Publ. Math. Debrecen 91/3-4 (2017), 321–329 DOI: 10.5486/PMD.2017.7597

Generalized symmetric *-rings and Jacobson's Lemma for Moore–Penrose inverse

By XIAOXIANG ZHANG (Nanjing), JIANLONG CHEN (Nanjing) and LONG WANG (Taizhou)

Abstract. It is well known as Jacobson's Lemma that 1 - ba is invertible in a ring if so is 1 - ab. Moreover, if $c = (1 - ab)^{-1}$, then $(1 - ba)^{-1} = 1 + bca$. However, the analogous statement for Moore–Penrose inverse in a *-ring is not true in general. Note that Jacobson's Lemma for Moore–Penrose inverse holds true in a symmetric *-ring. In this paper, we study symmetric *-rings and introduce the notion of a generalized symmetric *-ring. A *-ring *R* is called generalized symmetric if $1 - (u^* - u)^2$ is invertible for all units *u* in *R*. When 1 - ab is Moore–Penrose inverse invertible in such a ring, we provide sufficient and necessary conditions under which 1 - ba has a Moore–Penrose inverse $(1 - ba)^{\dagger}$ and give a formula for $(1 - ba)^{\dagger}$.

1. Introduction

Let R be an associative ring with identity. It is well known as Jacobson's Lemma that, for any $a, b \in R$, 1 - ab is invertible if and only if so is 1 - ba (see, e.g., [3]). Moreover, if $c = (1 - ab)^{-1}$, then $(1 - ba)^{-1} = 1 + bca$. Similarly, 1 - ab is regular if and only if 1 - ba is regular. One can verify that 1 + bca is an inner inverse of 1 - ba if c is an inner inverse of 1 - ab (see, e.g., [2, p. 160]). Jacobson's Lemma for Drazin inverse was established in [2, Theorem 3.6] and

Mathematics Subject Classification: 16W10, 15A09.

Key words and phrases: symmetric *-ring, generalized symmetric *-ring, Jacobson's Lemma, Moore–Penrose inverse.

The first and the second author are supported by the National Natural Science Foundation of China under Grant [number 11201063, 11371089] and Natural Science Foundation of Jiangsu Province under Grant [number BK20141327]. The third author is supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province under Grant [number 15KJB110021].

[3, Theorem 2.2]. The reflexive inverse and group inverse version of Jacobson's Lemma were also proved in [2, Theorem 3.4] and [2, Theorem 3.5], respectively. In 2012, ZHUANG *et al.* [13, Theorem 2.3] extended Jacobson's Lemma to the case of generalized Drazin inverse.

However, Jacobson's Lemma for Moore–Penrose inverse can fail in a *-ring (i.e., a ring with involution). In fact, there exists a *-ring R with $a, b \in R$ such that 1-ab is Moore–Penrose invertible while 1-ba is not (see [2, Example 3.10]). This motivates us to investigate some *-rings in which Jacobson's Lemma for Moore–Penrose inverse holds true. Given a, b in a *-ring R such that 1-ab has Moore–Penrose inverse, it is also of interest to consider necessary and sufficient conditions under which 1 - ba has Moore–Penrose inverse. Note that even if every element is Moore–Penrose invertible in a *-ring, the formula $(1 - ba)^{\dagger} =$ $1 + b(1 - ab)^{\dagger}a$ does not hold in general (see Example 5). Therefore, it is natural to ask what is the formula of the Moore–Penrose inverse of 1 - ba provided both 1 - ab and 1 - ba are Moore–Penrose invertible.

Recall that a *-ring R is said to be symmetric if $1 + x^*x$ is invertible for all $x \in R$ (see, e.g., [1, 5]). Note that symmetric *-rings possess some attractive properties. For example, every regular element in a symmetric *-ring is Moore-Penrose invertible (see [7, Theorem 2], [9, Theorem 3.2] or [12, Theorem 1.4]). Using this result, it is easy to deduce that Jacobson's Lemma for Moore-Penrose inverse holds true in a symmetric *-ring (see Proposition 3). However, only C^* -algebras are frequently mentioned as examples of symmetric *-rings in the literature. In this note, we provide two more classes of such examples. In addition, the notion of a generalized symmetric *-ring is introduced (see Definition 1). When 1 - ab is Moore-Penrose invertible in a generalized symmetric *-ring, we provide sufficient and necessary conditions under which 1 - ba has a Moore-Penrose inverse $(1-ba)^{\dagger}$ and give a formula for $(1-ba)^{\dagger}$ (see Theorem 6).

