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On the Gauss map of minimal Lorentzian surfaces in
4-dimensional semi-Riemannian space forms with index 2

By ELIF ÖZKARA CANFES (Istanbul) and NURETTIN CENK TURGAY (Istanbul)

Abstract. In this paper, we study minimal Lorentzian surfaces with finite type

Gauss map in 4-dimensional semi-Riemannian space forms with index of 2. First, we give

the complete classification of Lorentzian surfaces in the semi-Euclidean space E4
2 with

pointwise 1-type Gauss map. Then, we study all Lorentzian minimal surfaces in S4
2(1)

regarding their Gauss map. In particular, we proved that a Lorentzian minimal surface

in S4
2(1) has 2-type Gauss map if and only if it has constant Gaussian curvature and

non-zero constant normal curvature.

1. Introduction

The notion of finite type maps has been studied by many geometers since

it was first introduced by B.-Y. Chen in the middle of the 1980’s during his

program of understanding the finite type submanifolds in semi-Euclidean spaces,

[9], [11], [12]. In particular, after the problem “To what extent does the type of the

Gauss map of a submanifold of Emr determine the submanifold?” was presented

by B.-Y. Chen and P. Piccinni in [12], submanifolds with finite type Gauss

map have been worked in many articles, see [5], [6], [10], [23], [26].

Let Ems denote the semi-Euclidean space with the canonical semi-Euclidean

metric tensor of index r given by

g = −
s∑
i=1

dx2i +

m∑
j=s+1

dx2j ,
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where (x1, x2, . . . , xn) is a rectangular coordinate system in Ems , and let M be

a (semi-)Riemannian submanifold of a semi-Euclidean space Emr . A map φ defined

on M into another semi-Euclidean space ENS is said to be of k-type if it can be

expressed as

φ = φ0 + φ1 + · · ·+ φk,

for some eigenvectors φ1, φ2, . . . , φk corresponding from k distinct eigenvalues of ∆

[11], [12], where φ0 is a constant vector.

From the above definition one can see that a submanifold M has (global)

1-type Gauss map ν if and only if the equation

∆ν = λ(ν + C) (1.1)

is satisfied for a constant vector C and λ ∈ R. Similarly, a submanifold M is said

to have pointwise 1-type Gauss map if the Laplacian of its Gauss map takes the

form

∆ν = f(ν + C) (1.2)

for a smooth function f and a constant vector C. More precisely, a pointwise

1-type Gauss map is called of the first kind if (1.2) is satisfied for C = 0, and

of the second kind if C 6= 0. Moreover, if (1.2) is satisfied for a non-constant

function f , then M is said to have proper pointwise 1-type Gauss map [9].

Nowadays, the study of submanifolds with pointwise 1-type Gauss map is

a very active research subject (cf. [1], [2], [3], [4], [14], [17], [18], [19], [24], [25]).

For example, the second-named author studied marginally trapped surfaces in

the Minkowski space-time E4
1 in terms of type of their Gauss map in [24]. Most

recently, Dursun and Bektaş have studied flat Lorentzian rotational surfaces in

the Minkowski space E4
1 with pointwise 1-type Gauss map [19]. Further, in [2],

the authors obtained some classifications of general rotational surfaces in the

semi-Euclidean space E4
2 in terms of type of their Gauss map.

On the other hand, a submanifold M is said to have 2-type Gauss map if

and only if

ν = ν0 + ν1 + ν2, ∆νi = λiνi, i = 1, 2 (1.3)

is satisfied for some eigenvalues λ1, λ2 of ∆ and a constant vector ν0. Submanifolds

with 2-type Gauss map are studied in several papers [5], [10], [11], [12]. Before

we proceed, we would like to note that if M has a 2-type Gauss map, then the

weakly elliptic, semi-linear, forth degree partial differential equation

∆2ν + ξ∆ν + ην = C (1.4)
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is necessarily satisfied for a constant vector C and some constants ξ, η. However,

satisfying (1.4) is not a sufficient condition for ν in order to be of 2-type (see, for

example, [11], [12], [21]).

In this work, we study Lorentzian minimal surfaces in the semi-Euclidean

spaces in terms of type of their Gauss map. In Section 2, after describing our

notations, we give a summary of the basic facts and formulas that we will use.

In Section 3, we obtain the complete classification of minimal Lorentzian surfaces

with pointwise 1-type Gauss map. In particular, we proved that there are non-

planar minimal surfaces in E4
2 proper pointwise 1-type Gauss map of the second

kind. We would like to note that the non-existence of such surfaces in E4
1 was

obtained by the second-named author in [25]. Finally, in Section 4, we obtain the

complete classification of Lorentzian minimal surfaces in the pseudo-Euclidean

space form S42(1).

