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Dedicated to the memory of Professor Takayuki Furuta

Abstract. We characterize the cancellative and continuous semigroup operations

on the real field which are distributed by the ordinary multiplication or addition.

1. Introduction

As usual, R denotes the ordered field of all real numbers with the ordinary

addition + and multiplication ·. We consider two commutative operations ? and

∗ on R which satisfy the distributive law

x ? (y ∗ z) = (x ? y) ∗ (x ? z) (x, y, z ∈ R). (1)

If (1) holds, we say that ∗ is distributed by ?, or that ? is distributive over ∗.
In this paper, we fix an operation ?, for instance, ? = · or +, and investigate

the operations ∗ satisfying (1). By D?(R), we denote the set of all associative,

cancellative and continuous operations ∗ on R satisfying (1). First, we characterize

D·(R) and D+(R).
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To state the result, for each a > 0, we define a function ϕa on R by

ϕa(x) = (sgnx) |x|a =

{
xa if x ≥ 0,

−|x|a if x < 0.

Theorem 1. Let ∗ be an associative, cancellative and continuous operation

on R. Then ∗ is distributed by · if and only if there exists a positive number a

such that

x ∗ y = ϕ1/a

(
ϕa(x) + ϕa(y)

)
(x, y ∈ R).

In particular, if a = 1, then ∗ = +.

Theorem 2. Let ∗ be an associative, cancellative and continuous operation

on R. Then ∗ is distributed by + if and only if there exists a positive number

a 6= 1 such that

x ∗ y = loga(ax + ay) (x, y ∈ R).

As a generalization, we also characterize D?(R) under the assumption that

(R, ?) is homeomorphically isomorphic to (R, ·) or (R,+). We will describe this

characterization in Section 5.

This research is motivated by [7, Theorem 2] and [4, Theorem 2].

2. Preliminaries

We introduce a way to construct a new operation on a set X. Let f be

a bijection from X onto another set Y . If Y has an operation ?, then ? induces

an operation ?f on X as follows:

x ?f y = f−1
(
f(x) ? f(y)

)
(x, y ∈ X).

If (Y, ?) is a semigroup, then (X, ?f ) is a semigroup and f is an isomorphism from

(X, ?f ) onto (Y, ?). Conversely, if f is an isomorphism from (X, ∗) onto (Y, ?),

then ∗ = ?f .

Let X be a topological space. By A(X), we denote the set of all associative,

cancellative and continuous operations on X. If f is a homeomorphism from X

onto another topological space Y , then ? ∈ A(Y ) implies ?f ∈ A(X).

In case X = R, the operations in A(R) are well studied. Let

R+ = {x ∈ R : x > 0} and R1 = {x ∈ R : x > 1}.

Then we have
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Theorem A ([6, Theorem 4.4]). If ∗ ∈ A(R), then the topological semigroup

(R, ∗) is homeomorphically isomorphic to exactly one of

(R,+), (R+,+) and (R1,+).

These topological semigroups are not homeomorphically isomorphic to each other.

From this theorem, we see that if ∗ ∈ A(R), then ∗ is commutative. The

related results may be found in [1], [3], [5]. While the set D+(R2) is studied in [4].

3. Proof of Theorem 1

Let S be a subset of R which is closed with respect to +, and f a homeomor-

phism from R onto S. Then the above argument gives the operation +f on R.

We have

+f ∈ D·(R)

⇐⇒ x · (y +f z) = (x · y) +f (x · z) (x, y, z ∈ R)

⇐⇒ x · f−1
(
f(y) + f(z)

)
= f−1

(
f(x · y) + f(x · z)

)
(x, y, z ∈ R) (2)

⇐⇒ f
(
x · f−1

(
f(y) + f(z)

))
= f(x · y) + f(x · z) (x, y, z ∈ R). (3)

Lemma 1. Let S and f be as above. If +f ∈ D·(R), then f(0) = 0.

Proof. Putting x = 0 in (3), we get f(0) = f(0)+f(0), and so f(0) = 0. �

Lemma 2. If ∗ ∈ D·(R), then (R, ∗) is homeomorphically isomorphic to

(R,+).