2. Preliminaries

In this section, we briefly recall some definitions and set some notations for the readers' convenience.

By a ring we will mean an associative ring with identity. The set of all units in a ring R is denoted by U(R). Given a, b in a ring R, recall that b is called an *inner inverse* of a if aba = a. In this case, a is said to be (von Neumann) regular. A ring R is called (von Neumann) regular if all elements in R are regular. In a ring R, an element b is called a reflexive inverse of a if aba = a and bab = b.

A *-ring is a ring R with an involution, i.e., a map $*: R \to R$ written as $a \mapsto a^*$ such that $(a + b)^* = a^* + b^*$, $(ab)^* = b^*a^*$ and $(a^*)^* = a$ for all $a, b \in R$. Note that a *-ring is also called an *involutive ring* or an *involutory ring* in the literature. We will regard a commutative ring R as a *-ring with respect to the identity map $*: a \mapsto a$ unless otherwise specified.

An element a in a *-ring R is said to be *Moore–Penrose invertible* if there exists $b \in R$ such that aba = a, bab = b, $(ab)^* = ab$ and $(ba)^* = ba$. Such an element b is unique (if it exists) and is called the *Moore–Penrose inverse* of a, which is indicated by a^{\dagger} .

In [5], a *-ring R is said to satisfy the k-term star-cancellation law (SC_k) if the involution * of R is k-proper in the sense of BERBERIAN [1], i.e., $a_1^*a_1 + \cdots + a_k^*a_k = 0$ implies $a_1 = \cdots = a_k = 0$, for any $a_1, \ldots, a_k \in R$. Recall that a *-ring R is called a *-regular ring if it is regular and satisfies SC₁ or, equivalently, if every element in R has Moore–Penrose inverse (see [5] and [8, Theorem 5.4]).

Given a ring R and a positive integer n, the $n \times n$ matrix ring over R is denoted by $M_n(R)$. The identity matrix in $M_n(R)$ is denoted by I_n , or simply by I. In case R is a *-ring, $M_n(R)$ is also a *-ring with involution defined by $(a_{ij})^* = (a_{ji}^*)$ for all $(a_{ij}) \in M_n(R)$. The ring of integers, the field of real numbers and the field of complex numbers are denoted by \mathbb{Z} , \mathbb{R} and \mathbb{C} , respectively. As usual, \mathbb{Z}_n stands for the factor ring of \mathbb{Z} modulo n, i.e., $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$, where n is a positive integer.

3. Main results

Let us start with two classes of examples of symmetric *-rings, namely \mathbb{Z}_n for some positive integers n, and $\mathbb{R}\mathbb{Z}_n$ for any positive integers n.

Example 1. (1) Suppose p is a prime number and s is a positive integer. Then $\mathbb{Z}_{p^s} = \mathbb{Z}/p^s\mathbb{Z}$ is a symmetric *-ring (i.e., $1 + x^2 \equiv 0 \pmod{p}$ has no solution in \mathbb{Z}) if and only if $p \equiv -1 \pmod{4}$ by the well-known Euler's Criterion (see, e.g., [4, Theorem 3.13]).

(2) Let $n = p_1^{s_1} p_2^{s_2} \cdots p_m^{s_m}$, where p_1, p_2, \ldots, p_m are pairwise different prime numbers and s_1, s_2, \ldots, s_m are positive integers. Then $\mathbb{Z}_n \cong \prod_{i=1}^m \mathbb{Z}_{p_i^{s_i}}$ is a symmetric *-ring if and only if each $p_i \equiv -1 \pmod{4}$.

