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On the Diophantine equations (x − 1)3 + x5 + (x + 1)3 = yn

and (x − 1)5 + x3 + (x + 1)5 = yn

By ZHONGFENG ZHANG (Zhaoqing)

Abstract. In this paper, we prove that the Diophantine equations (x− 1)3 +x5 +

(x + 1)3 = yn and (x − 1)5 + x3 + (x + 1)5 = yn have no integer solutions with x 6= 0

and n > 1, unless (x, y, n) = (1,± 3, 2) for the first equation.

1. Introduction

The Diophantine equation

1k + 2k + · · ·+ xk = yn, k, n ≥ 2

was considered by a number of authors (see, e.g., [2], [7], [13], [14], [15], [16], [17],

[18], [23], [24]). A generalization is to consider the equation

(x+ 1)k + (x+ 2)k + · · ·+ (x+m)k = yn, k, n ≥ 2.

Meng Bai and the author [25] solved this equation for k = 2, m = x, and

Bennett, Patel and Siksek [4] for k = 3 and 2 ≤ m ≤ 50. When m = 3, we

usually redefine variables and consider the equation

(x− 1)k + xk + (x+ 1)k = yn. (1)
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Cassels [10] proved that x = 0, 1, 2, 24 are the only integer solutions to this

equation for k = 3, n = 2. For general n > 1, the author [26] provides all the

integer solutions for k = 2, 3, 4, and Bennett, Patel and Siksek [3] for k = 5, 6.

In this paper, we consider a variation of equation (1), that is,

(x− 1)k + xm + (x+ 1)k = yn,

and obtain the following results.

Theorem 1.1. The equation

(x− 1)3 + x5 + (x+ 1)3 = yn (2)

has only the integer solutions (x, y, n) = (1,± 3, 2) with x 6= 0 and n > 1.

Theorem 1.2. The equation

(x− 1)5 + x3 + (x+ 1)5 = yn (3)

has no integer solutions (x, y, n) with x 6= 0 and n > 1.

2. Some preliminary results

In this section, we present some lemmas which will help us to prove Theo-

rem 1.1 and Theorem 1.2. The first lemma is due to Nagell [8].

Lemma 2.1. If n > 1, then the equation

x2 + 5 = yn

has only the integer solutions (x, y, n) = (± 2,± 3, 2).

Lemma 2.2. If n > 1, then the equation

x2 + 5 = 2yn

has no integer solutions.

Proof. Obviously, gcd(x, y) = 1. Then, by [1, Theorem 2], it has no integer

solutions for n ≥ 3. If n = 2, one has x2 + 5 = 2y2, modulo 8 yields no integer

solutions. �

A special case of Theorem 1 in [9], which we need in this paper, is the

following result.

Lemma 2.3. Let u, r ≥ 0, n ≥ 3 be integers, then the equation

19uxn − 2ryn = ± 1

has no integer solutions with x, y > 0, unless u = 1, r = 0, n = 3 and (x, y) =

(3, 8).
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3. The modular approach

We introduce some basic concepts and notation for the modular approach

we used in this paper.

Let E be an elliptic curve over Q of conductor N . For a prime of good

reduction l, we write #E(Fl) for the number of points on E over the finite field Fl,
and let al(E) = l+ 1−#E(Fl). By a newform f , we will always mean a cuspidal

newform of weight 2 with respect to Γ0(N0) for some positive integer N0, and N0

will be called the level of f . Write f = q +
∑
i≥2 ciq

i the q-expansion of f , then

cn will be called the Fourier coefficients of f . Let K = Q(c2, c3, . . . ) be the field

obtained by adjoining to Q the Fourier coefficients of f , then K is a finite and

totally real extension of Q (see, e.g., [12, Chapter 15]).

We shall say that the curve E arises modulo p from the newform f (and

write E ∼p f) if there is a prime ideal p of K above p such that for all but finitely

many primes l we have al(E) ≡ cl (mod p)(see [12, Definition 15.2.1]).

We have the following result, which is just [9, Lemma 2.1].

Proposition 3.1. Assume that E ∼p f . There exists a prime ideal p of K
above p such that, for all primes l,

(i) if l - pNN0, then al(E) ≡ cl (mod p),

(ii) if l||N but l - pN0, then ±(l + 1) ≡ cl (mod p).

