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Abstract. It is well known as Jacobson’s Lemma that 1 − ba is invertible in a

ring if so is 1 − ab. Moreover, if c = (1 − ab)−1, then (1 − ba)−1 = 1 + bca. However,

the analogous statement for Moore–Penrose inverse in a ∗-ring is not true in general.

Note that Jacobson’s Lemma for Moore–Penrose inverse holds true in a symmetric ∗-

ring. In this paper, we study symmetric ∗-rings and introduce the notion of a generalized

symmetric ∗-ring. A ∗-ring R is called generalized symmetric if 1−(u∗−u)2 is invertible

for all units u in R. When 1− ab is Moore–Penrose invertible in such a ring, we provide

sufficient and necessary conditions under which 1 − ba has a Moore–Penrose inverse

(1 − ba)† and give a formula for (1 − ba)†.

1. Introduction

Let R be an associative ring with identity. It is well known as Jacobson’s

Lemma that, for any a, b ∈ R, 1− ab is invertible if and only if so is 1− ba (see,

e.g., [3]). Moreover, if c = (1 − ab)−1, then (1 − ba)−1 = 1 + bca. Similarly,

1 − ab is regular if and only if 1 − ba is regular. One can verify that 1 + bca is

an inner inverse of 1− ba if c is an inner inverse of 1− ab (see, e.g., [2, p. 160]).

Jacobson’s Lemma for Drazin inverse was established in [2, Theorem 3.6] and
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[3, Theorem 2.2]. The reflexive inverse and group inverse version of Jacobson’s

Lemma were also proved in [2, Theorem 3.4] and [2, Theorem 3.5], respectively.

In 2012, Zhuang et al. [13, Theorem 2.3] extended Jacobson’s Lemma to the

case of generalized Drazin inverse.

However, Jacobson’s Lemma for Moore–Penrose inverse can fail in a ∗-ring

(i.e., a ring with involution). In fact, there exists a ∗-ring R with a, b ∈ R such

that 1−ab is Moore–Penrose invertible while 1−ba is not (see [2, Example 3.10]).

This motivates us to investigate some ∗-rings in which Jacobson’s Lemma for

Moore–Penrose inverse holds true. Given a, b in a ∗-ring R such that 1 − ab has

Moore–Penrose inverse, it is also of interest to consider necessary and sufficient

conditions under which 1 − ba has Moore–Penrose inverse. Note that even if

every element is Moore–Penrose invertible in a ∗-ring, the formula (1 − ba)† =

1 + b(1− ab)†a does not hold in general (see Example 5). Therefore, it is natural

to ask what is the formula of the Moore–Penrose inverse of 1− ba provided both

1− ab and 1− ba are Moore–Penrose invertible.

Recall that a ∗-ring R is said to be symmetric if 1 + x∗x is invertible for

all x ∈ R (see, e.g., [1, 5]). Note that symmetric ∗-rings possess some attrac-

tive properties. For example, every regular element in a symmetric ∗-ring is

Moore–Penrose invertible (see [7, Theorem 2], [9, Theorem 3.2] or [12, Theorem

1.4]). Using this result, it is easy to deduce that Jacobson’s Lemma for Moore–

Penrose inverse holds true in a symmetric ∗-ring (see Proposition 3). However,

only C∗-algebras are frequently mentioned as examples of symmetric ∗-rings in

the literature. In this note, we provide two more classes of such examples. In

addition, the notion of a generalized symmetric ∗-ring is introduced (see Defi-

nition 1). When 1 − ab is Moore–Penrose invertible in a generalized symmetric

∗-ring, we provide sufficient and necessary conditions under which 1 − ba has a

Moore–Penrose inverse (1−ba)† and give a formula for (1−ba)† (see Theorem 6).

2. Preliminaries

In this section, we briefly recall some definitions and set some notations for

the readers’ convenience.

By a ring we will mean an associative ring with identity. The set of all units

in a ring R is denoted by U(R). Given a, b in a ring R, recall that b is called

an inner inverse of a if aba = a. In this case, a is said to be (von Neumann)

regular. A ring R is called (von Neumann) regular if all elements in R are regular.

