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A Gauss–Kuzmin-type theorem for θ-expansions

By DAN LASCU (Constanta) and FLORIN NICOLAE (Constanta)

Abstract. A generalization of the regular continued fractions was given by

S. Chakraborty and B. V. Rao in 2004. For the transformation which generates this ex-

pansion and its invariant measure, the Perron–Frobenius operator is given and studied.

For this expansion, we apply the method of Szüsz from 1961 and obtain the solution of

its Gauss–Kuzmin-type theorem.

1. Introduction

S. Chakraborty and B. V. Rao [3] considered a continued fraction ex-

pansion of a number in terms of an irrational θ ∈ (0, 1). This new expansion of

positive reals, different from the regular continued fraction expansion, is called

the θ-expansion.

The purpose of this paper is to give some ergodic properties, and to solve a

Gauss–Kuzmin problem for θ-expansions. In order to solve the Gauss–Kuzmin

problem, we apply the method of Szüsz [14], [21]. First, we outline the historical

framework of this problem. In Section 1.2, we present the current framework.

In Section 1.3, we review known results. In Section 1.4, the main theorem will be

shown.

Mathematics Subject Classification: 11J70, 11K50, 37C30.
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1.1. Gauss’ Problem and its progress. Any irrational 0 ≤ x < 1 can be

written as the infinite regular continued fraction

x =
1

a1 +
1

a2 +
1

a3 +
.. .

:= [0; a1, a2, a3, . . .], (1.1)

where an ∈ N+ := {1, 2, 3, . . .} [7]. Define the regular continued fraction (or

Gauss) transformation τ on the unit interval I := [0, 1] by

τ(x) =


1

x
−
⌊

1

x

⌋
if x 6= 0,

0 if x = 0,

(1.2)

where b·c denotes the floor (or entire) function. With respect to the asymptotic

behavior of iterations τn = τ ◦ · · · ◦ τ (with τ repeated n times) of τ , in 1800

Gauss wrote (in modern notation) that

lim
n→∞

λ (τn ≤ x) =
log(1 + x)

log 2
, x ∈ I, (1.3)

where λ denotes the Lebesgue measure on I. In 1812, Gauss asked Laplace [2] to

estimate the n-th error term en(x) defined by

en(x) := λ(τ−n[0, x])− log(1 + x)

log 2
, n ≥ 1, x ∈ I. (1.4)

This has been called Gauss’ Problem. In 1928, Kuzmin [9] showed that en(x) =

O(q
√
n) as n → ∞, uniformly in x with some (unspecified) 0 < q < 1. Inde-

pendently, Lévy [12] proved in 1929 that |en(x)| ≤ qn for n ∈ N+, x ∈ I, with

q = 0.67157 . . . . For such historical reasons, the Gauss–Kuzmin–Lévy theorem is

regarded as the first basic result in the rich metrical theory of continued fractions.

Apart from the regular continued fraction expansion, very many other con-

tinued fraction expansions were studied [14], [16]. By such a development, gener-

alizations of these problems for non-regular continued fractions are also called as

the Gauss–Kuzmin problem and the Gauss–Kuzmin–Lévy problem [8], [10], [11],

[17], [18], [19], [20].
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1.2. θ-expansions as dynamical system. In this paper, we consider a gener-

alization of the Gauss transformation, and prove an analogous result.

This transformation was studied by S. Chakraborty and B. V. Rao, and

P. S. Chakraborty and A. Dasgupta in [3] and [4], respectively, and by Sebe

and Lascu in [20].

Fix an irrational θ ∈ (0, 1). In [3], the authors showed that any x ∈ (0, θ)

can be written in the form

x =
1

a1θ +
1

a2θ +
1

a3θ +
.. .

:= [0; a1θ, a2θ, . . .], (1.5)

where an’s are non-negative integers. We will simply write (1.5)

x := [a1θ, a2θ, . . .]. (1.6)

Such an’s are called incomplete quotients (or continued fraction digits) of x

with respect to the expansion in (1.5) in this paper.

