(z) + λj

f(λj)− f(z)

λj − z
.

Since
∑n
j=1 aj = 1, we get formula (2.2). �
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Theorem 2.2. Let (b, a) be a pair such that b/a = ϕ, where ϕ is given

by (2.1). If f ∈ H(b), then

Tϕf(z) = f(z) +

n∑
j=1

ajλj
f(λj)− f(z)

λj − z
, (2.4)

where f(λj) is the nontangential limit of f at λj , and aj are such as in Lemma 2.1.

In particular, the sum on the right side of (2.4) belongs to H2.

Proof. Let f ∈ H(b). It follows from Theorem 1.1 that Tϕf ∈ H2. Since

polynomials are dense in H(b) (see, e.g., [12, p. 25]), we can choose a sequence of

polynomials {pm} such that pm → f in H(b). Then pm → f and Tϕpm → Tϕf

in H2. This implies that pm(z) → f(z) and Tϕpm(z) → Tϕf(z) for every z ∈ D.

Moreover, since the functionals f 7→ f(λj) are bounded on H(b) (see [12, pp. 48–

49]), we see that pm(λj)→ f(λj) for each 1 ≤ j ≤ n. From this and Lemma 2.1,

for every z ∈ D,

Tϕf(z) = lim
m→∞

Tϕpm(z) = lim
m→∞

pm(z) +

n∑
j=1

ajλj
pm(λj)− pm(z)

λj − z


= f(z) +

n∑
j=1

ajλj
f(λj)− f(z)

λj − z
. �

Theorem 2.3. Let (b, a) be a pair such that b/a = ϕ, where ϕ is given

by (2.1). We have

H(b) =M(a)⊕H(b) span{kbλ1
, . . . , kbλn}.

In particular, M(a) is a closed subspace of H(b).

Proof. Let V = span{kbλ1
, . . . , kbλn} ⊂ H(b). Since M(a) ⊂ H(b) (see, e.g.,

[12, p. 24]), it is enough to show that M(a) = V ⊥ in H(b).

Note that if f ∈ M(a), then f(λj) = 〈f, kbλj 〉b = 0 for every 1 ≤ j ≤ n.

So M(a) ⊂ V ⊥. On the other hand, if f ∈ V ⊥, then f(λj) = 0 for each

1 ≤ j ≤ n. Thus, by Theorem 2.2,

Tϕf(z) =

n∑
j=1

aj

(
1− 1

1− λjz

)
f(z) = −

 n∑
j=1

aj
λjz

1− λjz

 f(z) = g(z) ∈ H2.

Moreover, for |z| = 1 we have

a1
λ1z

1− λ1z
+ · · ·+ an

λnz

1− λnz
=

−zn∏n
j=1(z − λj)

,
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and consequently,

znf(z) =

n∏
j=1

(z − λj)g(z),

which shows that f ∈M(a). �

As a corollary from the last Theorem we get the following result, due to

Costara and Ransford [2].

Corollary 2.4. Let (b, a) be a pair such that b/a = ϕ, where ϕ is given

by (2.1). Then

H(b) = D(µ),

where µ =
∑n
j=1 µjδλj and µj > 0.

Proof. To see that H(b) ⊂ D(µ), it is enough to observe that M(a) =

M(ã) ⊂ D(µ), where ã is given by (1.2) and each of the functions kbλj ∈ H(D) ⊂
D(µ). The other inclusion is an immediate consequence of Theorem 2.2. �

It is known that if H(b) = D(µ), then the norms ‖ · ‖b and ‖ · ‖D(µ) are equiv-

alent ([3]). Moreover, the authors in [2] gave necessary and sufficient conditions

for equality of these norms.

In our case, we get the following:

Proposition 2.5. If µ =
∑n
j=1 |aj |2δλj , where aj =

(∏n
l=1,l 6=j(1− λlλj)

)−1
and b is as above, then

‖f‖b ≤
√
n+ 2‖f‖D(µ).