In a ring R, an element b is called a reflexive inverse of a if aba = a and bab = b.
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A ∗-ring is a ring R with an involution, i.e., a map ∗ : R → R written as

a 7→ a∗ such that (a+ b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ R.

Note that a ∗-ring is also called an involutive ring or an involutory ring in the

literature. We will regard a commutative ring R as a ∗-ring with respect to the

identity map ∗ : a 7→ a unless otherwise specified.

An element a in a ∗-ring R is said to be Moore–Penrose invertible if there

exists b ∈ R such that aba = a, bab = b, (ab)∗ = ab and (ba)∗ = ba. Such an

element b is unique (if it exists) and is called the Moore–Penrose inverse of a,

which is indicated by a†.

In [5], a ∗-ring R is said to satisfy the k-term star-cancellation law (SCk) if the

involution ∗ of R is k-proper in the sense of Berberian [1], i.e., a∗1a1+· · ·+a∗kak =

0 implies a1 = · · · = ak = 0, for any a1, . . . , ak ∈ R. Recall that a ∗-ring R is

called a ∗-regular ring if it is regular and satisfies SC1 or, equivalently, if every

element in R has Moore–Penrose inverse (see [5] and [8, Theorem 5.4]).

Given a ringR and a positive integer n, the n×nmatrix ring overR is denoted

by Mn(R). The identity matrix in Mn(R) is denoted by In, or simply by I. In case

R is a ∗-ring, Mn(R) is also a ∗-ring with involution defined by (aij)
∗ = (a∗ji) for

all (aij) ∈ Mn(R). The ring of integers, the field of real numbers and the field of

complex numbers are denoted by Z, R and C, respectively. As usual, Zn stands

for the factor ring of Z modulo n, i.e., Zn = Z/nZ, where n is a positive integer.

3. Main results

Let us start with two classes of examples of symmetric ∗-rings, namely Zn

for some positive integers n, and RZn for any positive integers n.

Example 1. (1) Suppose p is a prime number and s is a positive integer. Then

Zps = Z/psZ is a symmetric ∗-ring (i.e., 1 + x2 ≡ 0(mod p) has no solution in Z)

if and only if p ≡ −1(mod 4) by the well-known Euler’s Criterion (see, e.g., [4,

Theorem 3.13]).

(2) Let n = ps11 p
s2
2 · · · psmm , where p1, p2, . . . , pm are pairwise different prime

numbers and s1, s2, . . . , sm are positive integers. Then Zn
∼=
∏m

i=1 Zp
si
i

is a sym-

metric ∗-ring if and only if each pi ≡ −1(mod 4).

Let R be a ring and G a group. Then the group ring RG consists of all

the sums of the form
∑

g∈G agg with each ag ∈ R such that only finitely many

ag 6= 0. When R is an involutive ring with involution a 7→ a, the group ring RG

is a ∗-ring with (
∑

g∈G agg)∗ =
∑

g∈G agg
−1. We refer the reader to [10] for more

details on group rings.
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Example 2. Let n be a positive integer and consider the cyclic group Zn.

Then the group ring RZn is a symmetric ∗-ring with respect to the involution

induced from the identity involution on R.

Indeed, let P =
(
0 In−1

1 0

)
, where In−1 is the (n− 1)× (n− 1) identity matrix

over R. It is easy to see that RZn is isomorphic to S = {
∑n−1

i=0 aiP
i | each ai ∈ R},

which is a subring of the n × n matrix ring Mn(R). The involution ∗ on S

corresponding to the natural involution on RZn is given by (
∑n−1

i=0 aiP
i)∗ =∑n−1

i=0 aiP
−i.

For any A =
∑n−1

i=0 aiP
i ∈ S, it follows that

A∗ =

n−1∑
i=0

aiP
−i =

n−1∑
i=0

ai(P
i)T = AT,

where AT stands for the transpose of A. It is a well-known fact in linear algebra

that I + ATA is a positive definite symmetric real matrix. Thus I + A∗A =

I +ATA is invertible in Mn(R). We need to show that I +A∗A is also invertible

in S. For any invertible matrix B ∈ Mn(R), it follows as a corollary of the

Hamilton–Cayley Theorem that B−1 = b0I + b1B + · · · + bn−1B
n−1 for some

b0, b1, . . . , bn−1 ∈ R. From this fact one can see that (I + A∗A)−1 ∈ S, since

I+A∗A ∈ S. This shows S is a symmetric ∗-ring. Therefore, the group ring RZn

is a symmetric ∗-ring.