This continued fraction is treated as the following dynamical systems.

Definition 1.1. Fix an irrational θ ∈ (0, 1) and m ∈ N+ such that θ2 = 1/m.

(i) The measure-theoretical dynamical system ([0, θ],B[0,θ], Tθ) is defined as fol-

lows: B[0,θ] denotes the σ-algebra of all Borel subsets of [0, θ], and Tθ is the

transformation

Tθ : [0, θ]→ [0, θ]; Tθ(x) :=


1

x
− θ

⌊
1

xθ

⌋
if x ∈ (0, θ],

0 if x = 0.

(1.7)

(ii) In addition to (i), we write ([0, θ],B[0,θ], γθ, Tθ) as ([0, θ],B[0,θ], Tθ), with the

following probability measure γθ on ([0, θ],B[0,θ]):

γθ(A) :=
1

log (1 + θ2)

∫
A

θdx

1 + θx
, A ∈ B[0,θ]. (1.8)

Define the quantized index map η : [0, θ]→ N by

η(x) :=


⌊

1

xθ

⌋
if x 6= 0,

∞ if x = 0.

(1.9)
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By using Tθ and η, the sequence (an)n∈N+ in (1.5) is obtained as follows:

an(x) = η(Tn−1θ (x)), n ≥ 1, (1.10)

with T 0
θ (x) = x.

In this way, Tθ algorithmically generates the θ-expansion.

Proposition 1.1. Let ([0, θ],B[0,θ], γθ, Tθ) be as in Definition 1.1 (ii).

(i) ([0, θ],B[0,θ], γθ, Tθ) is ergodic.

(ii) The measure γθ is invariant under Tθ, that is, γθ(A) = γθ(T
−1
θ (A)) for any

A ∈ B[0,θ].

Proof. See Section 8 in [3]. �

By Proposition 1.1 (ii), ([0, θ],B[0,θ], γθ, Tθ) is a “dynamical system” in the

sense of [1, Definition 3.1.3].

1.3. Known results and applications. For θ-expansions, we show known re-

sults and their applications in this subsection.

Let 0 < θ < 1 and m ∈ N+ such that θ2 = 1/m. In what follows, the stated

identities hold for all n in case x has an infinite θ-expansion, and they hold for

n ≤ k in case x has a finite θ-expansion terminating at the k-th stage [3].

To this end, define real functions pn(x) and qn(x), for n ∈ N+, by

pn(x) := an(x)θpn−1(x) + pn−2(x), (1.11)

qn(x) := an(x)θqn−1(x) + qn−2(x), (1.12)

with p−1(x) := 1, p0(x) := 0, q−1(x) := 0 and q0(x) := 1. By using (1.11) and

(1.12), we can verify that

x =
pn(x) + Tnθ (x)pn−1(x)

qn(x) + Tnθ (x)qn−1(x)
, n ≥ 0, (1.13)

and

x− pn(x)

qn(x)
=

(−1)n+1Tnθ (x)

qn(x)(qn(x) + Tnθ (x)qn−1(x))
, n ≥ 0. (1.14)

Putting Nm := {m,m+1, . . .}, m ∈ N+, the incomplete quotients an, n ∈ N+,

take positive integer values in Nm.

We now introduce a partition of the interval [0, θ] which is natural to the

θ-expansions. Such a partition is generated by the fundamental intervals (or
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cylinders) of rank n. For any n ∈ N+ and i(n) = (i1, . . . , in) ∈ Nnm, define the

fundamental interval associated with i(n) by

I
(
i(n)
)

= {x ∈ [0, θ] : ak(x) = ik for k = 1, . . . , n}, (1.15)

where I
(
i(0)
)

= [0, θ].

Using the ergodicity of Tθ and Birkhoff’s ergodic theorem [5], a number of

results were obtained.