Proof. We have

‖f‖2b = ‖f‖22 + ‖Tϕf‖22 ≤ ‖f‖22 +

‖f‖2 +

n∑
j=1

|aj |
∥∥∥∥f(λj)− f(z)

λj − z

∥∥∥∥
2

2

≤ ‖f‖22 + (n+ 1)

‖f‖22 +
n∑
j=1

|aj |2
∥∥∥∥f(λj)− f(z)

λj − z

∥∥∥∥2
2

≤(n+ 2)‖f‖2D(µ).�

Recall that b(z) = 1/r(z), where r(z) is a polynomial of degree n with zeros

w
′

1, . . . , w
′

n ∈ C\D. We now state a result that is analogous to Sarason’s result

mentioned in the Introduction.

Corollary 2.6. Let (b, a) be a pair such that b/a = ϕ, where ϕ is given

by (2.1). We have

H(b) =M(a)⊕H(b) KB ,
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where KB is the model space corresponding to the finite Blaschke product with

zero sequence wk = 1/w
′
k, k = 1, . . . , n.

Proof. In view of Theorem 2.3, it is enough to show that

span{kbλ1
, . . . , kbλn} = KB .

To this end, we observe that

kbλj (z) =
1− b(λj)b(z)

1− λjz
=

1− b(z)
b(λj)

1− λjz
=

1− r(λj)
r(z)

1− λjz
=

r(z)− r(λj)
(1− λjz)r(z)

=
P (z)

r(z)
,

where P (z) is a polynomial of degree at most n− 1. Since there are constants c

and c′ such that

r(z) = c

n∏
k=1

(z − w
′

k) = c′
n∏
k=1

(1− wkz),

we see that

kbλj (z) =
P (z)

c′
∏n
k=1(1− wkz)

∈ KB .

Consequently,

span{kbλ1
, . . . , kbλn} ⊂ KB .

Since both the spaces KB and span{kbλ1
, . . . , kbλn} have dimension n, the other

inclusion follows. �

3. A special case: ϕ(z) = 1
1−zn

If ϕ(z) = 1
1−zn , then the poles λj = ej of ϕ, j = 1, . . . , n, are the n-th roots

of 1. To find the canonical representation ϕ = b/a, we observe first that in this

case

R(eit) = 1 + |1− eint|2 = 3− e−int − eint,

and consider the polynomial

W (z) = zn(3− z−n − zn) = −z2n + 3zn − 1

= −

(
zn − 3−

√
5

2

)(
zn − 3 +

√
5

2

)
= −(zn − α)

(
zn − 1

α

)
,
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where α = 3−
√
5

2 . Clearly, W (z) has n distinct zeros in D,

wk = n
√
αek,

and n distinct zeros outside D,

w
′

k =
1

wk
=

1
n
√
α
ek, k = 1, . . . , n.

Hence,

W (z) = −
n∏
k=1

(z − w
′

k)(z − wk) = αzn
n∏
k=1

(z − w
′

k)

(
1

z
− w′

k

)
,

and

r(z) = −
√
α

n∏
k=1

(z − w
′

k) = −
√
α

(
zn − 1

α

)
=

1√
α

(1− αzn)

is a polynomial satisfying r(0) > 0, and

|r(z)|2 = 1 + |1− zn|2 on T.

Consequently, see, e.g., [13],

a(z) =
(1− α)(1− zn)

1− αzn
and

b(z) =
1− α

1− αzn
.

We observe that in this case formula (2.4) simplifies to

Tϕf(z) = f(z) +
1

n

n∑
j=1

ej
f(ej)− f(z)

ej − z
.

We note that if b is as above, then, by Corollary 2.6,

H(b) =M(a)⊕H(b) KB ,

where KB is the model space corresponding to the finite Blaschke product with

zero sequence wk = n
√
αek, k = 1, . . . , n.

On the other hand, by Sarason’s result [11], we know that if µ =
∑n
j=1 µjδej ,

then

D(µ) =M(a)⊕D(µ) KB̃ ,

where KB̃ is the model space corresponding to the finite Blaschke product B̃

with zeros w̃1, . . . , w̃n, which are the zeros of the function Kµ defined in the

Introduction. We now show that in this case, the coefficients µj can be chosen so

that B = B̃.

The following Theorem was proved in [14].
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Theorem. Let w1, . . . , wn be a finite sequence of points in D\{0} (repetitions

allowed). Then there exist distinct points λ1, . . . , λn on the unit circle and positive

numbers µ1, . . . , µn such that w1, . . . , wn, 1/w1, . . . , 1/wn is the zero sequence of

the function Kµ(z) given by (1.1).