Proof. By Theorem A, (R, ∗) is homeomorphically isomorphic to (S,+),

where S is one of R, R+ and R1. Let f be a homeomorphic isomorphism from

(R, ∗) onto (S,+). Then +f = ∗ ∈ D·(R). By Lemma 1, 0 = f(0) ∈ S. Since

0 ∈ R and 0 6∈ R+,R1, we conclude that S = R. Thus the lemma was proved. �

Let H(R) be the set of all homeomorphisms from R onto itself. We put

F (R) =
{
f ∈ H(R) : +f ∈ D·(R)

}
,

Φ(R) =
{
f ∈ H(R) : f(x · y) = f(x) · f(y)(x, y ∈ R)

}
.

For f ∈ H(R), it is clear that f ∈ F (R)⇐⇒ (2)⇐⇒ (3).
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Lemma 3. If f ∈ F (R), then f(−x) = −f(x) for all x ∈ R.

Proof. Putting x = −1 and z = −y in (2), we get

−f−1
(
f(y) + f(−y)

)
= f−1

(
f(−y) + f(y)

)
(y ∈ R).

This equation leads to f−1
(
f(y) + f(−y)

)
= 0, and f(y) + f(−y) = f(0) = 0 by

Lemma 1. �

Lemma 4. If f ∈ H(R) and c 6= 0, then +cf = +f . In particular, if

f ∈ F (R) and c 6= 0, then cf ∈ F (R).

Proof. Suppose f ∈ H(R) and c 6= 0. Put h = cf . Clearly, h ∈ H(R).

Since

h−1(u) = f−1
(

1

c
u

)
(u ∈ R),

it follows that

x+cf y = x+h y = h−1
(
h(x) + h(y)

)
= f−1

(
1

c

(
cf(x) + cf(y)

))
= f−1

(
f(x) + f(y)

)
= x+f y

for all x, y ∈ R. Hence +cf = +f . In addition, if f ∈ F (R), then +cf = +f ∈
D·(R), so that cf ∈ F (R). �

Lemma 5. F (R) =
{
cf : f ∈ Φ(R), c 6= 0

}
.

Proof. We first show that F (R) ⊃ {cf : f ∈ Φ(R), c 6= 0}. Let f ∈ Φ(R)

and c 6= 0. Then

f
(
x · f−1

(
f(y) + f(z)

))
= f(x) · f

(
f−1

(
f(y) + f(z)

))
= f(x) ·

(
f(y) + f(z)

)
= f(x) · f(y) + f(x) · f(z) = f(x · y) + f(x · z).

By (3), f ∈ F (R), and by Lemma 4, cf ∈ F (R).

For the opposite inclusion, pick h ∈ F (R). By Lemma 1, h(0) = 0. Since h

is injective, h(1) 6= 0. Put c = h(1) and f = (1/c)h. Then it suffices to show that

f ∈ Φ(R). Here we remark that f(1) = 1 and that f ∈ F (R) by Lemma 4.

Let x ∈ R and n ∈ N = {1, 2, . . .}. We use (3) to see that

f
(
x · f−1(n)

)
= f

(
x · f−1

(
1 + (n− 1)

))
= f

(
x · f−1

(
f(1) + f(f−1(n− 1))

))
= f(x · 1) + f

(
x · f−1(n− 1)

)
= f(x) + f

(
x · f−1(n− 1)

)
.
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Repeat this computation and use f−1(1) = 1 finally. Then, we get

f
(
x · f−1(n)

)
= n · f(x).

Substituting x = f−1(v), we have f
(
f−1(v) · f−1(n)

)
= n · v, that is,

f−1(n) · f−1(v) = f−1
(
n · v) (n ∈ N, v ∈ R). (4)

Putting n = m and v = 1/m, we have

f−1(m) · f−1
(

1

m

)
= f−1(1) = 1 (m ∈ N). (5)

Hence

f−1
( n
m
· v
)

= f−1
(
n · 1

m
v

)
= f−1(n) · f−1

(
1

m
v

)
by (4)

= f−1(n) · f−1
(

1

m

)
· f−1(m) · f−1

(
1

m
v

)
by (5)

= f−1
(
n · 1

m

)
· f−1

(
m · 1

m
v

)
by (4)

= f−1
( n
m

)
· f−1(v),

for all m,n ∈ N and v ∈ R. In other words,

f−1(u · v) = f−1(u) · f−1(v) (v ∈ R) (6)

for all u ∈ Q+; the positive rational numbers. Note that f−1 is continuous on R.

Then we see that (6) holds for all u ∈ R+. Moreover, we use Lemma 3 to see that

(6) holds for all u ∈ R. Putting u = f(x) and v = f(y) in (6), and then applying

f to both sides, we arrive at

f(x) · f(y) = f(x · y) (x, y ∈ R).