For qn in (1.11) it was shown that its asymptotic growth rate β is defined as

β = lim
n→∞

1

n
log qn. (1.16)

This is a Lévy-type result. Although the calculation algorithm is correct,Chakra-

borty and Rao [3] misspelled the expression of β. They should write that for

almost all x ∈ [0, θ)

β =
−1

log(1 + θ2)

∫ θ

0

θ log x

1 + θx
dx. (1.17)

They also give a Khintchin-type result, i.e., the asymptotic value of the arithmetic

mean of a1, a2, . . . , an, where an’s are given in (1.10). We have

lim
n→∞

a1 + a2 + · · ·+ an
n

=∞. (1.18)

In [20], Sebe and Lascu proved a Gauss–Kuzmin theorem for the transfor-

mation Tθ. In order to solve the problem, they applied the theory of random

systems with complete connections (RSCC) by Iosifescu [6]. We recall that

a random system with complete connections is a quadruple{(
[0, θ],B[0,θ]

)
, (Nm,P(Nm)) , u, P

}
, (1.19)

where u : [0, θ]→ [0, θ],

u(x) = ui(x) :=
1

iθ + x
, (1.20)

and P is a transition probability function from
(
[0, θ],B[0,θ]

)
to (Nm,P(Nm)) given

by

P (x) = Pi(x) :=
θx+ 1

(x+ iθ)(x+ (i+ 1)θ)
. (1.21)

Here P (Nm) denotes the power set of Nm. Also, the associated Markov operator

of RSCC (1.19) is denoted by U and has the transition probability function

Q(x,A) =
∑

i∈W (x,A)

Pi(x), x ∈ [0, θ], A ∈ B[0,θ], (1.22)
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where W (x,A) = {i ∈ Nm : ui(x) ∈ A}.
Using the asymptotic and ergodic properties of operators associated with

RSCC (1.19), i.e., the ergodicity of RSCC, they obtained a convergence rate

result for the Gauss–Kuzmin-type theorem.

For more details about using RSCC in solving Gauss–Kuzmin–Lévy-type

theorems, see [10], [17], [18], [19], [20].

1.4. Main theorem. We show our main theorem in this subsection. We men-

tion that applying the Szüsz method, we obtain a better rate of convergence than

that obtained in [20].

If θ ∈ (0, 1) and m ∈ N+ such that θ2 = 1/m, the measure γθ in (1.8)

is the unique absolutely continuous invariant measure for the map Tθ in (1.7).

In particular, if one iterates any other absolutely continuous invariant measure

repeatedly by Tθ, it will converge exponentially to γθ.

Let µ be a non-atomic probability measure on B[0,θ], and define

Fn(x) := µ(Tnθ ≤ x), x ∈ [0, θ], n ∈ N+, (1.23)

F (x) := lim
n→∞

Fn(x), x ∈ I, (1.24)

with F0(x) = µ([0, x]).

Then the following holds.

Theorem 1.1 (A Gauss–Kuzmin-type theorem). Let Tθ and Fn be as in

(1.7) and (1.23), respectively. Then there exists a constant 0 < q < θ such that

Fn can be written as

Fn(x) =
log(1 + θx)

log(1 + θ2)
+O(qn) (1.25)

uniformly with respect to x ∈ [0, θ].

Remark 1.1. From (1.25), we see that

F (x) = γθ([0, x]). (1.26)

In fact, the Gauss–Kuzmin theorem estimates the error

eθ(x) := eθ(x, µ) = µ(Tnθ ≤ x)− γθ([0, x]), x ∈ [0, θ]. (1.27)

The rest of the paper is organized as follows. In Section 2, we derive the

associated Perron–Frobenius operator under different probability measures on

([0, θ],B[0,θ]). We treat the Perron–Frobenius operator of ([0, θ],B[0,θ], γθ, Tθ),
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and derive its asymptotic behavior. In Section 3, we prove Theorem 1.1 for θ-

expansions. In Section 3.1, we give the necessary results used to prove the Gauss–

Kuzmin theorem. The essential argument of the proof is the Gauss–Kuzmin-type

equation. Using some properties of the Perron–Frobenius operator of Tθ under γθ,

we give some results concerning the behavior of the derivative of {Fn} in (1.23),

which will allow us to complete the proof of Theorem 1.1 in Section 3.2.