It follows from the proof of this Theorem that if one can find λ1, . . . , λn on T
such that

n∏
l=1

λl

n∏
j=1

wj

> 0 (3.1)

and ∑
m 6=l

λlλm − λlλm
|λl − λm|2

=

n∑
j=1

λlwj − λlwj
|λl − wj |2

(l = 1, . . . , n), (3.2)

then µ1, . . . , µn are uniquely determined and given by

µl =

∏n
j=1 |λl − wj |2∏n

j=1 |wj |
∏
m 6=l |λl − λm|2

.

We first show that if wk = n
√
αek and λk = ek, k = 1, . . . , n, then conditions

(3.1) and (3.2) are fulfilled. Clearly, (3.1) holds. It is enough to prove (3.2) for

el = e1 = 1, that is
n∑

m=2

em − em
|1− em|2

=

n∑
j=1

wj − wj
|1− wj |2

.

Symmetry arguments show that both sides of this equality are equal to zero. Now,

a calculation gives

µl =
1

n2
, l = 1, . . . , n.

This means that if µ = 1
n2

∑n
j=1 δej , then B = B̃, which proves our claim.

4. Characterization of H(b) in terms of the zeros of a

In this section, using Theorem 1.2, we generalize Theorem 2.3 as follows:

Theorem 4.1. Let (b, a) be a rational pair, and let λ1, . . . , λn be the simple

zeros of a on T. Then

H(b) =M(a)⊕H(b) span{kbλ1
, . . . , kbλn}.
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Proof. Let (b0, a0) be the rational pair such that the function ϕ defined

by (2.1) has the canonical representation ϕ = b0
a0

. It then follows from the con-

struction of the canonical representation (see, e.g., [13, p. 283]) that

a(z) = q(z)a0(z),

where q(z) is a rational holomorphic non-vanishing function in D. Consequently,

M(a) =M(a0).

Moreover, using Theorem 1.2, one can show that

H(b) = H(b0).

Now, let V = span{kbλ1
, . . . , kbλn} ⊂ H(b). As in the proof of Theorem 2.3,

we get M(a) ⊂ V ⊥. Now, if f ∈ V ⊥, then f(λj) = 0, and since f ∈ H(b0),

by Theorem 2.3, f ∈M(a0) =M(a). This shows that V ⊥ =M(a). �

Our next result is a corollary of Theorem 1.3.

Theorem 4.2. Let (b, a) and (b1, a1) be rational pairs, and let λ, λ1, . . . , λn
and λ1, . . . , λn be the zeros of a and a1 on T, respectively, listed according to

multiplicity. If f ∈ H(b), then

F (z) =
f(λ)− f(z)

λ− z
∈ H(b1).

Conversely, if f ∈ H2 is such that the nontangential limit f(λ) exists and F ∈
H(b1), then f ∈ H(b).

Proof. Assume that f ∈ H(b). Then, by (1.4),

f(z) = p(z) + (z − λ)

n∏
j=1

(z − λj)g,

where p is a polynomial of degree n and g ∈ H2. So

F (z) =
f(λ)− f(z)

λ− z
=
p(λ)− p(z)
λ− z

+

n∏
j=1

(z − λj)g(z) = p1(z) +

n∏
j=1

(z − λj)g(z),

where p1 is a polynomial of degree n− 1. By (1.4) again, F ∈ H(b1). The other

claim can be proved analogously. �
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It follows immediately from Theorem 1.3 that if f ∈ H(b) and λ is a zero

of a on T, then the nontangential limit of f at λ exists. For the case when λ is

a zero of order k ≥ 2, we get immediately from the above theorem the following:

Corollary 4.3. If (b, a) is a rational pair and λ is a zero of the function a of

order k ≥ 2 and f ∈ H(b), then the derivative f ′ has a nontangential limit at λ.

We remark that by the result in [12, p. 46], the derivative f ′ has a nontan-

gential limit at λ if and only if f has a nontangential limit f(λ), and the difference

quotient (f(λ)− f(z))/(λ− z) has a nontangential limit at λ.

