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On the Diophantine equations (z — 1)3 + 2% + (z + 1) = y"
and (z — 1)% + 23 + (z + 1)% = y"

By ZHONGFENG ZHANG (Zhaoqing)

Abstract. In this paper, we prove that the Diophantine equations (z — 1)3 +a®+
(x4 1)% = y™ and (x — 1)® + 2® + (2 4+ 1)° = y™ have no integer solutions with x # 0
and n > 1, unless (z,y,n) = (1, £ 3,2) for the first equation.

1. Introduction
The Diophantine equation
P42k ab =y kn>2

was considered by a number of authors (see, e.g., [2], [7], [13], [14], [15], [16], [17],
[18], [23], [24]). A generalization is to consider the equation

(z+ D)+ @+ 4+ (@+m) =y k,n>2

MENG BAI and the author [25] solved this equation for k = 2, m = z, and
BENNETT, PATEL and SIKSEK [4] for £ = 3 and 2 < m < 50. When m = 3, we
usually redefine variables and consider the equation

(z—DF+2" + @+ DF =y (1)
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CAsSELS [10] proved that = 0,1, 2,24 are the only integer solutions to this
equation for k = 3, n = 2. For general n > 1, the author [26] provides all the
integer solutions for k = 2, 3,4, and BENNETT, PATEL and SIKSEK [3] for k = 5, 6.

In this paper, we consider a variation of equation (1), that is,

(x—DF+a™+ (x+ 1) =y",
and obtain the following results.
Theorem 1.1. The equation
(=17 +2° + (2 +1)° =y" (2)
has only the integer solutions (x,y,n) = (1,4 3,2) with x # 0 and n > 1.
Theorem 1.2. The equation
(z-1° 423+ (z+1)° =y" (3)

has no integer solutions (x,y,n) with x # 0 and n > 1.

2. Some preliminary results

In this section, we present some lemmas which will help us to prove Theo-
rem 1.1 and Theorem 1.2. The first lemma is due to NAGELL [8].

Lemma 2.1. Ifn > 1, then the equation
2245 =y"
has only the integer solutions (x,y,n) = (£ 2,+£ 3,2).
Lemma 2.2. Ifn > 1, then the equation
245 =2y"
has no integer solutions.

PROOF. Obviously, ged(z,y) = 1. Then, by [1, Theorem 2], it has no integer
solutions for n > 3. If n = 2, one has 22 + 5 = 2y2, modulo 8 yields no integer
solutions. 0

A special case of Theorem 1 in [9], which we need in this paper, is the
following result.
Lemma 2.3. Let u, r > 0, n > 3 be integers, then the equation
19%z™ —2"y" =+ 1
has no integer solutions with x,y > 0, unlessu = 1, r = 0, n = 3 and (z,y) =
(3,8).



On the Diophantine equations. .. 385
3. The modular approach

We introduce some basic concepts and notation for the modular approach
we used in this paper.

Let E be an elliptic curve over Q of conductor N. For a prime of good
reduction I, we write # E(F,;) for the number of points on E over the finite field [y,
and let a;(E) =1+ 1—#E(IF;). By a newform f, we will always mean a cuspidal
newform of weight 2 with respect to I'g(Ng) for some positive integer Ny, and Ny
will be called the level of f. Write f = g+ Y ,5, ciq" the g-expansion of f, then
cn will be called the Fourier coefficients of f. Let K = Q(cg, cs,...) be the field
obtained by adjoining to Q the Fourier coefficients of f, then K is a finite and
totally real extension of Q (see, e.g., [12, Chapter 15]).

We shall say that the curve E arises modulo p from the newform f (and
write E ~,, f) if there is a prime ideal p of K above p such that for all but finitely
many primes ! we have q;(E) = ¢; (mod p)(see [12, Definition 15.2.1]).

We have the following result, which is just [9, Lemma 2.1].