Hence f ∈ Φ(R). �

Lemma 6. Φ(R) = {ϕa : a > 0}.

This lemma is essentially proved in [2, §2.1.2, Theorem 3]. For the sake of

completeness, we give its proof.
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Proof. It is easy to check that Φ(R) ⊃ {ϕa : a > 0}. Conversely, take

f ∈ Φ(R). Then f(x · y) = f(x) · f(y) for all x, y ∈ R. This equation and the

bijectivity of f yield f(0) = 0, f(1) = 1, f(−1) = −1 and f(−x) = −f(x) for

x ∈ R. Moreover, f is strictly monotone on R, because f is a homeomorphism.

From these facts, we see that f is strictly increasing and that f(x) > 0 for x > 0.

Now, define

h(t) = log(f(et)) (t ∈ R).

Then h(s + t) = h(s) + h(t) (s, t ∈ R), and h is continuous on R. It is known

that such a function h is represented by h(t) = at (t ∈ R) for some a ∈ R
(see [2, §2.1.1 Theorem 1]). Thus we obtain f(et) = eat, and hence f(x) = xa

(x > 0). We recall the equation f(−x) = −f(x) to see that f(x) = (sgnx)|x|a
for all x ∈ R. Also, we note that f is strictly increasing to see a > 0. Therefore,

Φ(R) ⊂ {ϕa : a > 0}. �

Proof of Theorem 1. Since ϕ−1a = ϕ1/a, the theorem is restated as fol-

lows: ∗ ∈ D·(R) if and only if there exists a > 0 such that

x ∗ y = ϕ−1a
(
ϕa(x) + ϕa(y)

)
(x, y ∈ R). (7)

Assume that ∗ ∈ D·(R). Then Lemma 2 says that (R, ∗) is homeomorphically

isomorphic to (R,+). Let f be a homeomorphic isomorphism from (R, ∗) onto

(R,+). Then +f = ∗ ∈ D·(R), and hence f ∈ F (R). By Lemmas 5 and 6, there

exist c 6= 0 and a > 0 such that

f = cϕa.

Therefore, ∗ = +f = +cϕa
= +ϕa

by Lemma 4. Thus we obtain (7).

Conversely, assume that ∗ satisfies (7) for some a > 0. This means ∗ = +ϕa
.

While Lemmas 5 and 6 say that ϕa ∈ F (R), that is, +ϕa
∈ D·(R). Hence

∗ ∈ D·(R). �

4. Proof of Theorem 2

Let S be a subset of R closed with respect to +, and g a homeomorphism

from R onto S. For the operation +g discussed in Section 2, we have

+g ∈ D+(R)

⇐⇒ x+ (y +g z) = (x+ y) +g (x+ z) (x, y, z ∈ R)

⇐⇒ x+ g−1
(
g(y) + g(z)

)
= g−1

(
g(x+ y) + g(x+ z)

)
(x, y, z ∈ R) (8)

⇐⇒ g
(
x+ g−1

(
g(y) + g(z)

))
= g(x+ y) + g(x+ z) (x, y, z ∈ R). (9)
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Lemma 7. If ∗ ∈ D+(R), then (R, ∗) is not homeomorphically isomorphic

to (R,+).

Proof. Assume that there exists a homeomorphic isomorphism g from (R, ∗)
onto (R,+). Then +g = ∗ ∈ D+(R). Taking y = z = 0 in (8), we get

x+ g−1
(
2g(0)

)
= g−1

(
2g(x)

)
(x ∈ R). (10)

Letting x = g−1(0) in (10), we get g−1(0) + g−1
(
2g(0)

)
= g−1

(
2g(g−1(0))

)
=

g−1(0). Hence g−1
(
2g(0)

)
= 0. Thus (10) becomes x = g−1

(
2g(x)

)
, that is,

g(x) = 2g(x), and so g(x) = 0 for all x ∈ R. This contradicts the fact that g

is surjective. Consequently, there is no homeomorphic isomorphism from (R, ∗)
onto (R,+). �

Lemma 8. If ∗ ∈ D+(R), then (R, ∗) is not homeomorphically isomorphic

to (R1,+).

Proof. Assume that there exists a homeomorphic isomorphism g from (R, ∗)
onto (R1,+). Then +g = ∗ ∈ D+(R). Moreover, g is a strictly monotone function

which maps R onto R1. If g is strictly increasing, then

lim
x→−∞

g(x) = 1.