Recall that a ∗-ring R is said to be ∗-regular if every element in R is Moore–

Penrose invertible.

Proposition 1. Let R be a ∗-ring and define the involution on M2(R) by

(aij)
∗ = (a∗ji). Then

(1) R is a symmetric ∗-ring if Jacobson’s Lemma holds in M2(R), i.e., if the

existence of (I −AB)† implies that of (I −BA)†, where A, B ∈ M2(R).

(2) R is a regular symmetric ∗-ring if and only if M2(R) is a ∗-regular ring.

Proof. (1) For any a ∈ R, let A = ( 0 1
1 a ) and B = ( 0 1

0 0 ) ∈ M2(R). Then

AB = ( 0 0
0 1 ) and (I − AB)† = ( 1 0

0 0 ). By hypotheses, (I − BA)† also exists. Let

C = I − BA =
(
0 −a
0 1

)
. According to [8, Theorem 5.4], we have C = XC∗C for

some X ∈ M2(R). Let X = ( x1 x2
x3 x4

). Then(
0 −a
0 1

)
= C = XC∗C =

(
0 x2(1+a∗a)
0 x4(1+a∗a)

)
.

Hence x4(1 + a∗a) = 1, and (1 + a∗a)x∗4 = [x4(1 + a∗a)]∗ = 1. This shows

1 + a∗a ∈ U(R). Therefore, R is a symmetric ∗-ring.
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(2) It is well known that M2(R) is a ∗-regular ring if and only if R is a regular

∗-ring satisfying SC2 (see, e.g., [6]). In view of [5, Theorem 3], a ∗-ring R is regular

and satisfies SC2 if and only if R is a regular symmetric ∗-ring. Therefore, the

result follows. �

Next, we extend the class of symmetric ∗-rings to a larger one and consider

the relationship between them.

Definition 1. Let R be a ∗-ring. If 1 − (u∗ − u)2 ∈ U(R) for all u ∈ U(R),

then R is called a generalized symmetric ∗-ring.

Let us illustrate the notion of generalized symmetric ∗-rings by some concrete

examples.

Example 3. (1) Every commutative ring R is a generalized symmetric ∗-ring

with respect to the involution ∗ given by x∗ = x.

(2) Every symmetric ∗-ring R is generalized symmetric. Indeed, for any

u ∈ U(R), it follows that 1− (u∗ − u)2 = 1 + (u∗ − u)∗(u∗ − u) ∈ U(R).

(3) Z5 = Z/5Z is a generalized symmetric ∗-ring. But Z5 is not a symmetric

∗-ring according to Example 1.

(4) C is a generalized symmetric ∗-ring but not a symmetric ∗-ring with

respect to the involution ∗ given by x∗ = x. Note that C is a symmetric ∗-ring

with respect to the involution given by the complex conjugate.

(5) Let R = Z2〈x, y〉/(x2 − x, y2 − y, xyx) be the ring generated over Z2 =

Z/2Z by {x, y} with the relations {x2 − x, y2 − y, xyx}. Let

X = x+ (x2 − x, y2 − y, xyx) and Y = y + (x2 − x, y2 − y, xyx).

Define the involution on R such that 1∗ = 1, X∗ = X, Y ∗ = Y , (XY )∗ = Y X,

(Y X)∗ = XY and (Y XY )∗ = Y XY . For any

a = a1 + a2X + a3Y + a4XY + a5Y X + a6Y XY ∈ R,

it follows that a∗ − a = a∗ + a = (a4 + a5)(XY + Y X). So we have

1− (a∗ − a)2 = 1 + (a4 + a5)2(XY + Y X)2 = 1 + (a4 + a5)2Y XY ∈ U(R),

since [1 + (a4 + a5)2Y XY ]2 = 1. This shows R is a generalized symmetric ∗-ring.