Proposition 3.1. Assume that E ~, f. There exists a prime ideal p of K
above p such that, for all primes [,
(i) if 1t pN Ny, then a;(E) = ¢; (mod p),
(i) ifI||N but l1pNy, then £(I+ 1) = ¢; (mod p).

Moreover, if f is rational, then the above can be relaxed slightly as follows,
for all primes [,

(i) if 1t NNy, then a;(E) = ¢; (mod p),
(i) if I||N but l{ Ny, then £(1 4+ 1) = ¢; (mod p).

4. Proofs of Theorem 1.1 and Theorem 1.2

PROOF OF THEOREM 1.1. Expanding the left hand side of equation (2), one
has

z(xt + 222 + 6) =y (4)
Since ged(z, 2t + 222 + 6) = ged(x,6) € {1,2,3,6}, equation (4) implies one of
the following cases:
(i) x=2", 4202+ 6 =w", y=zuw;

(i) xz=2""12", 2'+22%24+6=2w", y=2zw;
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(i) = =3""12", 2*+22%+6=3uw", y=3zw;

(iv) z=6""12" 2?4222 +6=6uw", y=6zw.

In case (i), we obtain (2% + 1)2 +5 = w", and by Lemma 2.1, one has
(,y,n) = (1,+£ 3,2). In case (ii), we get (2 + 1)? + 5 = 2w", and this equation
has no integer solutions by Lemma 2.2.

In cases (iii) and (iv), without loss of generality, we assume n = p and p is
a prime. We proceed to prove that equation (2) has no integer solutions for p > 11
in case (iii), and for p > 7 in case (iv). The remaining cases will be treated at the
end of the proof. Assume z # 0 in the following discussion.

In case (iii), we apply Proposition 3.1 and the multi-Frey approach [9] to
bound p. Let z = 3u, one has

(9u? +1)% 4+ 5 = 3w?

and
2uP = (2 4 3u?)? 4 45ut = (2 + 3u?)? + 5 x 3P76(3324)P.

It is obvious that ged(9u? + 1,5) = 1 in the first equation. If 52 + 3u?
in the second equation, then ords (45u*)=1, a contradiction. Therefore, one has
ged(2wP, 45u*) = 1. To a possible solution (u,w) with u # 0, we associate the
Frey curves [5]

By :Y?=X3429u? +1)X? - 5X

for the first equation, and
Foy:Y?=X342(3u? +2)X? +2(27u* + 6u? +2)X

for the second equation, with conductors N' = 2° rad(15w) = 2° x 3x 5radys 5 (w)
and N = 2% rad(30uw) = 27 x 3 x 5rad(y 3,53 (w), respectively, where for a finite
set S of primes, we denote

radg(a) = H .

pla,p#q,q€S

Then, by [5, Lemma 3.3], there are newforms f, g of levels N(E ), = 25 x3x5 =
480 and N(FEa,,), = 27 x 3 x 5 = 1920 such that E; , ~, f and Ez, ~p g.
There are 8 rational newforms at level 480, and 28 newforms at level 1920,
with 4 non-rational, numbered in STEIN’s Table [19] by fi, fo,..., fs and g1,
9o, - - -, gog, respectively. We choose | = 7,11,13 to get the bound p < 7 for the
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newforms at level 1920 by Proposition 3.1, except g1, g4. Then, we use the multi-
Frey approach to consider the pair (f;,g1) and (f;,g4) with 1 < i < 8. We get
p < 7 while choosing the primes 7 < [ < 19 for the 15 pairs, and [ = 31 for the
left pair (f7,g4). In fact, for the pair (f7,g4), one has ¢31(f7) = as1(E1,10) = —4,
but 631(94) =10 7& —-10= agl(Egvlo).

For the case (iv), let = 6v, then we have

wP =1+ 1207 + 216v* = (1 + 6v?)% + 180v* = (1 + 6v%)? + 5 x 67 0(632*)P.