Let y and z tend to −∞ in (8). Then the continuity of g−1 shows that

x+ g−1(2) = g−1(2) (x ∈ R).

This implies x = 0 for all x ∈ R, which is a contradiction. On the other hand,

if g is strictly decreasing, then limx→∞ g(x) = 1. By letting y, z →∞ in (8), we

similarly reach a contradiction. Thus the lemma is proved. �

We combine Theorem A with Lemmas 7 and 8 to conclude

Lemma 9. If ∗ ∈ D+(R), then (R, ∗) is homeomorphically isomorphic to

(R+,+).

Let H(R,R+) be the set of all homeomorphisms from R onto R+. We put

G(R) =
{
g ∈ H(R,R+) : +g ∈ D+(R)

}
,

Ψ(R) =
{
g ∈ H(R,R+) : g(x+ y) = g(x) · g(y)(x, y ∈ R)

}
.

For g ∈ H(R,R+), it is clear that g ∈ G(R)⇐⇒ (8)⇐⇒ (9).
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Lemma 10. If g ∈ H(R,R+) and c > 0, then +cg = +g. In particular, if

g ∈ G(R) and c > 0, then cg ∈ G(R).

This can be shown similarly to Lemma 4.

Lemma 11. G(R) =
{
cg : g ∈ Ψ(R), c > 0

}
.

Proof. We first show that G(R) ⊃ {cg : g ∈ Ψ(R), c > 0}. Let g ∈ Ψ(R)

and c > 0. Then

g
(
x+ g−1

(
g(y) + g(z)

))
= g(x) · g

(
g−1

(
g(y) + g(z)

))
= g(x) ·

(
g(y) + g(z)

)
= g(x) · g(y) + g(x) · g(z) = g(x+ y) + g(x+ z).

By (9), g ∈ G(R), and by Lemma 10, cg ∈ G(R).

For the opposite inclusion, pick h ∈ G(R). Note that h(0) > 0. Put c = h(0)

and g = (1/c)h. Then it suffices to show that g ∈ Ψ(R). Here we remark that

g(0) = 1 and that g ∈ G(R) by Lemma 10.

Let x ∈ R and n ∈ N. We use (9) to see that

g
(
x+ g−1(n)

)
= g
(
x+ g−1

(
1 + (n− 1)

))
= g
(
x+ g−1

(
g(0) + g(g−1(n− 1))

))
= g(x+ 0) + g

(
x+ g−1(n− 1)

)
= g(x) + g

(
x+ g−1(n− 1)

)
.

Hence

g
(
x+ g−1(n)

)
= n · g(x).

Substituting x = g−1(v), we have

g−1(n) + g−1(v) = g−1
(
n · v) (n ∈ N, v ∈ R+).

Putting n = m and v = 1/m, we have

g−1(m) + g−1
(

1

m

)
= g−1(1) = 0 (m ∈ N).

Using these equations, we obtain

g−1
( n
m
· v
)

= g−1
(
n · 1

m
v

)
= g−1(n) + g−1

(
1

m
v

)
= g−1(n) + g−1

(
1

m

)
+ g−1(m) + g−1

(
1

m
v

)
= g−1

(
n · 1

m

)
+ g−1

(
m · 1

m
v

)
= g−1

( n
m

)
+ g−1(v),
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for all m,n ∈ N and v ∈ R+. In other words,

g−1(u · v) = g−1(u) + g−1(v) (v ∈ R+) (11)

for all u ∈ Q+. Since g−1 is continuous on R+, (11) holds for all u ∈ R+. Thus

we obtain

g(x) · g(y) = g(x+ y) (x, y ∈ R).

Hence g ∈ Ψ(R). �

For a > 0, we define a function ψa on R by

ψa(x) = ax (x ∈ R).

Lemma 12. Ψ(R) = {ψa : a > 0, a 6= 1}.

This lemma is known, but we prove it for completeness.

Proof. It is easy to check that Ψ(R) ⊃ {ψa : a > 0, a 6= 1}. Conversely,

take g ∈ Ψ(R). Then g(x + y) = g(x) · g(y) for all x, y ∈ R, and g is continuous

on R. It is known that such a function g is represented as

g(x) = 0 or g(x) = ecx (x ∈ R)

for some c ∈ R (see [2, §2.1.2 Theorem 1]). Since g is a surjection from R to

R+, we must exclude the former equation and the latter one with c = 0. Putting

a = ec in the latter equation, we obtain g(x) = ax (x ∈ R) with a > 0 and a 6= 1.