2. The Perron–Frobenius operator of Tθ under γθ

Let ([0, θ],B[0,θ], γθ, Tθ) be as in Definition 1.1. In this section, we derive its

Perron–Frobenius operator.

Let µ be a probability measure on ([0, θ],B[0,θ]) such that µ((Tθ)
−1(A)) = 0,

whenever µ(A) = 0 for A ∈ B[0,θ]. Since µ is non-atomic and Tθ is ergodic, For

example, this condition is satisfied if Tθ is µ-preserving, that is, µ(Tθ)
−1 = µ. Let

L1([0, θ], µ) := {f : [0, θ]→ C :
∫ θ
0
|f |dµ <∞}. The Perron–Frobenius operator U

of ([0, θ],B[0,θ], µ, Tθ) is defined as the bounded linear operator on the Banach

space L1([0, θ], µ) such that the following holds:∫
A

Uf dµ =

∫
(Tθ)−1(A)

f dµ for all A ∈ B[0,θ], f ∈ L1([0, θ], µ). (2.1)

For more details, see [1], [7] or Appendix A in [10].

Proposition 2.1. Let ([0, θ],B[0,θ], γθ, Tθ) be as in Definition 1.1, and let U

denote its Perron–Frobenius operator.

(i) The following equation holds:

Uf(x) =
∑
i≥m

Pi(x) f(ui(x)), m ∈ N+, f ∈ L1([0, θ], γθ), (2.2)

where Pi and ui, i ≥ m, are as in (1.21) and (1.20), respectively.

(ii) Let µ be a probability measure on B[0,θ]. Assume that µ is absolutely con-

tinuous with respect to the Lebesgue measure λθ (and denote µ� λθ, i.e., if

µ(A) = 0 for every set A with λθ(A) = 0), and let h = dµ/dλθ a.e. in [0, θ].

Then the following holds:

(a) The Perron–Frobenius operator S of Tθ under µ is given a.e. in [0, θ] by

the equation

Sf(x) =
1

h(x)

∑
i≥m

1

(iθ + x)
f(ui(x))h(ui(x)) (2.3)
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Sf(x) =
Ug(x)

(1 + θx)h(x)
, f ∈ L1([0, θ], µ), (2.4)

where g(x) := (1 + θx)f(x)h(x), x ∈ [0, θ]. In addition, the n-th power

Sn of S is given as follows:

Snf(x) =
Ung(x)

(1 + θx)h(x)
, (2.5)

for any f ∈ L1([0, θ], µ) and any n ∈ N+.

(b) The Perron–Frobenius operator V of Tθ under λθ is given a.e. in [0, θ]

by the equation

V f(x) =
∑
i≥m

1

(iθ + x)2
f(ui(x)), f ∈ L1([0, θ], λθ). (2.6)

The powers of V are given a.e. in [0, θ] by the equation

V nf(x) =
Ung(x)

1 + θx
, f ∈ L1([0, θ], λθ), n ∈ N+, (2.7)

where g(x) := (1 + θx)f(x), x ∈ [0, θ].

(c) For any n ∈ N+ and A ∈ B[0,θ], we have

µ
(
(Tθ)

−n(A)
)

=

∫
A

Unf(x)dγθ(x), (2.8)

where f(x) := (log(1 + θ2)) 1+xθ
θ2 h(x), x ∈ [0, θ].