2. Preliminaries

2.1. Basic notations, formulas and definitions. Let Ems denote the semi-

Euclidean space with the canonical semi-Euclidean metric tensor g of index s.

We put

Sm−1s (r2) = {x ∈ Ems : 〈x, x〉 = r−2},

Hm−1s−1 (−r2) = {x ∈ Ems : 〈x, x〉 = −r−2},

where 〈 , 〉 is the indefinite inner product of Ems . We will also use the following

notation:

Rms (c) =


Sms (c) if c > 0,

Ems if c > 0,

Hms (c) if c < 0.

Let v be a non-zero vector in Emr . v is called space-like, time-like or light-like

if 〈v, v〉 is positive, negative or zero, respectively.

We want to state the following well-known lemmas that we will use later.

Lemma 2.1 ([22]). Let U be a real vector space with a non-degenerated

inner product 〈 , 〉 with index 1. Then, two light-like vectors v1, v2 are linearly

dependent if and only if 〈v1, v2〉 = 0.

Lemma 2.2 ([22]). Let V be a subspace of a real vector space U , and 〈 , 〉
a non-degenerated inner product defined in U . Then, 〈 , 〉|V is non-degenerated

if and only if V ∩ V ⊥ = {0}.
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Let M be an n-dimensional semi-Riemannian submanifold of the semi-

Euclidean space Emr . We denote the Levi–Civita connections of Emr and M by

∇̃ and ∇, respectively. The Gauss and Weingarten formulas are given, respec-

tively, by

∇̃XY = ∇XY + h(X,Y ), (2.1)

∇̃Xξ = −Aξ(X) +DXξ, (2.2)

for any tangent vector field X, Y and normal vector field ξ on M , where h, D

and A are the second fundamental form, the normal connection and the shape

operator of M , respectively. On the other hand, the shape operator A and the

second fundamental form h of M are related by

〈AξX,Y 〉 = 〈h(X,Y ), ξ〉. (2.3)

The Gauss, Codazzi and Ricci equations are given, respectively, by

R(X,Y, Z,W ) = 〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉, (2.4a)

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z), (2.4b)

〈RD(X,Y )ξ, η〉 = 〈[Aξ, Aη]X,Y 〉, (2.4c)

where R, RD are the curvature tensors associated with connections ∇ and D,

respectively, and

(∇̄Xh)(Y, Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

2.2. Lorentzian surfaces in E4
2. Now, we consider a Lorentzian surface M

in the semi-Euclidean space E4
2. Let {f1, f2; f3, f4} be a local pseudo-orthogonal

frame field on M consisting of light-like vector fields such that 〈f1, f2〉 = 〈f3, f4〉 =

−1.

Remark 2.3. We will say M is properly contained in the semi-Euclidean space

E4
2 if it has no open part that lies on a non-degenerate hyperplane of E4

2.

The mean curvature vector H and Gaussian curvature K of M are defined by

H = −h(f1, f2), (2.5a)

K = R(f1, f2, f2, f1). (2.5b)
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M is said to be minimal if H ≡ 0. On the other hand, for a smooth map φ,

the Laplace operator of M is given by

∆φ = f1f2(φ) + f2f1(φ)− (∇f1f2) (φ)− (∇f2f1) (φ). (2.6)

The relative null space at p of M is defined as

Np(M) = {X ∈ TpM |h(X,Y ) = 0, for all Y ∈ TpM}.

We say M has degenerated relative null bundle if (Np(M), 〈 , 〉) is a degenerated

inner product space for all p ∈M .

2.3. The Gauss map. Let M be a minimal Lorentzian surface in E4
2, and

{f1, f2; f3, f4} a pseudo-orthogonal frame field on M . Then, the smooth map ν

defined by

ν : M → H5
3(−1) ⊂ E6

4

p 7→ ν(p) = (f1 ∧ f2)(p) (2.7)

is called the (tangent) Gauss map of M . For a geometric interpretation of the

Gauss map of M , see [12], [13], [19].

In the next lemma, we provide the Laplacian of the Gauss map of a minimal

surface in E4
2 (see [13, Lemma 3.2]).

Lemma 2.4. Let M be a Lorentzian surface in E4
2, and {f1, f2} be a pseudo-

orthogonal base field of the tangent bundle of M . Then, the Gauss map ν = f1∧f2
of M satisfies

∆ν = 2Kν + 2h(f1, f1) ∧ h(f2, f2), (2.8)

where K is the Gaussian and h is the second fundamental form of M , respectively.

3. Minimal surfaces in E4
2 and their Gauss maps

In this section, we consider minimal Lorentzian surfaces in E4
2 in terms of

type of their Gauss maps.

We state the following lemma and theorem that we will use later.