Moreover, if f is rational, then the above can be relaxed slightly as follows,

for all primes l,

(i) if l - NN0, then al(E) ≡ cl (mod p),

(ii) if l||N but l - N0, then ±(l + 1) ≡ cl (mod p).

4. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. Expanding the left hand side of equation (2), one

has

x(x4 + 2x2 + 6) = yn. (4)

Since gcd(x, x4 + 2x2 + 6) = gcd(x, 6) ∈ {1, 2, 3, 6}, equation (4) implies one of

the following cases:

(i) x = zn, x4 + 2x2 + 6 = wn, y = zw;

(ii) x = 2n−1zn, x4 + 2x2 + 6 = 2wn, y = 2zw;
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(iii) x = 3n−1zn, x4 + 2x2 + 6 = 3wn, y = 3zw;

(iv) x = 6n−1zn, x4 + 2x2 + 6 = 6wn, y = 6zw.

In case (i), we obtain (x2 + 1)2 + 5 = wn, and by Lemma 2.1, one has

(x, y, n) = (1,± 3, 2). In case (ii), we get (x2 + 1)2 + 5 = 2wn, and this equation

has no integer solutions by Lemma 2.2.

In cases (iii) and (iv), without loss of generality, we assume n = p and p is

a prime. We proceed to prove that equation (2) has no integer solutions for p ≥ 11

in case (iii), and for p ≥ 7 in case (iv). The remaining cases will be treated at the

end of the proof. Assume x 6= 0 in the following discussion.

In case (iii), we apply Proposition 3.1 and the multi-Frey approach [9] to

bound p. Let x = 3u, one has

(9u2 + 1)2 + 5 = 3wp

and

2wp = (2 + 3u2)2 + 45u4 = (2 + 3u2)2 + 5× 3p−6(33z4)p.

It is obvious that gcd(9u2 + 1, 5) = 1 in the first equation. If 5|2 + 3u2

in the second equation, then ord5 (45u4)=1, a contradiction. Therefore, one has

gcd(2wp, 45u4) = 1. To a possible solution (u,w) with u 6= 0, we associate the

Frey curves [5]

E1,u : Y 2 = X3 + 2(9u2 + 1)X2 − 5X

for the first equation, and

E2,u : Y 2 = X3 + 2(3u2 + 2)X2 + 2(27u4 + 6u2 + 2)X

for the second equation, with conductors N = 25 rad(15w) = 25×3×5 rad{3,5}(w)

and N = 26 rad(30uw) = 27 × 3× 5 rad{2,3,5}(w), respectively, where for a finite

set S of primes, we denote

radS(a) =
∏

p|a,p 6=q,q∈S

p.

Then, by [5, Lemma 3.3], there are newforms f, g of levels N(E1,u)p = 25×3×5 =

480 and N(E2,u)p = 27 × 3× 5 = 1920 such that E1,u ∼p f and E2,u ∼p g.

There are 8 rational newforms at level 480, and 28 newforms at level 1920,

with 4 non-rational, numbered in Stein’s Table [19] by f1, f2, . . . , f8 and g1,

g2, . . . , g28, respectively. We choose l = 7, 11, 13 to get the bound p ≤ 7 for the
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newforms at level 1920 by Proposition 3.1, except g1, g4. Then, we use the multi-

Frey approach to consider the pair (fi, g1) and (fi, g4) with 1 ≤ i ≤ 8. We get

p ≤ 7 while choosing the primes 7 ≤ l ≤ 19 for the 15 pairs, and l = 31 for the

left pair (f7, g4). In fact, for the pair (f7, g4), one has c31(f7) = a31(E1,10) = −4,

but c31(g4) = 10 6= −10 = a31(E2,10).

For the case (iv), let x = 6v, then we have

wp = 1 + 12v2 + 216v4 = (1 + 6v2)2 + 180v4 = (1 + 6v2)2 + 5× 6p−6(63z4)p.

If 5|1 + 6v2, then ord5 (180v4)=1 is a contradiction. Therefore, we have gcd(wp,

180v4) = 1. To a possible solution (v, w) with v 6= 0, we associate the Frey

curve [5]

Ev : Y 2 +XY = X3 + 6
(v

2

)2
X2 − 45

(v
2

)4
X,

with conductor N = rad(30vw) = 30 rad{2,3,5}(vw). Then, by [5, Lemma 3.3],

there is a newform of level N(Ev)p = 30 such that Ev ∼p f . There is only one

rational newform, and choosing l = 7 leads to p ≤ 5.