Proof. See Appendix. �

For a function f : [0, θ] → C, define the variation varAf of f on a subset A

of [0, θ] by

varAf := sup

k−1∑
i=1

|f(ti+1)− f(ti)|, (2.9)

where the supremum being taken over t1 < · · · < tk, ti ∈ A, 1 ≤ i ≤ k, and

k ≥ 2. We write simply varf for var[0,θ]f . Let L∞([0, θ]) denote the collection of

all bounded measurable functions f : [0, θ] → C. It is known that L∞([0, θ]) ⊂
L1([0, θ]). Let L([0, θ]) denote the Banach space of all complex-valued Lipschitz

continuous functions on [0, θ] with the following norm ‖ · ‖L:

‖f‖L := sup
x∈[0,θ]

|f(x)|+ s(f), (2.10)
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with

s(f) := sup
x 6=y

|f(x)− f(y)|
|x− y|

, f ∈ L([0, θ]). (2.11)

In the following proposition, we show that the operator U in (2.2) preserves

monotonicity and enjoys a contraction property for Lipschitz continuous func-

tions.

Proposition 2.2. Let U be as in (2.2).

(i) Let f ∈ L∞([0, θ]). Then the following holds:

(a) If f is non-decreasing (non-increasing), then Uf is non-increasing (non-

decreasing).

(b) If f is monotone, then

var (Uf) ≤ km · varf where km :=
1

m+ 1
. (2.12)

(ii) For any f ∈ L([0, θ]), we have

s(Uf) ≤ q · s(f), (2.13)

where

q := m

∑
i≥m

(
m

i3(i+ 1)
+
i+ 1−m
i(i+ 1)3

) (2.14)

Proof. See Appendix. �

3. Proof of Theorem 1.1

In this section, we prove our main theorem applying the method of Szüsz [21].

Let θ ∈ (0, 1) and m ∈ N+ such that θ2 = 1/m.

3.1. Necessary lemmas. In this subsection, we show some lemmas. First, we

show that {Fn} in (1.23) satisfy a Gauss–Kuzmin-type equation.

Lemma 3.1. For functions {Fn} in (1.23), the following Gauss–Kuzmin-type

equation holds:

Fn+1(x) =
∑
i≥m

{
Fn

(
1

iθ

)
− Fn

(
1

iθ + x

)}
, (3.1)

for x ∈ [0, θ] and n ∈ N.
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Proof. Let In = {x ∈ [0, θ] : Tnθ (x) ≤ x} and

In,i =

{
x ∈ In :

1

iθ + x
< Tnθ (x) <

1

iθ

}
. (3.2)

From (1.7) and (1.10), we see that

Tnθ (x) =
1

an+1θ + Tn+1
θ (x)

, n ∈ N+. (3.3)

From the definition of In,i and (3.3) it follows that for any n ∈ N, In+1 =⋃
i≥m In,i. Then (3.1) holds because Fn+1(x) = µ(In+1) and

µ(In,i) = Fn

(
1

iθ

)
− Fn

(
1

iθ + x

)
. (3.4)

�

Remark 3.1. Suppose that F ′0 exists everywhere in [0, θ] and is bounded (µ has

bounded density). Then by induction, we have that F ′n exists and it is bounded

for any n ∈ N+. This allows us to differentiate (3.1) term by term, obtaining

F ′n+1(x) =
∑
i≥m

1

(iθ + x)2
F ′n

(
1

iθ + x

)
. (3.5)

We introduce functions {fn} as follows:

fn(x) := (1 + θx)F ′n(x), x ∈ [0, θ], n ∈ N. (3.6)

Then (3.5) is

fn+1(x) =
∑
i≥m

Pi(x)fn (ui(x)) , (3.7)

where Pi(x) and ui(x) are given in (1.21) and (1.20), respectively. By Proposi-

tion 2.1 (i), we have that fn+1(x) = Ufn(x).

Lemma 3.2. For {fn} in (3.6), define Mn := max
x∈[0,θ]

|f ′n(x)|. Then

Mn+1 ≤ q ·Mn, (3.8)

where q is the constant in (2.14).