Lemma 3.1 ([7]). Let M be a Lorentzian surface in a semi Euclidean

space Ems . Then there exists a local coordinate system (s, t) such that the in-

duced metric is of the form

g = −m2(ds⊗ dt+ ds⊗ dt), s ∈ I1, t ∈ I2, (3.1)
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for a non-vanishing function m = m(s, t), where I1 and I2 are some open intervals.

Moreover, the Levi–Civita connection of M is given by

∇∂s∂s =
2ms

m
∂s, ∇∂s∂t = 0, ∇∂t∂t =

2mt

m
∂t, (3.2)

and the Gaussian curvature of M becomes

K =
2(mmst −msmt)

m4
. (3.3)

Remark 3.2. If m(s, t) = m1(s)m2(t) for some smooth non-vanishing func-

tions m1, m2 or, equivalently, K = 0, then by a suitable change of coordinates

we can assume m(s, t) = 1.

Theorem 3.3 ([8], [15]). Every minimal Lorentzian surface in Ems is locally

congruent to a translation surface defined by

x(s, t) = α(s) + β(t), (3.4)

where α(s) and β(t) are two null curves defined on open intervals I1 and I2,

respectively, in the semi-Euclidean space Ems and satisfy 〈α′, β′〉 = −m2(s, t) 6= 0.

Remark 3.4. Let M be a minimal Lorentizan surface given by (3.4). Then,

from the Codazzi equation (2.4b) one can obtain

D∂th(∂s, ∂s) = 0, (3.5a)

D∂sh(∂t, ∂t) = 0, (3.5b)

where s, t are the local coordinates given in Lemma 3.1.

3.1. Pointwise 1-type Gauss map of the first kind. In this subsection, we

focus on minimal Lorentzian surfaces whose Gauss map satisfying (1.2) for C = 0.

We want to note that from Lemma 2.4, one can see that having such a Gauss

map is equivalent to having flat normal bundle for a Lorentzian minimal surface

in E4
2.

First, we obtain the following lemma.

Lemma 3.5. Let M be a Lorentzian surface in Ems . ThenM has degenerated

relative null bundle if and only if it is congruent to the surface given by

x(s, t) = sη0 + β(t), 〈η0, β(t)〉 6= 0, (3.6)

where η0 is a constant light-like vector and β is a null curve in Ems which contains

no open part of a line.
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Proof. Let Np(M) be degenerated for all p ∈M . Then, Lemma 2.2 implies

that Np(M) = span{f1} for a light-like vector field f1 tangent to M . Let f2 be the

light-like tangent vector field such that 〈f1, f2〉 = −1. Then, we have h(f1, f1) =

h(f1, f2) = 0. Thus, the Gauss equation (2.4a) implies K = 0. Therefore, we may

assume m(s, t) = 1.

On the other hand, from h(f1, f2) = 0, we have that M is minimal. Thus,

the position vector x of M is (3.4) for some light-like curves α, β in Ems satisfying

〈α′, β′〉 = −1. Moreover, we can assume f1 = ∂s, f2 = ∂t. By combining

h(f1, f1) = 0, (2.1) and (3.2), we get

α′′ = ∇̃∂s∂s = 0,

i.e, α is a light-like line. Hence M is congruent to the surface given by (3.6). More-

over, we have 〈η0, η0〉 = 0 and 〈η0, β′(t)〉 6= 0. Note that if β has an open partM
of a line, then we have Np(M) = TpM for all p ∈M, which is a contradiction.

The converse of the Lemma follows from a direct computation. Thus, the

proof is completed. �

Next, we prove the following proposition, which is the classification of mini-

mal surfaces whose Gauss map satisfies (1.2) for C = 0.

Proposition 3.6. There exist four families of minimal Lorentzian surfaces

in the semi-Euclidean space E4
2 with pointwise 1-type Gauss map of the first kind:

(i) a minimal Lorentzian surface lying in a hyperplane E3
2 of E4

2;

(ii) a minimal Lorentzian surface lying in a hyperplane E3
1 of E4

2;

(iii) a surface with degenerated relative null space given by (3.6);

(iv) a surface lying on a degenerated hyperplane given by

x(s, t) =

(
φ1(s) + φ2(t),

√
2

2
(s+ t),

√
2

2
(s− t), φ1(s) + φ2(t)

)
, (3.7)

where φi : Ii → R are some smooth, non-vanishing functions, and Ii are some

open intervals for i = 1, 2.

Conversely, every minimal Lorentzian surface with pointwise 1-type Gauss map

of the first kind in the semi-Euclidean space E4
2 is congruent to an open portion

of a surface obtained from these types of surfaces.

Proof. IfM is a minimal surface lying in 3-dimensional Minkowski space E3
1,

then [17, Lemma 3.2] implies that M has pointwise 1-type Gauss map (see

also [16]). Therefore, the surfaces given in case (i) and case (ii) have pointwise
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1-type Gauss map of the first kind. On the other hand, a direct calculation yields

that the surfaces given in case (iii) and case (iv) of the theorem have harmonic

Gauss map. Now, we want to prove the converse of this theorem.