Corollary 4.4. Let (b, a) be a rational pair, and let λ be a zero of the

function a of order k. If f ∈ H(b), then there is a function h in H2 such that

f(z) = f(λ) + f ′(λ)(z − λ) + · · ·+ f (k−1)(λ)

(k − 1)!
(z − λ)k−1 + (z − λ)kh(z).

Proof. By formula (1.4),

f(z) = pn+k−1(z) + (z − λ)k
n∏
j=1

(z − λj)g(z),

where λ1, . . . , λn are the other zeros of a and g ∈ H2. Clearly,

f (j)(λ) = p
(j)
n+k−1(λ), j = 0, 1, . . . , k − 1.

Consequently,

f(z) =

k−1∑
j=0

f (j)(λ)

j!
(z − λ)j + (z − λ)k

pn−1(z) +

n∏
j=1

(z − λj)g(z)


=

k−1∑
j=0

f (j)(λ)

j!
(z − λ)j + (z − λ)kh(z).

Finally, we remark that the function h is in the space H(̃b), where the zeros of

the corresponding function ã are λ1, . . . , λn. �

References

[1] J. A. Ball and T. L. Kriete, Operator-valued Nevanlinna–Pick kernels and the functional
models for contraction operators, Integral Equations Operator Theory 10 (1987), 17–61.



184 B.  Lanucha and M. Nowak : De Branges–Rovnyak spaces and. . .

[2] N. Chevrot, D. Guillot and T. Ransford, De Branges–Rovnyak spaces and Dirichlet
spaces, J. Funct. Anal. 259 (2010), 2366–2383.

[3] C. Costara and T. Ransford, Which de Branges–Rovnyak spaces are Dirichlet spaces
(and vice versa)?, J. Funct. Anal. 265 (2013), 3204–3218.

[4] E. Fricain, A. Hartmann and W. T. Ross, Concrete examples of H(b) spaces, Comput.

Methods Funct. Theory 16 (2016), 287–306.

[5] E. Fricain and J. Mashreghi, Boundary behavior of functions in the de Branges–Rovnyak

spaces, Complex Anal. Oper. Theory 2 (2008), 87–97.

[6] E. Fricain and J. Mashreghi, Integral representation of the n-th derivative in de

Branges–Rovnyak spaces and the norm convergence of its reproducing kernel, Ann. Inst.
Fourier (Grenoble) 58 (2008), 2113–2135.

[7] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall Series in Modern Anal-
ysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.

[8] S. Richter and C. Sundberg, A formula for the local Dirichlet integral, Michigan Math

J. 38 (1991), 355–379.

[9] F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Books on Advanced Mathematics,

Dover Publications, New York, 1990.

[10] D. Sarason, Local Dirichlet spaces as de Branges–Rovnyak spaces, Proc. Amer. Math.

Soc. 125 (1997), 2133–2139.

[11] D. Sarason, Harmonically weighted Dirichlet spaces associated with finitely atomic mea-
sures, Integral Equations Operator Theory 31 (1998), 186–213.

[12] D. Sarason, Sub-Hardy Hilbert spaces in the unit disc, University of Arkansas Lecture
Notes in the Mathematical Sciences, Vol. 10, John Wiley & Sons, New York, 1994.

[13] D. Sarason, Unbounded Toeplitz operators, Integral Equations Operator Theory 61

(2008), 281–298.

[14] D. Sarason and D. Suarez, Inverse problem for zeros of certain Koebe-related functions,

J. Anal. Math. 71 (1997), 149–158.

BARTOSZ  LANUCHA

DEPARTMENT OF MATHEMATICS

M. CURIE-SK LODOWSKA UNIVERSITY

PL. MARII CURIE-SK LODOWSKIEJ 1

20-031 LUBLIN

POLAND

E-mail: bartosz.lanucha@poczta.umcs.lublin.pl

MARIA NOWAK

DEPARTMENT OF MATHEMATICS

M. CURIE-SK LODOWSKA UNIVERSITY

PL. MARII CURIE-SK LODOWSKIEJ 1

20-031 LUBLIN

POLAND

E-mail: mt.nowak@poczta.umcs.lublin.pl

(Received June 22, 2016; revised September 26, 2016)