Hence Ψ(R) ⊂ {ψa : a > 0, a 6= 1}. �

Proof of Theorem 2. Since ψ−1a (u) = loga u (u ∈ R+), the theorem is

restated as follows: ∗ ∈ D+(R) if and only if there exists a > 0 with a 6= 1 such

that

x ∗ y = ψ−1a
(
ψa(x) + ψa(y)

)
(x, y ∈ R). (12)

Assume that ∗ ∈ D+(R). Then Lemma 9 says that (R, ∗) is homeomorphi-

cally isomorphic to (R+,+). Let g be a homeomorphic isomorphism from (R, ∗)
onto (R+,+). Then +g = ∗ ∈ D+(R), and hence g ∈ G(R). By Lemmas 11

and 12, there exist c > 0 and a > 0 with a 6= 1 such that

g = cψa.

Therefore, ∗ = +g = +cψa = +ψa by Lemma 10. Thus we obtain (12).

Conversely, assume that ∗ satisfies (12) for some a > 0, a 6= 1. This means

∗ = +ψa . While Lemmas 11 and 12 say that ψa ∈ G(R), that is, +ψa ∈ D+(R).

Hence ∗ ∈ D+(R). �
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5. Generalizations

We generalize Theorems 1 and 2 as follows:

Theorem 3. Suppose that a topological semigroup (R, ?) is homeomorphi-

cally isomorphic to (R, ·), and let ξ be a homeomorphic isomorphism from (R, ?)
onto (R, ·). Let ∗ ∈ A(R). Then ∗ ∈ D?(R) if and only if there exists a > 0 such

that

ξ(x ∗ y) = ϕ1/a

(
ϕa(ξ(x)) + ϕa(ξ(y))

)
(x, y ∈ R). (13)

Theorem 4. Suppose that a topological semigroup (R, ?) is homeomorphi-

cally isomorphic to (R,+), and let ξ be a homeomorphic isomorphism from (R, ?)
onto (R,+). Let ∗ ∈ A(R). Then ∗ ∈ D?(R) if and only if there exists a > 0 with

a 6= 1 such that

ξ(x ∗ y) = loga
(
aξ(x) + aξ(y)

)
(x, y ∈ R).

Proof of Theorem 3. Let η = ξ−1. Since η is a homeomorphism from R
onto R, we have ∗η ∈ A(R), and η is a homeomorphic isomorphism from (R, ∗η)

onto (R, ∗). At the same time, η is an isomorphism from (R, ·) onto (R, ?). These

facts show that

∗ ∈ D?(R)

⇐⇒ x ? (y ∗ z) = (x ? y) ∗ (x ? z) (x, y, z ∈ R)

⇐⇒ η(u) ?
(
η(v) ∗ η(w)

)
=
(
η(u) ? η(v)

)
∗
(
η(u) ? η(w)

)
(u, v, w ∈ R)

⇐⇒ η(u) ? η(v ∗η w) = η(u · v) ∗ η(u · w) (u, v, w ∈ R)

⇐⇒ η
(
u · (v ∗η w)

)
= η

(
(u · v) ∗η (v · w)

)
(u, v, w ∈ R)

⇐⇒ u · (v ∗η w) = (u · v) ∗η (u · w) (u, v, w ∈ R)

⇐⇒ ∗η ∈ D·(R).

While Theorem 1 says that ∗η ∈ D·(R) if and only if there exists a > 0 such that

u ∗η v = ϕ1/a

(
ϕa(u) + ϕa(v)

)
(u, v ∈ R),

that is,

ξ(x) ∗η ξ(y) = ϕ1/a

(
ϕa(ξ(x)) + ϕa(ξ(y))

)
(x, y ∈ R). (14)

Since ξ (= η−1) is an isomorphism from (R, ∗) onto (R, ∗η), we have

ξ(x ∗ y) = ξ(x) ∗η ξ(y) (x, y ∈ R).

Hence (14) is equivalent to (13). Thus the theorem was proved. �
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Similarly, we can prove Theorem 4 by using Theorem 2.

In this paper, we completely characterize the cancellative, associative and

continuous operations on R which are distributed by · or +. We want to re-

move the assumption “cancellative”, and do the same for the general associative

and continuous operations on R. But it seems to be essentially difficult (cf. [6,

Theorem 3.6]).

Acknowledgements. The authors are grateful to Professor Jun

Tomiyama for his encouragement.

References
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