Let M be a minimal Lorentzian surface in E4
2. We consider a local coordinate

system (s, t) satisfying (3.1) for a non-vanishing function m and the pseudo-

orthonormal base field {f1, f2} of tangent bundle of M , given by f1 = m−1∂s and

f2 = m−1∂t. Since M is minimal, we have h(f1, f2) = 0. Let x be the position

vector of M given by (3.4).

Now, we assume that M has pointwise 1-type Gauss map of the first kind, i.e.,

(1.2) is satisfied for C = 0. Then, (1.2) and (2.8) imply h(f1, f1) ∧ h(f2, f2) = 0,

from which we see that h(f1, f1) and h(f2, f2) are linearly dependent.

If h(f1, f1) = h(f2, f2) = 0, then we have h = 0, which implies M is

a Lorentzian plane. Thus, case (i) or (ii) of the theorem is satisfied. On the

other hand, if h(f1, f1) = 0, h(f2, f2) 6= 0, then M has degenerated relative null

bundle. Lemma 3.5 implies case (iii) of the theorem. Therefore, we assume that

h(f1, f1) and h(f2, f2) are non-vanishing on M , and we have 3 cases subject to

their causality.

Case 1. h(f1, f1) and h(f2, f2) are space-like. In this case, we consider the

local orthogonal base field {e3, e4} of the tangent bundle of M such that

e3 =
h(∂s, ∂s)

〈h(∂s, ∂s), h(∂s, ∂s)〉1/2
.

Then, Remark 3.4 implies

h(∂s, ∂s) = A2(s)e3, h(∂t, ∂t) = εB2(t)e3, (3.8)

for some non-vanishing smooth functions A,B, where ε = ±1. Next, we define

new coordinates S, T such that S =
s∫
s0

A(ξ)dξ and T =
t∫
t0

B(ξ)dξ. Then (3.8)

becomes

h(∂S , ∂S) = εh(∂T , ∂T ) = e3, ε = ±1. (3.9)

Moreover, because of Remark 3.4, we have D∂Sh(∂T , ∂T ) = D∂T h(∂S , ∂S) =

0, from which and (3.9) we have De3 = 0, that is, e3 is parallel. As M has

codimension of 2, e4 is also parallel. Moreover, by combining (2.3) and (3.9), we

obtain A4 = 0. Thus, we have ∇̃e4 = 0, i.e., e4 is constant. Therefore, M lies on

a hyperplane Π whose normal is e4. Since e4 is time-like, we have case (i) of the

theorem.
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Case 2. h(f1, f1) and h(f2, f2) are time-like. In a similar way to the previous

case, we obtain case (ii) of the theorem.

Case 3. h(f1, f1) and h(f2, f2) are light-like. In this case, since these normal

vector fields are linearly dependent, Lemma 2.1 implies 〈h(f1, f1), (f2, f2)〉 = 0.

Therefore, the Gauss equation (2.4a) implies K = 0. Because of Remark 3.2, we

can assume m(s, t) = 1, from which and (3.2) we get ∇∂s∂s = ∇∂s∂t = ∇∂t∂t = 0.

Let f3 be a normal light-like vector field given by

f3 = h(∂s, ∂s) = ∇̃∂s∂s. (3.10)

Since h(∂s, ∂s) and h(∂t, ∂t) are linearly dependent, there exists a non-vanishing

function a such that h(∂t, ∂t) = af3. This equation, h(∂s, ∂t) = 0 and (3.10)

give 〈h(X,Y ), f3〉 = 0 for all vector fields X,Y tangent to M . Thus, (2.3) implies

A3 = 0. On the other hand, from (3.5) we get D∂tf3 = 0 and D∂sf3 = −(as/a)f3.

Therefore, we have ∇̃∂tf3 = 0 and ∇̃∂sf3 = −(as/a)f3. Hence, we obtain

f3 = f3(s) = b1(s)c0

for a constant light-like normal vector c0, where b1 = 1/a. Thus, (3.10) implies

∇̃∂s∂s = b1(s)c0. (3.11)

In a similar way, we get

∇̃∂t∂t = b2(t)c0 (3.12)

for a smooth non-vanishing function b2.

By combining (3.4) with (3.11) and (3.12), we have

α′′(s) = b1(s)c0, (3.13a)

β′′(t) = b2(t)c0. (3.13b)

By integrating these equations, we see that M is congruent to the surface

given by

x(s, t) = (φ1(s) + φ2(t)) c0 + tc1 + sc2, (3.14)

for some smooth non-constant functions φ1, φ2 and some constant vectors c1, c2.