Let R be a ring and G a group. Then the group ring RG consists of all the sums of the form $\sum_{g \in G} a_g g$ with each $a_g \in R$ such that only finitely many $a_g \neq 0$. When R is an involutive ring with involution $a \mapsto \overline{a}$, the group ring RGis a *-ring with $(\sum_{g \in G} a_g g)^* = \sum_{g \in G} \overline{a_g} g^{-1}$. We refer the reader to [10] for more details on group rings.

Example 2. Let n be a positive integer and consider the cyclic group \mathbb{Z}_n . Then the group ring $\mathbb{R}\mathbb{Z}_n$ is a symmetric *-ring with respect to the involution induced from the identity involution on \mathbb{R} .

Indeed, let $P = \begin{pmatrix} 0 & I_{n-1} \\ 1 & 0 \end{pmatrix}$, where I_{n-1} is the $(n-1) \times (n-1)$ identity matrix over \mathbb{R} . It is easy to see that $\mathbb{R}\mathbb{Z}_n$ is isomorphic to $S = \{\sum_{i=0}^{n-1} a_i P^i \mid \text{each } a_i \in \mathbb{R}\}$, which is a subring of the $n \times n$ matrix ring $M_n(\mathbb{R})$. The involution * on Scorresponding to the natural involution on $\mathbb{R}\mathbb{Z}_n$ is given by $(\sum_{i=0}^{n-1} a_i P^i)^* = \sum_{i=0}^{n-1} a_i P^{-i}$.

For any $A = \sum_{i=0}^{n-1} a_i P^i \in S$, it follows that

$$A^* = \sum_{i=0}^{n-1} a_i P^{-i} = \sum_{i=0}^{n-1} a_i (P^i)^{\mathrm{T}} = A^{\mathrm{T}},$$

where A^{T} stands for the transpose of A. It is a well-known fact in linear algebra that $I + A^{\mathrm{T}}A$ is a positive definite symmetric real matrix. Thus $I + A^*A =$ $I + A^{\mathrm{T}}A$ is invertible in $\mathcal{M}_n(\mathbb{R})$. We need to show that $I + A^*A$ is also invertible in S. For any invertible matrix $B \in \mathcal{M}_n(\mathbb{R})$, it follows as a corollary of the Hamilton–Cayley Theorem that $B^{-1} = b_0I + b_1B + \cdots + b_{n-1}B^{n-1}$ for some $b_0, b_1, \ldots, b_{n-1} \in \mathbb{R}$. From this fact one can see that $(I + A^*A)^{-1} \in S$, since $I + A^*A \in S$. This shows S is a symmetric *-ring. Therefore, the group ring \mathbb{RZ}_n is a symmetric *-ring.

Recall that a *-ring R is said to be *-*regular* if every element in R is Moore–Penrose invertible.

Proposition 1. Let R be a *-ring and define the involution on $M_2(R)$ by $(a_{ij})^* = (a_{ii}^*)$. Then

- (1) R is a symmetric *-ring if Jacobson's Lemma holds in $M_2(R)$, i.e., if the existence of $(I AB)^{\dagger}$ implies that of $(I BA)^{\dagger}$, where $A, B \in M_2(R)$.
- (2) R is a regular symmetric *-ring if and only if $M_2(R)$ is a *-regular ring.

PROOF. (1) For any $a \in R$, let $A = \begin{pmatrix} 0 & 1 \\ 1 & a \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in M_2(R)$. Then $AB = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $(I - AB)^{\dagger} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. By hypotheses, $(I - BA)^{\dagger}$ also exists. Let $C = I - BA = \begin{pmatrix} 0 & -a \\ 0 & 1 \end{pmatrix}$. According to [8, Theorem 5.4], we have $C = XC^*C$ for some $X \in M_2(R)$. Let $X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. Then

$$\begin{pmatrix} 0 & -a \\ 0 & 1 \end{pmatrix} = C = XC^*C = \begin{pmatrix} 0 & x_2(1+a^*a) \\ 0 & x_4(1+a^*a) \end{pmatrix}.$$

Hence $x_4(1 + a^*a) = 1$, and $(1 + a^*a)x_4^* = [x_4(1 + a^*a)]^* = 1$. This shows $1 + a^*a \in U(R)$. Therefore, *R* is a symmetric *-ring.