If 5|1 + 6v2, then ords (180v*)=1 is a contradiction. Therefore, we have ged(w?,
180v?) = 1. To a possible solution (v,w) with v # 0, we associate the Frey
curve [5]

EU:Y2+XY:X3+6<§)2X2—45 (%)4)(,

with conductor N = rad(30vw) = 30radys 353 (vw). Then, by [5, Lemma 3.3],
there is a newform of level N(E,), = 30 such that E, ~, f. There is only one
rational newform, and choosing [ = 7 leads to p < 5.
We proceed to treat the small primes p for the cases (iii) and (iv). Write
d = 3,6, then we have
xt 4227 + 6 = dw?”. (5)

If p = 2, we write X = d2?, Y = d?zw. From (5), it follows that (X,Y) is an
integral point on the elliptic curve

Eq:Y?=X°%+2dX? + 6d°X.

Appealing to Magma [6], we get that the integral points on these curves are (0, 0)
for d = 3 and (0,0), (96,1008) for d = 6, which yields no integer solutions with
x # 0 for the equation (2). If p = 3, write X = dw, Y = d(2? +1). From (5), one
has the elliptic curve
B, :Y?= X3 5d%

According to Magma, we get the integral points (21, + 96) for d = 3 and (6, + 6),
(69, £ 573) for d = 6, and we also obtain no integer solutions with = # 0 for the
equation (2).

It remains to deal with the prime p = 5,7 for the case (iii), and only p = 5 for
the case (iv), since we have p < 5 for this case. Let t = 2% + 1, and rewrite (5) as

t? +5 = duP. (6)

For p = 5, we have two genus 2 hyperelliptic curves > = 3w® — 5 and
t? = 6w® — 5 from (6). The rank of the Jacobians of these curves is 1, so classical
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CHABAUTY [11] applies, which is also implemented in Magma (see, e.g., [20],
[21], [22]). Tt is not difficult to determine a point having infinite order on these
Jacobians, and after that Chabauty’s method combined with the Mordell-Weil
sieve provides the points. In the first case, only the point at infinity is a solution,
while in the second case the point at infinity and the points (1,+ 1) are, which
corresponds to z = 0.

For p = 7, we need to treat the equation

t2 +5=3uw". (7)

Let K = Q(+/—5). This field has class number 2 and ring of integers O =
Z[v/—5]. Since 3|z, we obtain

(t+vV-5)0k = (3,1 +V=5)a"
from t =22 +1=1 (mod 3). Observe that
14+vV-=5)0k =(3,1+vV-5)(2,1+vV-5)

and
(2,1 ++v=5)? = 20k.

Then we write
(t+vV=5)0k = (3,14+vV=5)(2,1 + V=5)"((2,1 + vV=5)"a)",
that is,
(t+vV=5)0x = (1+vV=5)(8)(271(2,1 + V=5)a)".

Therefore, (2,1 + +/—5)a must be principle, and since it is an integral ideal, we
obtain

t+v=5=8(1+vV=5)(27 (a+bv/=5))",

with a, b being some integers. Expanding the right hand side corresponds to the
Thue equation

a” + 7a®h — 105a°b% — 175a*b> + 875a3b* + 525a%b° — 875ab® — 12567 = 16.

It has no integer solutions modulo 29. From the discussion above, this completes
the proof of Theorem 1.1. O
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PROOF OF THEOREM 1.2. Expanding the left hand side of equation (3), one
has
x(2? +10)(22% + 1) = y™. (8)

Since ged(22? + 1,2) = 1, ged(22? + 1,22 + 10) = ged (222 + 1,222 + 20) =
ged (222 +1,19) = 1 or 19, equation (8) implies

222 + 1 =19%2",

with a =0, 1 or n — 1. By Lemma 2.3, it has no integer solutions with n > 3 and
x # 0.

We are left to treat n = 2. By the discussion above, we only need to solve
the equations 22 = x(2? +10) and 22 = 19z(22 +10). Let v = 19z, u = 19z, then
the last equation can be written as v? = u® 4 3610u. Appealing to Magma, the
only integral points on these two curves are (0,0), and hence x = 0. (]
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