Since the induced metric of M is g = −(ds ⊗ dt + ds ⊗ dt), we have 〈xs, xs〉 =

〈xt, xt〉 = 0 and 〈xs, xt〉 = −1. Thus, we have c1, c2 are light-like vectors such

that 〈c1, c2〉 = −1 and 〈c0, c1〉 = 〈c0, c2〉 = 0. Up to the isometries of E4
2, we may

choose c0 = (1, 0, 0, 1), c1 = (0, 1/
√

2, 1/
√

2, 0) and c2 = (0, 1/
√

2,−1/
√

2, 0).

By using these equations on (3.14), we get (3.7). �
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Next, we state two direct consequences of Proposition 3.6.

Corollary 3.7. A minimal Lorentzian surface in E4
2 with proper pointwise

1-type Gauss map of the first kind lies on a hyperplane of E4
2.

Theorem 3.8. Let M be a minimal Lorentzian surface properly contained

in the semi-Euclidean space E4
2. Then, the following statements are equivalent:

(i) M has pointwise 1-type Gauss map of the first kind;

(ii) M has harmonic Gauss map;

(iii) M is congruent to either the surface given by (3.6) or the surface given

by (3.7).

3.2. Pointwise 1-type Gauss map of the second kind. In this subsection,

we obtain a family of minimal Lorentzian surfaces in E4
2 with pointwise 1-type

Gauss map of the second kind.

First, we obtain the following characterization; then, we get the following

classification theorem of minimal Lorentzian surfaces in E4
2 with pointwise 1-type

Gauss map of the second kind.

Lemma 3.9. Let M be a minimal surface in the semi-Euclidean space E4
2

with non-harmonic Gauss map, and {f1, f2} a pseudo-orthonormal base field of

the tangent bundle of M . Then, M has pointwise 1-type Gauss map of the second

kind if and only if the normal vector fields h(f1, f1) and h(f2, f2) are light-like

and linearly independent. In this case, (1.2) is satisfied for the smooth function f

and the constant vector C given by

f = 4K, (3.15)

C = −1

2
(ν + f3 ∧ f4) , (3.16)

where K is the Gaussian curvature of M .

Proof. For the proof of the necessary part of the theorem, we assume that

M has pointwise 1-type Gauss map of the second kind. Then the equation (1.2)

is satisfied for a smooth function f and a constant vector C 6= 0. From (1.2) and

(2.8), we have

C = C1f1 ∧ f2 + C2f3 ∧ f4 (3.17)

for some smooth functions C1, C2, where {f3, f4} is a pseudo-orthonormal base

field of the normal bundle of M . By applying f1 and f2 to (3.17), we obtain
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f1(C) = f1(C1)f1 ∧ f2 + C1f1(f1 ∧ f2) + f1(C2)f3 ∧ f4 + C2f1(f3 ∧ f4)

= f1(C1)f1 ∧ f2 + C1h(f1, f1) ∧ f2 + f1(C2)f3 ∧ f4
− C2A3(f1) ∧ f4 + C2A4(f1) ∧ f3,

from which we get

f1(C) = f1(C1)f1 ∧ f2 + f1(C2)f3 ∧ f4 + (h411C1 − h411C2)f2 ∧ f3
+ (h311C1 + h311C2)f2 ∧ f4, (3.18)

where haij = 〈h(fi, fj), fa〉, i, j = 1, 2, a = 3, 4. Similarly, we have

f2(C) = f2(C1)f1 ∧ f2 + f2(C2)f3 ∧ f4 + (−h422C1 − h422C2)f1 ∧ f3
+ (−h322C1 + h322C2)f1 ∧ f4. (3.19)

Since C is constant, (3.18) and (3.19) imply that there are some constants

C1, C2 satisfying

h411(C1 − C2) = h311(C1 + C2) = 0, (3.20a)

h322(−C1 + C2) = h422(−C1 − C2) = 0. (3.20b)

Note that if h(f1, f1) = 0 or h(f2, f2) = 0, then (2.8) implies ∆ν = 0, which

gives us a contradiction. Since C is non-zero, without loss of generality, we may

assume h311 = h422 = 0 and C1 = C2. Therefore, we obtain h(f1, f1) and h(f2, f2)

are proportional to f3 and f4, respectively. Hence, they are light-like and linearly

independent.

Conversely, assume that h(f1, f1) and h(f2, f2) are linearly independent.

Then, we can choose the pseudo-orthogonal base field {f3, f4} of the normal

bundle of M such that

h(f1, f1) = f3 and h(f2, f2) = −Kf4.