(2) It is well known that $M_2(R)$ is a *-regular ring if and only if R is a regular *-ring satisfying SC_2 (see, e.g., [6]). In view of [5, Theorem 3], a *-ring R is regular and satisfies SC_2 if and only if R is a regular symmetric *-ring. Therefore, the result follows.

Next, we extend the class of symmetric *-rings to a larger one and consider the relationship between them.

Definition 1. Let R be a *-ring. If $1 - (u^* - u)^2 \in U(R)$ for all $u \in U(R)$, then R is called a generalized symmetric *-ring.

Let us illustrate the notion of generalized symmetric *-rings by some concrete examples.

Example 3. (1) Every commutative ring R is a generalized symmetric *-ring with respect to the involution * given by $x^* = x$.

(2) Every symmetric *-ring R is generalized symmetric. Indeed, for any $u \in U(R)$, it follows that $1 - (u^* - u)^2 = 1 + (u^* - u)^*(u^* - u) \in U(R)$.

(3) $\mathbb{Z}_5 = \mathbb{Z}/5\mathbb{Z}$ is a generalized symmetric *-ring. But \mathbb{Z}_5 is not a symmetric *-ring according to Example 1.

(4) \mathbb{C} is a generalized symmetric *-ring but not a symmetric *-ring with respect to the involution * given by $x^* = x$. Note that \mathbb{C} is a symmetric *-ring with respect to the involution given by the complex conjugate.

(5) Let $R = \mathbb{Z}_2 \langle x, y \rangle / (x^2 - x, y^2 - y, xyx)$ be the ring generated over $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ by $\{x, y\}$ with the relations $\{x^2 - x, y^2 - y, xyx\}$. Let

$$X = x + (x^2 - x, y^2 - y, xyx)$$
 and $Y = y + (x^2 - x, y^2 - y, xyx).$

Define the involution on R such that $1^* = 1$, $X^* = X$, $Y^* = Y$, $(XY)^* = YX$, $(YX)^* = XY$ and $(YXY)^* = YXY$. For any

$$a = a_1 + a_2 X + a_3 Y + a_4 X Y + a_5 Y X + a_6 Y X Y \in \mathbb{R},$$

it follows that $a^* - a = a^* + a = (a_4 + a_5)(XY + YX)$. So we have

$$1 - (a^* - a)^2 = 1 + (a_4 + a_5)^2 (XY + YX)^2 = 1 + (a_4 + a_5)^2 YXY \in U(R),$$

since $[1 + (a_4 + a_5)^2 YXY]^2 = 1$. This shows R is a generalized symmetric *-ring. But R is not a symmetric *-ring, since $1 + 1^*1 = 0$.

Proposition 2.

- (1) Let R be a *-ring and define the involution on $M_2(R)$ by $(a_{ij})^* = (a_{ji}^*)$. If $M_2(R)$ is a generalized symmetric *-ring, then R is a symmetric *-ring.
- (2) Let R be a commutative ring and define the involution on $M_2(R)$ by $(a_{ij})^* = (a_{ji})$. Then $M_2(R)$ is a generalized symmetric *-ring if and only if R is a symmetric *-ring.

PROOF. (1) For any $a \in R$, let $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$. Then

$$\begin{pmatrix} 1+aa^* & 0\\ 0 & 1+a^*a \end{pmatrix} = I - (A^* - A)^2$$

is invertible, since $M_2(R)$ is a generalized symmetric *-ring. Hence $1+a^*a \in U(R)$.

(2) If $M_2(R)$ is a generalized symmetric *-ring, then R is a symmetric *ring by (1). Conversely, assume that R is a symmetric *-ring. Then for any $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$, we have

$$I - (A^* - A)^2 = \begin{pmatrix} 1 + (b-c)^2 & 0\\ 0 & 1 + (b-c)^2 \end{pmatrix},$$

where $1 + (b - c)^2 \in U(R)$. Thus $I - (A^* - A)^2$ is invertible. This shows that $M_2(R)$ is a generalized symmetric *-ring.