We proceed to treat the small primes p for the cases (iii) and (iv). Write

d = 3, 6, then we have

x4 + 2x2 + 6 = dwp. (5)

If p = 2, we write X = dx2, Y = d2xw. From (5), it follows that (X,Y ) is an

integral point on the elliptic curve

Ed : Y 2 = X3 + 2dX2 + 6d2X.

Appealing to Magma [6], we get that the integral points on these curves are (0, 0)

for d = 3 and (0, 0), (96, 1008) for d = 6, which yields no integer solutions with

x 6= 0 for the equation (2). If p = 3, write X = dw, Y = d(x2 + 1). From (5), one

has the elliptic curve

E′d : Y 2 = X3 − 5d2.

According to Magma, we get the integral points (21,± 96) for d = 3 and (6,± 6),

(69,± 573) for d = 6, and we also obtain no integer solutions with x 6= 0 for the

equation (2).

It remains to deal with the prime p = 5, 7 for the case (iii), and only p = 5 for

the case (iv), since we have p ≤ 5 for this case. Let t = x2 + 1, and rewrite (5) as

t2 + 5 = dwp. (6)

For p = 5, we have two genus 2 hyperelliptic curves t2 = 3w5 − 5 and

t2 = 6w5− 5 from (6). The rank of the Jacobians of these curves is 1, so classical
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Chabauty [11] applies, which is also implemented in Magma (see, e.g., [20],

[21], [22]). It is not difficult to determine a point having infinite order on these

Jacobians, and after that Chabauty’s method combined with the Mordell–Weil

sieve provides the points. In the first case, only the point at infinity is a solution,

while in the second case the point at infinity and the points (1,± 1) are, which

corresponds to x = 0.

For p = 7, we need to treat the equation

t2 + 5 = 3w7. (7)

Let K = Q(
√
−5). This field has class number 2 and ring of integers OK =

Z[
√
−5]. Since 3|x, we obtain

(t+
√
−5)OK = (3, 1 +

√
−5)a7

from t = x2 + 1 ≡ 1 (mod 3). Observe that

(1 +
√
−5)OK = (3, 1 +

√
−5)(2, 1 +

√
−5)

and

(2, 1 +
√
−5)2 = 2OK .

Then we write

(t+
√
−5)OK = (3, 1 +

√
−5)(2, 1 +

√
−5)7((2, 1 +

√
−5)−1a)7,

that is,

(t+
√
−5)OK = (1 +

√
−5)(8)(2−1(2, 1 +

√
−5)a)7.

Therefore, (2, 1 +
√
−5)a must be principle, and since it is an integral ideal, we

obtain

t+
√
−5 = 8(1 +

√
−5)(2−1(a+ b

√
−5))7,

with a, b being some integers. Expanding the right hand side corresponds to the

Thue equation

a7 + 7a6b− 105a5b2 − 175a4b3 + 875a3b4 + 525a2b5 − 875ab6 − 125b7 = 16.

It has no integer solutions modulo 29. From the discussion above, this completes

the proof of Theorem 1.1. �
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Proof of Theorem 1.2. Expanding the left hand side of equation (3), one

has

x(x2 + 10)(2x2 + 1) = yn. (8)

Since gcd(2x2 + 1, x) = 1, gcd(2x2 + 1, x2 + 10) = gcd(2x2 + 1, 2x2 + 20) =

gcd(2x2 + 1, 19) = 1 or 19, equation (8) implies

2x2 + 1 = 19αzn,

with α = 0, 1 or n− 1. By Lemma 2.3, it has no integer solutions with n ≥ 3 and

x 6= 0.

We are left to treat n = 2. By the discussion above, we only need to solve

the equations z2 = x(x2 + 10) and z2 = 19x(x2 + 10). Let v = 19z, u = 19x, then

the last equation can be written as v2 = u3 + 3610u. Appealing to Magma, the

only integral points on these two curves are (0, 0), and hence x = 0. �
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[14] L. Hajdu, On a conjecture of Schäffer concerning the equation 1k + 2k + · · · + xk = yn, J.

Number Theory 155 (2015), 129–138.
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[16] Á. Pintér, A note on the equation 1k + 2k + · · · + (x− 1)k = ym, Indag. Math. (N.S.) 8
(1997), 119–123.
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