Then, (2.8) becomes

∆ν = 2K(ν − f3 ∧ f4). (3.21)

By a simple calculation, one can see that (1.2) is satisfied for f and C given by

(3.15) and (3.16), and C is constant. Thus, in this case M has pointwise 1-type

Gauss map of the second kind. �
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Theorem 3.10 (The Classification Theorem). Let M be a minimal Loren-

tzian surface properly contained in the semi-Euclidean space E4
2 with non-

harmonic Gauss map. Then M has pointwise 1-type Gauss map of the second

kind if and only if it is locally congruent to the surface given by

x(s, t) = (φ1(s) + φ2(t), s+ t, s+ cos c t+ sin c φ2(t),

φ1(s)− sin c t+ cos c φ2(t)) (3.22)

for some smooth non-linear functions φ1, φ2 and a constant c ∈ (0, 2π), where

ε = ±1. In this case, (1.2) is satisfied for f = 4K.

Proof. Let M be the minimal Lorentzian surface given by (3.4) for some

light-like curves α(s), β(t).

If we assume that M has pointwise 1-type Gauss map of the second kind,

then, Proposition 3.9 implies that h(f1, f1) and h(f2, f2) are light-like and linearly

independent, where f1 = 1
m∂s, f2 = 1

m∂t and m = (−〈α′(s), β′(t)〉)1/2. By

combining Gauss formula (2.1) with (3.2), we obtain

h(∂s, ∂s) = α′′ − 2ms

m
α′, (3.23a)

h(∂t, ∂t) = β′′ − 2mt

m
β′. (3.23b)

On the other hand, since 〈α′, α′〉 = 0, we may assume

α′(s) = R(s)(cos θ(s), sin θ(s), sin γ(s), cos γ(s)) (3.24)

for some smooth functions R, θ, γ. By using 〈h(∂s, ∂s), h(∂s, ∂s)〉 = 0, (3.23a) and

(3.24), we obtain γ′2 = θ′2, which implies γ(s) = ε1θ(s) + c1 for a constant c1,

where ε1 = ±1. Thus, (3.24) implies

α′(s) = (α1(s), α2(s), ε1 sin c1 α1(s) + ε1 cos c1 α2(s),

cos c1 α1(s)− sin c1 α2(s)) (3.25)

for some smooth functions α1, α2.

By integrating this equation and using the inverse function theorem, we see

that we can assume

α(s) = (φ1(s), s, ε1 sin c1 φ1(s) + ε1 cos c1 s, cos c1 φ1(s)− sin c1 s) (3.26)

for a smooth function φ1. Note that if φ1 is linear, i.e., φ′′1 ≡ 0, then α becomes

an open part of light-like line. In this case, M is congruent to the surface given



The Gauss map of minimal Lorentzian surfaces in R4
2(c) 361

by (3.6), and Theorem 3.8 implies M has harmonic Gauss map, which yields

a contradiction. Thus, φ1 must be non-linear.

In a similar way, we have

β(t) = (φ2(t), t, ε2 sin c2 φ2(t) + ε2 cos c2 t, cos c2 φ2(t)− sin c2 t) (3.27)

for another constant c2 and a smooth non-linear function φ2, where ε2 = ±1.

By combining (3.4) with (3.26) and (3.27), we get

x(s, t) = (φ1(s) + φ2(t), s+ t, ε1 sin c1 φ1(s) + ε2 sin c2 φ2(t) + ε1 cos c1 s

+ ε2 cos c2 t, cos c1 φ1(s) + cos c2 φ2(t)− sin c1 s− sin c2 t),

which is congruent to the surface given by

x(s, t) = (φ1(s) + φ2(t), s+ t, s+ ε cos c t+ ε sin c φ2(t),

φ1(s)− sin c t+ cos c φ2(t)),

for ε = ε1ε2 and c = c2 − εc1. In addition, a direct computation yields c = 0 or

c = 2π implies ∆ν = 0 . Hence, we obtain a contradiction. Therefore, we can

assume c ∈ (0, 2π).

On the other hand, if ε = −1, then we have

m2(s, t) = −〈α′(s), β′(t)〉 =

(
φ′1(s)

√
1− cos c+

| sin c|
√

1 + cos c

sin c

)
(
φ′2(t)

√
1− cos c+

| sin c|
√

1 + cos c

sin c

)
.

By combining this equation and (3.3), we obtain K = 0, which yields a contra-

diction. Hence, M is congruent to the surface given by (3.22).

The converse of the theorem follows from a direct calculation. �

In the remaining of this section, we want to obtain the complete classification

of minimal Lorentzian surfaces whose Gauss map satisfies (1.1) for a constant λ.

First, we obtain the the following lemma.

Lemma 3.11. Let M be the minimal Lorentzian surface given in Theo-

rem 3.10. If M has constant Gaussian curvature, then it must be flat.