But R is not a symmetric ∗-ring, since 1 + 1∗1 = 0.
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Proposition 2.

(1) Let R be a ∗-ring and define the involution on M2(R) by (aij)
∗ = (a∗ji). If

M2(R) is a generalized symmetric ∗-ring, then R is a symmetric ∗-ring.

(2) Let R be a commutative ring and define the involution on M2(R) by (aij)
∗ =

(aji). Then M2(R) is a generalized symmetric ∗-ring if and only if R is

a symmetric ∗-ring.

Proof. (1) For any a ∈ R, let A = ( 1 a
0 1 ). Then(

1+aa∗ 0
0 1+a∗a

)
= I − (A∗ −A)2

is invertible, since M2(R) is a generalized symmetric ∗-ring. Hence 1+a∗a ∈ U(R).

(2) If M2(R) is a generalized symmetric ∗-ring, then R is a symmetric ∗-
ring by (1). Conversely, assume that R is a symmetric ∗-ring. Then for any

A =
(
a b
c d

)
∈ M2(R), we have

I − (A∗ −A)2 =
(

1+(b−c)2 0

0 1+(b−c)2

)
,

where 1 + (b − c)2 ∈ U(R). Thus I − (A∗ − A)2 is invertible. This shows that

M2(R) is a generalized symmetric ∗-ring. �

Example 4. Let 1 < n ∈ Z and define the involution on M2(Zn) by (aij)
∗ =

(aji). Then M2(Zn) is not a symmetric ∗-ring, since otherwise Zn is a symmetric

∗-ring by Proposition 2. In view of Example 1(2), n has at least one odd prime

factor p. By virtue of [4, Lemma 2.9], we have integers a and b with a2 + b2 + 1 ≡
0(mod p). Now let A =

(
a 0
b 0

)
, where i = i + nZ ∈ Zn for i = a, b, 0. Then

I + A∗A =
(

a2+b2+1 0
0 1

)
is invertible. So we have a2 + b2 + 1 ∈ U(Zn), which

contradicts a2 + b2 + 1 ≡ 0(mod p).

Now, we consider Jacobson’s Lemma for Moore–Penrose inverse. The follow-

ing result is essentially due to the authors of [7], [9] and [12].

Proposition 3. Let R be a symmetric ∗-ring and a, b ∈ R. If 1 − ab is

Moore–Penrose invertible, then so is 1− ba.

Proof. According to [7, Theorem 2], [9, Theorem 3.2] or [12, Theorem 1.4],

every regular element in R is Moore–Penrose invertible, since R is a symmetric

∗-ring. Note that 1−ab is regular in R if and only if so is 1− ba. Thus, the result

follows. �
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Note that when 1− ab is invertible in a ring, it follows that

(1− ba)−1 = 1 + b(1− ab)−1a.

The next example shows that, even if every element is Moore–Penrose invertible

in a ∗-ring, the formula (1− ba)† = 1 + b(1− ab)†a does not hold in general.

Example 5. Consider the involution on M2(C) induced from the conjugate

complex involution on C. It is well known that every matrix in M2(C) is Moore–

Penrose invertible. Let A = ( 1 0
0 0 ) and B = ( 1 0

1 0 ). Then I − AB = ( 0 0
0 1 ) and

I −BA =
(

0 0
−1 1

)
. By computation, we have (I −AB)† = ( 0 0

0 1 ) and (I −BA)†

=
(

0 −1/2
0 1/2

)
. These show (I −BA)† 6= I +B(I −AB)†A. In fact, one can check

that (I −BA)† 6= I +BCA for any C ∈ M2(C).

To provide some conditions under which the Moore–Penrose invertibility of

1− ba and the formula for (1− ba)† can be interpreted in terms of (1− ab)†, we

need the following lemmas, which are of interest in their own right.

Lemma 4. Let e be an idempotent in a ∗-ring R. If u = 1+(e−e∗)(e−e∗)∗ ∈
U(R), then e has Moore–Penrose inverse and e† = u−1e∗ = e∗u−1.