θ-expansions and a Gauss–Kuzmin-type theorem 291

Proof. Since

Pi(x) =
1

θ

[
1− iθ2

x+ iθ
− 1− (i+ 1)θ2

x+ (i+ 1)θ

]
, (3.9)

we have

f ′n+1(x) =
∑
i≥m

1− (i+ 1)θ2

(x+ iθ)(x+ (i+ 1)θ)3
f ′n(αi)−

∑
i≥m

Pi(x)

(x+ iθ)2
f ′n(ui(x)), (3.10)

where ui+1(x) < αi < ui(x). Now (3.10) implies

Mn+1 ≤Mn · max
x∈[0,θ]

∑
i≥m

(i+ 1)θ2 − 1

(x+ iθ)(x+ (i+ 1)θ)3
+
∑
i≥m

Pi(x)

(x+ iθ)2

 . (3.11)

We now must calculate the maximum value of the sums in this expression. First,

we note that
(i+ 1)θ2 − 1

(x+ iθ)(x+ (i+ 1)θ)3
≤ m2 (i+ 1)θ2 − 1

i(i+ 1)3
, (3.12)

where we used that 0 ≤ x ≤ θ. Next, let

h(x) :=
∑
i≥m

Pi(x)

(x+ iθ)2
. (3.13)

By Proposition 2.1 (i) and Proposition 2.2 (i)(a), we have that function h is

decreasing for x ∈ [0, θ]. Hence, h(x) ≤ h(0). This leads to∑
i≥m

Pi(x)

(x+ iθ)2
≤ ·

∑
i≥m

1

i3(i+ 1)
. (3.14)

The relations (3.11), (3.12) and (3.14) imply (3.8) and that q is as in (2.14). �

3.2. Proof of Theorem 1.1. For {Fn} in (1.23), we introduce a function Rn(x)

such that

Fn(x) =
log(1 + θx)

log(1 + θ2)
+Rn(x). (3.15)

Because Fn(0) = 0 and Fn(θ) = 1, we have Rn(0) = Rn(θ) = 0. To prove

Theorem 1.1, we have to show the existence of a constant 0 < q < θ such that

Rn(x) = O(qn). (3.16)

For {fn} in (3.6), if we can show that fn(x) = θ
log(1+θ2) + O(qn), then its

integration will show the equation (1.25).

To demonstrate that fn(x) has this desired form, it suffices to prove the

following lemma.
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Lemma 3.3. For any x ∈ [0, θ], there exists a constant q := q(x) with

0 < q < θ such that

f ′n(x) = O(qn). (3.17)

Proof. Let q be as in (2.14). Using Lemma 3.2, to show (3.17), it is enough

to prove that q < θ. Since in the particular cases studied for m := 10 we have

θ = 0.316228 and q = 0.0533201, and for m := 17 we have θ = 0.242536 and

q = 0.0305636, we may assume that q < θ for any m ∈ N. �

Appendix A. Proofs of propositions

We prove Propositions 2.1 and 2.2 in this section.

Proof of Proposition 2.1. (i) See Proposition 14 (i) in [20].

(ii)(a) Let Tθ,i denote the restriction of Tθ to the subinterval Ii :=
(

1
θ(i+1) ,

1
θi

]
,

i ≥ m, m ∈ N, that is,

Tθ,i(x) =
1

x
− θi, x ∈ Ii. (A.1)

Let C(A) := T−1θ (A) and Ci(A) := (Tθ,i)
−1

(A) for A ∈ B[0,θ]. Since C(A) =⋃
i Ci(A), and Ci ∩ Cj is a null set when i 6= j, we have∫

C(A)

f dγθ =
∑
i≥m

∫
Ci(A)

f dγθ, f ∈ L1([0, θ], γθ), A ∈ B[0,θ]. (A.2)

From (A.2), for any f ∈ L1([0, θ], γθ) and A ∈ B[0,θ], we have∫
C(A)

f(x) dµ(x)

=
∑
i≥m

∫
Ci(A)

f(x) dµ(x) =
∑
i≥m

∫
Ci(A)

f(x)h(x) dx

=
∑
i≥m

∫
A

f(ui(y))h(ui(y))

(θi+ y)2
dy =

∫
A

∑
i≥m

f(ui(x))h(ui(x))

(θi+ x)2
dx. (A.3)

Since dµ = hdλθ, (2.3) follows from (A.3).