Proof. Let M be the surface given by (3.22). Then, α and β are light-like

curves given by (3.26) and (3.27). By a direct computation, we get

m2(s, t) = −〈α′(s), β′(t)〉 = (1− cos c)(φ′1(s)φ′2(t) + 1) + sin c(φ′1(s)− φ′2(t)).
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By combining this equation with (3.3), we obtain

m6K = 2(1− cos c)φ′′1(s)φ′′2(t). (3.28)

Now, suppose that K is a non-zero constant. Then, from (3.28) we have

m(s, t) = m1(s)m2(t) for some smooth functions m1,m2. However, Remark (3.2)

implies that K = 0, which yields us a contradiction. �

By combining Theorem 3.10 and Lemma 3.11, we obtain:

Proposition 3.12. There exists no minimal Lorentzian surface in the semi-

Euclidean space E4
2 with the Gauss map satisfying (1.1) for λ 6= 0 and C 6= 0.

From the Theorem 3.8 and Proposition 3.12 we have:

Theorem 3.13. There exists no minimal Lorentzian surface properly con-

tained in the semi-Euclidean space E4
2 with non-harmonic 1-type Gauss map.

4. Minimal surfaces in S42(1) with 2-type Gauss map

In this section, we consider minimal surfaces in S42(1) with finite type Gauss

map.

Before we proceed, we would like to state the following results obtained by

the second-named author and Dursun in [20].

Theorem 4.1 ([20]). LetM be a Lorentzian surface lying fully in S42(1) ⊂ E5
2.

Then, M is minimal in S42(1) with the constant Gaussian curvature K and non-

zero constant normal curvature KD if and only if it is the surface given by

x(s, t) =

(
1

2
s2 +

27

40
〈α′′′(t), α′′′(t)〉

)
α(t) +

3

2
sα′(t) +

3

2
α′′(t), (4.1)

where α is a null curve in the light cone LC of E5
2 satisfying

〈α′′(t), α′′(t)〉 =
4

9
. (4.2)

Corollary 4.2 ([20]). Let M be an oriented minimal Lorentzian surface in

S42(1) ⊂ E5
2 with the Gaussian curvature K and normal curvature KD. If K and

KD 6= 0 are constant, then K = 1
3 and |KD| = 2

3 .
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In the following, we consider a Lorentzian surface M2
1 in the semi Riemannian

space S4
2(1) with 2-type Gauss map ν. In this case, ν satisfies (1.4) for some

constants ξ, η.

Let (s, t) be the local coordinate system on M given in Lemma 3.1, and

consider local pseudo-orthonormal frame field {f1, f2} of the tangent bundle of M

given by f1 = m−1∂s and f2 = m−1∂t. The Levi–Civita connection of M takes

the form

∇fif1 = ϕif1, ∇fif2 = −ϕif2, (4.3)

for smooth functions ϕ1 and ϕ2 given by

ϕ1 =
ms

m2
, ϕ2 = −mt

m2
. (4.4)

On the other hand, since the normal space of M in S42(1) has dimension 2

and index 1, there are two null vector fields f3, f4 tangent to S42(1) and normal

to M satisfying 〈f3, f4〉 = −1. Now, assume that M is minimal in S4
2(1). Then,

the second fundamental form h of M in E5
2 takes the form

h(f1, f1) = af3 + bf4, (4.5a)

h(f1, f2) = x, (4.5b)

h(f2, f2) = cf3 + df4 (4.5c)

for some smooth functions a, b, c, d. By considering (2.3), we also get

A3(f1) = bf2, A3(f2) = df1, (4.6a)

A4(f1) = af2, A4(f2) = cf1. (4.6b)

Thus, the Gaussian curvature K of M becomes

K = ad+ bc+ 1, (4.7)

and the normal curvature KD of M is

KD = ad− bc. (4.8)

Next, we obtain the following lemma.

Lemma 4.3. Let M be a Lorentzian minimal surface in S42(1), and f1, f2, f3,

f4 the null vectors described above. Then, the tangent Gauss map ν = f1 ∧ f2
and µ = f3 ∧ f4 satisfy

∆ν = (4− 2K)ν + 2KDµ, (4.9)

and
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∆2ν =
(
− 2∆K+ (4− 2K)2+ 4KD2

)
ν+

(
2∆KD+ 2KD(4− 2K+ 2− 2K)

)
µ

− 4cf1(K−KD)f1 ∧ f3+ 4af2(K+KD)f2 ∧ f3− 4df1(K+KD)f1 ∧ f4
+ 4bf2(K −KD)f2 ∧ f4 + 4f1(K)(f2 ∧ x)− 4f2(K)(f1 ∧ x) (4.10)

Proof. By a direct long computation using (4.3)–(4.6) and considering

(4.7), (4.8), we get (4.9) and

∆µ = (4− 2K)µ+ 2KDν. (4.11)

By using (4.9), we obtain

∆2ν = ∆(4− 2K)ν + (4− 2K)∆ν + ∆(2KD)µ+ 2KD∆µ

+ 2f1(4− 2K)f2(ν) + 2f2(4− 2K)f1(ν)

+ 2f1(2KD)f2(µ) + 2f2(2KD)f1(µ)

Next, we combine this equation with (4.9) and (4.11) to get (4.10). �

Theorem 4.4. Let M be a connected minimal Lorentzian surface in S42(1).