Proof. Since e2 = e and u = 1 + (e − e∗)(e − e∗)∗, it follows that u = u∗,

eu = ee∗e = ue and e∗u = ue∗. Moreover, since u ∈ U(R), one can verify that

(u−1)∗ = u−1, eu−1 = u−1e, u−1e∗ = e∗u−1 and e = ee∗(eu−1) = (u−1e)e∗e.

Now it is straightforward to check that e† = u−1e∗ = e∗u−1. �

We remark that Lemma 4 appeared in the proof of [12, Theorem 1.4] (see

also [6, p. 183, (vi)]).

Lemma 5. Let R be a ∗-ring and b be a reflexive inverse of a ∈ R. If both

ab and ba are Moore–Penrose invertible, then a is also Moore–Penrose invertible

and a† = (ba)†b(ab)†.

Proof. Let x = (ba)†b(ab)†. Then we have

ax = a[(ba)†b(ab)†] = (aba)[(ba)†(bab)(ab)†] = (ab)(ab)†.

Hence (ax)∗ = ax and axa = [(ab)(ab)†](aba) = a. Similarly, we have xa =

(ba)†(ba), (xa)∗ = xa and xax = [(ba)†(ba)][(ba)†b(ab)†] = (ba)†b(ab)† = x. Thus,

a† = x = (ba)†b(ab)†. �

Theorem 6. Let R be a generalized symmetric ∗-ring and a, b ∈ R. Suppose

that α = 1 − ab has Moore–Penrose inverse. Then the following statements are

equivalent:
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(1) β = 1− ba has Moore–Penrose inverse;

(2) both u = 1− [(bpa)∗− bpa]2 and v = 1− [(bqa)∗− bqa]2 are invertible, where

p = 1− α†α and q = 1− αα†.
In this case, β† = u−1e∗[1 + b(α† − pq)a]f∗v−1, where e = 1 − bpa and

f = 1− bqa.

Proof. Let β = 1 + b(α† − pq)a. Then β is a reflexive inverse of β by [2,

Theorem 3.4]. Moreover, ββ = β+ b(α†− pq)aβ = β+ b(α†− pq)αa = β+ bα†αa

= 1− bpa. Similarly, ββ = 1− bqa.

(1)⇒(2) Let w1 = β∗β + bpa and w2 = ββ∗ + bqa. Then w1 = β∗β + 1− ββ
and w2 = ββ∗ + 1 − ββ. Since β has Moore–Penrose inverse, it follows that w1

and w2 are units by [11, Theorem 1.1]. Consequently, u = 1 − [(bpa)∗ − bpa]2 =

1 − (w∗1 − w1)2 and v = 1 − [(bqa)∗ − bqa]2 = 1 − (w∗2 − w2)2 are units as R is

a generalized symmetric ∗-ring.

(2)⇒(1) Since e = 1− bpa = ββ is an idempotent and 1 + (e− e∗)(e− e∗)∗ =

1 − [(bpa)∗ − bpa]2 = u is a unit, it follows that e has Moore–Penrose inverse

and e† = u−1e∗ by Lemma 4. Similarly, f = ββ has Moore–Penrose inverse and

f† = f∗v−1. In view of Lemma 5, we have β is Moore–Penrose invertible and β†

= e†βf† = u−1e∗[1 + b(α† − pq)a]f∗v−1. �

As an application of Theorem 6, we obtain the following examples of gener-

alized symmetric ∗-rings in which Jacobson’s Lemma for Moore–Penrose inverse

holds.

Example 6. (1) Let R be a commutative symmetric ∗-ring. Define the in-

volution on M2(R) by (aij)
∗ = (aji). By Proposition 2, M2(R) is a generalized

symmetric ∗-ring. For any A =
(
a b
c d

)
∈ M2(R), it follows that I − (A∗ − A)2 =(

1+(b−c)2 0

0 1+(b−c)2

)
is invertible, since 1+(b−c)2 ∈ U(R). Therefore, Jacobson’s

Lemma for Moore–Penrose inverse holds in M2(R) by Theorem 6.

(2) Let R be the ring in Example 3(5). We have seen that 1−(a∗−a)2 ∈ U(R)

for all a ∈ R. Thus Jacobson’s Lemma for Moore–Penrose inverse holds in R by

Theorem 6.
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