Example 4. Let $1 < n \in \mathbb{Z}$ and define the involution on $M_2(\mathbb{Z}_n)$ by $(a_{ij})^* = (a_{ji})$. Then $M_2(\mathbb{Z}_n)$ is not a symmetric *-ring, since otherwise \mathbb{Z}_n is a symmetric *-ring by Proposition 2. In view of Example 1(2), n has at least one odd prime factor p. By virtue of [4, Lemma 2.9], we have integers a and b with $a^2 + b^2 + 1 \equiv 0 \pmod{p}$. Now let $A = \left(\frac{\overline{a}}{\overline{b}}, \frac{\overline{0}}{\overline{0}}\right)$, where $\overline{i} = i + n\mathbb{Z} \in \mathbb{Z}_n$ for i = a, b, 0. Then $I + A^*A = \left(\frac{\overline{a^2+b^2+1}}{\overline{0}}, \frac{\overline{0}}{\overline{1}}\right)$ is invertible. So we have $\overline{a^2+b^2+1} \in U(\mathbb{Z}_n)$, which contradicts $a^2 + b^2 + 1 \equiv 0 \pmod{p}$.

Now, we consider Jacobson's Lemma for Moore–Penrose inverse. The following result is essentially due to the authors of [7], [9] and [12].

Proposition 3. Let R be a symmetric *-ring and $a, b \in R$. If 1 - ab is Moore–Penrose invertible, then so is 1 - ba.

PROOF. According to [7, Theorem 2], [9, Theorem 3.2] or [12, Theorem 1.4], every regular element in R is Moore–Penrose invertible, since R is a symmetric *-ring. Note that 1 - ab is regular in R if and only if so is 1 - ba. Thus, the result follows.

Note that when 1 - ab is invertible in a ring, it follows that

$$(1 - ba)^{-1} = 1 + b(1 - ab)^{-1}a.$$

The next example shows that, even if every element is Moore–Penrose invertible in a *-ring, the formula $(1 - ba)^{\dagger} = 1 + b(1 - ab)^{\dagger}a$ does not hold in general.

Example 5. Consider the involution on $M_2(\mathbb{C})$ induced from the conjugate complex involution on \mathbb{C} . It is well known that every matrix in $M_2(\mathbb{C})$ is Moore–Penrose invertible. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. Then $I - AB = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $I - BA = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$. By computation, we have $(I - AB)^{\dagger} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and $(I - BA)^{\dagger} = \begin{pmatrix} 0 & -1/2 \\ 0 & 1/2 \end{pmatrix}$. These show $(I - BA)^{\dagger} \neq I + B(I - AB)^{\dagger}A$. In fact, one can check that $(I - BA)^{\dagger} \neq I + BCA$ for any $C \in M_2(\mathbb{C})$.

To provide some conditions under which the Moore–Penrose invertibility of 1 - ba and the formula for $(1 - ba)^{\dagger}$ can be interpreted in terms of $(1 - ab)^{\dagger}$, we need the following lemmas, which are of interest in their own right.

Lemma 4. Let e be an idempotent in a *-ring R. If $u = 1 + (e - e^*)(e - e^*)^* \in U(R)$, then e has Moore–Penrose inverse and $e^{\dagger} = u^{-1}e^* = e^*u^{-1}$.

PROOF. Since $e^2 = e$ and $u = 1 + (e - e^*)(e - e^*)^*$, it follows that $u = u^*$, $eu = ee^*e = ue$ and $e^*u = ue^*$. Moreover, since $u \in U(R)$, one can verify that $(u^{-1})^* = u^{-1}$, $eu^{-1} = u^{-1}e$, $u^{-1}e^* = e^*u^{-1}$ and $e = ee^*(eu^{-1}) = (u^{-1}e)e^*e$. Now it is straightforward to check that $e^{\dagger} = u^{-1}e^* = e^*u^{-1}$.