Now, since g(x) = (θx+ 1)f(x)h(x), from (2.2) we have

Ug(x) = (θx+ 1)
∑
i≥m

h(ui(x))

(θi+ x)2
f(ui(x)). (A.4)
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Now, (2.4) follows immediately from (2.3) and (A.4). Using mathematical induc-

tion, (2.5) follows easily.

(ii)(b) The formula (2.6) is a consequence of (2.4) and follows immediately.

(ii)(c) See [20]. �

Proof of Proposition 2.2. (i)(a)We will assume that f is non-decreasing.

The proof for non-increasing f will be analogous. Let x < y, x, y ∈ [0, θ]. We

have Uf(y)− Uf(x) = S1 + S2, where

S1 =
∑
i≥m

Pi(y) (f(ui(y))− f(ui(x))) , (A.5)

S2 =
∑
i≥m

(Pi(y)− Pi(x)) f(ui(x)). (A.6)

Clearly, S1 ≤ 0. Now, since
∑
i≥m Pi(x) = 1 for any x ∈ [0, θ], we can write

S2 = −
∑
i≥m

(f(um(x))− f(ui(x))) (Pi(y)− Pi(x)) . (A.7)

It can be seen easily that the functions Pi are increasing for all i ≥ m. Also, using

that f(um(x)) ≥ f(ui(x)), we have that S2 ≤ 0. Thus Uf(y) − Uf(x) ≤ 0, and

the proof is complete.

(i)(b) We will assume that f is non-decreasing. The proof for non-increasing f

will be analogous. Then by (a) we have

varUf = Uf(0)− Uf(θ) =
∑
i≥m

(Pi(0)f(ui(0))− Pi(θ)f(ui(θ))) . (A.8)

By calculus, we have

varUf =
∑
i≥m

(
m

i(i+ 1)
f

(
1

θi

)
− m+ 1

(i+ 1)(i+ 2)
f

(
1

θ(i+ 1)

))

=
1

m+ 1
f(θ)−

∑
i≥m

1

(i+ 1)(i+ 2)
f

(
1

θ(i+ 1)

)
≤ 1

m+ 1
f(θ)−

∑
i≥m

1

(i+ 1)(i+ 2)
f(0)=

1

m+ 1
(f(θ)−f(0))=

1

m+ 1
varf.

(ii) For x 6= y, x, y ∈ [0, θ], we have

Uf(y)− Uf(x)

y − x
=
∑
i≥m

Pi(y)− Pi(x)

y − x
f(ui(x))

−
∑
i≥m

Pi(y)
f(ui(y))− f(ui(x))

ui(y)− ui(x)
· ui(x)ui(y). (A.9)
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We remark that

Pi(x) =
θ(i+ 1−m)

θ(i+ 1) + x
+
θ(m− i)
θi+ x

, i ≥ m, (A.10)

and then∑
i≥m

Pi(y)− Pi(x)

y − x
f(ui(x))

=
∑
i≥m

θ(i+ 1−m)

(y + θ(i+ 1))(x+ θ(i+ 1))
(f(ui+1(x))− f(ui(x))) . (A.11)

Assume that x > y. It then follows from (A.9) and (A.11) that∣∣∣∣Uf(y)− Uf(x)

y − x

∣∣∣∣ ≤ s(f)
∑
i≥m

(
θ2(i+ 1−m)

(y + θi)(y + θ(i+ 1))3
+

Pi(y)

(y + θi)2

)
. (A.12)

Since the sum of the right side of (A.12) is bounded by q (see (3.11)), and since

s(Uf) = sup
x 6=y

∣∣∣∣Uf(y)− Uf(x)

y − x

∣∣∣∣ , (A.13)

the proof is complete. �
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