Then, M has a 2-type Gauss map if and only if it has constant Gaussian curvature

and non-zero constant normal curvature.

Proof. Let M be a minimal Lorentzian surface in S42(1) with 2-type Gauss

map. In order to prove the necessary part of the theorem, we, on the contrary,

assume that K and KD are not constant on M . Then its Gauss map ν satisfies

(1.4) for a constant vector C and some constants λ1, λ2.

By considering (4.9), (4.10), we obtain

〈C, f3 ∧ x〉 = 0, (4.12a)

〈C, f4 ∧ x〉 = 0, (4.12b)

〈C, f1 ∧ x〉 = −4f1(K), (4.12c)

〈C, f2 ∧ x〉 = 4f2(K), (4.12d)

〈C, f1 ∧ f3〉 = 4bf2(K −KD), (4.12e)

〈C, f2 ∧ f3〉 = −4df1(K +KD), (4.12f)

〈C, f1 ∧ f4〉 = 4af2(K +KD), (4.12g)

〈C, f2 ∧ f4〉 = −4cf1(K −KD). (4.12h)
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By considering (4.12a), (4.12b) and using (4.6), (4.6), we get

〈C, bf2 ∧ x+ f1 ∧ f3〉 = 0, (4.13a)

〈C, df1 ∧ x+ f2 ∧ f3〉 = 0, (4.13b)

〈C, af2 ∧ x+ f1 ∧ f4〉 = 0, (4.13c)

〈C, cf1 ∧ x+ f2 ∧ f4〉 = 0. (4.13d)

Finally, we combine (4.13) with (4.12) to get

b(4f2(K)) + 4bf2(K −KD) = 0, (4.14a)

d(−4f1(K))− 4df1(K +KD) = 0, (4.14b)

a(4f2(K)) + 4af2(K +KD) = 0, (4.14c)

c(−4f1(K))− 4cf1(K −KD) = 0, (4.14d)

which gives

bf2(2K −KD) = 0, (4.15a)

df1(2K +KD) = 0, (4.15b)

af2(2K +KD) = 0, (4.15c)

cf1(2K −KD) = 0. (4.15d)

Now, consider an open, connected subsetM of M on which∇K and∇KD do

not vanish. Note that if ad 6= 0 and bc 6= 0 at p ∈M, then (4.15) implies that K

and KD are constant on a neighborhood of p inM, which yields a contradiction.

Therefore, we have either ad = 0 or bc = 0 at p. Moreover, if ad = bc = 0 on an

open subset O of M, then we have KD = 0 and K = 1 on O because of (4.7)

and (4.8). Hence, we have either ad = 0, bc 6= 0 or ad 6= 0, bc = 0 on O.

We assume that ad 6= 0, bc = 0 on O. Then, we have K = ad+ 1, KD = ad

from (4.7) and (4.8). In addition, (4.15b), (4.15c) yield that 2K + 2KD = const

over O. By combining these equations, we see that K and KD are constants on

O, which yields a contradiction. Therefore, we have KD = const 6= 0. In a similar

way, we obtain the same result for the case bc 6= 0, ad = 0. Hence, we proved the

necessary part.

In order to prove the sufficiency part, we assume that M has constant Gauss-

ian curvature K and non-zero constant normal curvature KD. Then, up to re-

orientation, we may assume K = 1/3 and KD = −2/3 because of Corollary 4.2.

Thus, (4.9) and (4.11) imply

∆ν =
10

3
ν − 4

3
µ and ∆(µ) = −4

3
ν +

4

3
µ.
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By a direct computation, one can check that ν1 =
4

5
ν − 2

5
µ and ν2 =

1

5
ν +

2

5
µ

satisfy ν = ν1 + ν2, ∆ν1 = 4ν1 and ∆ν2 =
2

3
ν2. Hence, M is 2-type. �

By combining Theorems 4.1 and 4.4, we obtain the following classification

result.

Theorem 4.5. Let M be a connected minimal Lorentzian surface in S42(1).

Then, M has a 2-type Gauss map if and only if it is congruent to the surface given

by (4.1) for a null curve α in the light cone LC of E5
2 satisfying (4.2). In this case,

(1.3) is satisfied for ν1 =
4

5
ν − 2

5
µ, ν2 =

1

5
ν +

2

5
µ, λ1 = 4 and λ2 = 2

3 .

Corollary 4.6. There are no minimal Lorentzian surface in S42(1) with null

2-type Gauss map.
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