We remark that Lemma 4 appeared in the proof of [12, Theorem 1.4] (see also [6, p. 183, (vi)]).

Lemma 5. Let R be a *-ring and b be a reflexive inverse of $a \in R$. If both ab and ba are Moore–Penrose invertible, then a is also Moore–Penrose invertible and $a^{\dagger} = (ba)^{\dagger}b(ab)^{\dagger}$.

PROOF. Let $x = (ba)^{\dagger} b(ab)^{\dagger}$. Then we have

 $ax = a[(ba)^{\dagger}b(ab)^{\dagger}] = (aba)[(ba)^{\dagger}(bab)(ab)^{\dagger}] = (ab)(ab)^{\dagger}.$

Hence $(ax)^* = ax$ and $axa = [(ab)(ab)^{\dagger}](aba) = a$. Similarly, we have $xa = (ba)^{\dagger}(ba), (xa)^* = xa$ and $xax = [(ba)^{\dagger}(ba)][(ba)^{\dagger}b(ab)^{\dagger}] = (ba)^{\dagger}b(ab)^{\dagger} = x$. Thus, $a^{\dagger} = x = (ba)^{\dagger}b(ab)^{\dagger}$.

Theorem 6. Let R be a generalized symmetric *-ring and $a, b \in R$. Suppose that $\alpha = 1 - ab$ has Moore–Penrose inverse. Then the following statements are equivalent:

- (1) $\beta = 1 ba$ has Moore–Penrose inverse;
- (2) both $u = 1 [(bpa)^* bpa]^2$ and $v = 1 [(bqa)^* bqa]^2$ are invertible, where $p = 1 \alpha^{\dagger} \alpha$ and $q = 1 \alpha \alpha^{\dagger}$.

In this case, $\beta^{\dagger} = u^{-1}e^*[1 + b(\alpha^{\dagger} - pq)a]f^*v^{-1}$, where e = 1 - bpa and f = 1 - bqa.

PROOF. Let $\overline{\beta} = 1 + b(\alpha^{\dagger} - pq)a$. Then $\overline{\beta}$ is a reflexive inverse of β by [2, Theorem 3.4]. Moreover, $\overline{\beta}\beta = \beta + b(\alpha^{\dagger} - pq)a\beta = \beta + b(\alpha^{\dagger} - pq)\alpha a = \beta + b\alpha^{\dagger}\alpha a = 1 - bpa$. Similarly, $\beta\overline{\beta} = 1 - bqa$.

 $(1)\Rightarrow(2)$ Let $w_1 = \beta^*\beta + bpa$ and $w_2 = \beta\beta^* + bqa$. Then $w_1 = \beta^*\beta + 1 - \overline{\beta}\beta$ and $w_2 = \beta\beta^* + 1 - \beta\overline{\beta}$. Since β has Moore–Penrose inverse, it follows that w_1 and w_2 are units by [11, Theorem 1.1]. Consequently, $u = 1 - [(bpa)^* - bpa]^2 = 1 - (w_1^* - w_1)^2$ and $v = 1 - [(bqa)^* - bqa]^2 = 1 - (w_2^* - w_2)^2$ are units as R is a generalized symmetric *-ring.

 $\begin{array}{l} (2) \Rightarrow (1) \text{ Since } e = 1 - bpa = \overline{\beta}\beta \text{ is an idempotent and } 1 + (e - e^*)(e - e^*)^* = \\ 1 - [(bpa)^* - bpa]^2 = u \text{ is a unit, it follows that } e \text{ has Moore-Penrose inverse} \\ \text{and } e^{\dagger} = u^{-1}e^* \text{ by Lemma 4. Similarly, } f = \beta\overline{\beta} \text{ has Moore-Penrose inverse and} \\ f^{\dagger} = f^*v^{-1}. \text{ In view of Lemma 5, we have } \beta \text{ is Moore-Penrose invertible and } \beta^{\dagger} \\ = e^{\dagger}\overline{\beta}f^{\dagger} = u^{-1}e^*[1 + b(\alpha^{\dagger} - pq)a]f^*v^{-1}. \end{array}$

As an application of Theorem 6, we obtain the following examples of generalized symmetric *-rings in which Jacobson's Lemma for Moore–Penrose inverse holds.

Example 6. (1) Let R be a commutative symmetric *-ring. Define the involution on $M_2(R)$ by $(a_{ij})^* = (a_{ji})$. By Proposition 2, $M_2(R)$ is a generalized symmetric *-ring. For any $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(R)$, it follows that $I - (A^* - A)^2 = \begin{pmatrix} 1+(b-c)^2 & 0 \\ 0 & 1+(b-c)^2 \end{pmatrix}$ is invertible, since $1+(b-c)^2 \in U(R)$. Therefore, Jacobson's Lemma for Moore–Penrose inverse holds in $M_2(R)$ by Theorem 6.

(2) Let R be the ring in Example 3(5). We have seen that $1-(a^*-a)^2 \in U(R)$ for all $a \in R$. Thus Jacobson's Lemma for Moore–Penrose inverse holds in R by Theorem 6.

ACKNOWLEDGEMENTS. The authors thank the referees for their helpful comments and suggestions.

References

- [1] S. K. BERBERIAN, Baer *-rings, Springer-Verlag, New York Berlin, 1972.
- [2] N. CASTRO-GONZÁLEZ, C. MENDES-ARAÚJO AND P. PATRÍCIO, Generalized inverses of a sum in rings, Bull. Aust. Math. Soc. 82 (2010), 156–164.
- [3] D. S. CVETKOVIĆ-ILIĆ AND R. HARTE, On Jacobson's lemma and Drazin invertibility, Appl. Math. Lett. 23 (2010), 417–420.
- [4] G. EVEREST AND T. WARD, An Introduction to Number Theory, Graduate Texts in Mathematics, Vol. 232, Springer-Verlag, London, 2005.
- [5] R. E. HARTWIG, An application of the Moore–Penrose inverse to antisymmetric relations, *Proc. Amer. Math. Soc.* 78 (1980), 181–186.
- [6] R. E. HARTWIG AND P. PATRÍCIO, When does the Moore–Penrose inverse flip?, Oper. Matrices 6 (2012), 181–192.
- [7] J. J. KOLIHA, D. S. DJORDJEVIČ AND D. S. CVETKOVIĆ-ILIĆ, Moore–Penrose inverse in rings with involution, *Linear Algebra Appl.* 426 (2007), 371–381.
- [8] J. J. KOLIHA AND P. PATRÍCIO, Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (2002), 137–152.
- [9] J. J. KOLIHA AND V. RAKOČEVIĆ, Range projections and the Moore–Penrose inverse in rings with involution, *Linear Multilinear Algebra* **55** (2007), 103–112.
- [10] C. P. MILIES AND S. K. SEHGAL, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
- [11] P. PATRÍCIO, The Moore–Penrose inverse of a companion matrix, *Linear Algebra Appl.* 437 (2012), 870–877.
- [12] P. PATRÍCIO AND C. M. ARAÚJO, Moore–Penrose invertibility in involutory rings: the case $aa^{\dagger} = bb^{\dagger}$, Linear Multilinear Algebra **58** (2010), 445–452.
- [13] G. F. ZHUANG, J. L. CHEN AND J. CUI, Jacobson's lemma for the generalized Drazin inverse, *Linear Algebra Appl.* 436 (2012), 742–746.

XIAOXIANG ZHANG SCHOOL OF MATHEMATICS SOUTHEAST UNIVERSITY NANJING 210096 P. R. CHINA

E-mail: z990303@seu.edu.cn

JIANLONG CHEN SCHOOL OF MATHEMATICS SOUTHEAST UNIVERSITY NANJING 210096 P. R. CHINA

E-mail: jlchen@seu.edu.cn

LONG WANG DEPARTMENT OF MATHEMATICS TAIZHOU UNIVERSITY TAIZHOU 225300 P. R. CHINA

E-mail: wanglseu@hotmail.com

(Received January 19, 2016; revised January 3, 2017)