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Summability of general Fourier series

By LARRY GOGOLADZE (Tbilisi) and VAKHTANG TSAGAREISHVILI (Tbilisi)

Abstract. In the paper, the sufficient conditions are stated which should be sat-

isfied by functions of orthonormal systems (ONS) {ϕn(x)} such that the Fourier series

of every function with bounded variation is summable by the method (C,α), α > 0, a.e.

on [0, 1]. It is also shown that the obtained results are best possible in a certain sense.

1. Definitions and auxiliary theorems

By V (0, 1) we denote a class of all functions with bounded variation on [0, 1].
1
∨
0
(f) denotes the variation of function f(x) on [0, 1].

Let {ϕn(x)} be a real valued orthonormal system on [0, 1], and

ϕ̂n(f) =

∫ 1

0

f(x)ϕn(x) dx, n = 1, 2, . . . ,

are the Fourier coefficients of function f(x) ∈ L(0, 1).

Introduce the notation

Bn(a) = max
1≤i≤n

∣∣∣∣ ∫ i
n

0

Φn(a, x) dx

∣∣∣∣, (1.1)

where

Φn(a, x) =

n∑
k=1

akλkϕk(x),

(ak) and (λk) are some sequences of numbers.

Mathematics Subject Classification: 42C10.
Key words and phrases: Fourier coefficients, summability, trigonometric system, Walsh system,

Haar system, finite variation, Lebesgue function.
The work was supported by the Shota Rustaveli National Science Foundation.

Grant No. FR/102/5-100/14.



392 Larry Gogoladze and Vakhtang Tsagareishvili

Besides, let

L(1)
n (x) =

∫ 1

0

∣∣∣∣ 1n
n∑

k=1

k∑
m=1

ϕm(x)ϕm(t)

∣∣∣∣ dt (1.2)

be a Lebesgue function.

We have the following:

Theorem 1.1 (Menshov–Rademacher, see [1, p. 87]). If for some sequence

(cn) the condition
∞∑

n=1

c2n log2 n < +∞ (1.3)

holds, then a.e. on [0, 1] the series
∞∑

n=1

cnϕn(x) (1.4)

converges, where {ϕn(x)} is an arbitrary ONS.

Theorem 1.2 (Kachmarz, see [1, pp. 207–209]). If (λn) is a non-decreasing

convex sequence of positive numbers which should satisfy the conditions

(a) lim
n→∞

λn = +∞,

(b) L
(1)
n (x) = O(λn) a.e. on [0, 1],

then if ∞∑
n=1

c2nλn < +∞, (1.5)

then series (1.4) is (C,α) (α > 0) summable a.e. on [0, 1].

Remark. Without loss of generality, it may be supposed that λn ≤ log2 n.

From the convexity of the sequence (λn), we easily get the following: there exists

the natural N such that λn ≥ log2 n or λn < log2 n, when n > N (n = 1, 2, . . . ).

In the first case, from (1.5) it follows that (1.3) is true, and hence, according to

Theorem 1.1 the series (1.4) will converge and indeed (C,α), α > 0, is summable

a.e. on [0, 1]. There remains the second case. Therefore, without loss of generality,

in Theorem 1.2 we will suppose that λn < log2 n.

In [4], it is proved. Let f(x), Φ(x) ∈ L2(0, 1), and let f(x) be a function

everywhere finite on [0, 1]. Then∫ 1

0

f(x)Φ(x) dx =

n−1∑
i=1

(
f

(
i

n

)
− f

(
i+ 1

n

))∫ i
n

0

Φ(x) dx

+

n∑
i=1

∫ i
n

i−1
n

(
f(x)−f

(
i

n

))
Φ(x)dx+f(1)

∫ 1

0

Φ(x)dx. (1.6)
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2. Main problem

From S. Banach’s theorem [2], it follows that if f(x) ∈ L2(0, 1) (f 6∼ 0),

then there exists ONS {ϕn(x)} such that the Fourier series of this function is not

summable by the Cesaro method (C,α), α > 0, a.e. on [0, 1] with respect to this

system.

A. M. Olevskii [3] has proved that if f(x) ∈ L2(0, 1) (f 6∼ 0) is an arbitrary

function and (an) ∈ `2 is any sequence of numbers, then there exists ONS such

that

ϕ̂n(f) = c · an, n = 1, 2, . . . ,

and c is some number.

Thus it is clear that the Fourier coefficients with bounded variation in the

general case do not satisfy condition (1.5).

On the bases of the above reasoning, if it is necessary that ONS {ϕn(x)}
guaranteed the summability of the Fourier series by the method (C,α), α > 0,

a.e. on [0, 1] of every function from V (0, 1), the functions of the system {ϕn(x)}
should satisfy some conditions.

In the present paper, the above conditions are studied so that the Fourier

coefficients of every function from V (0, 1) satisfied condition (1.5).

3. Main results

Theorem 3.1. Let {ϕn(x)} be ONS on [0, 1], and let (λn) be a convex

sequence of numbers, lim
n→∞

λn = +∞, and

L(1)
n (x) = O(λn) (λn = O(log2 n)).

Then, if for any sequence (an) ∈ `2

Bn(a) = O(1)

(
n∑

k=1

a2kλk

) 1
2

, (3.1)

then the Fourier series of every function from V (0, 1) is summable by the method

(C,α > 0) a.e. on [0, 1].

Proof. Assume in equality (1.6) that f(x) ∈ V (0, 1) and Φ(x) = Φn(ϕ̂, x),

where Φn(ϕ̂, x) = Φn(a, x) if (a) = (ϕ̂).
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We get

∫ 1

0

f(x)Φn(ϕ̂, x) dx =

n−1∑
i=1

(
f

(
i

n

)
− f

(
i+ 1

n

))∫ i
n

0

Φn(ϕ̂, x) dx

+

n∑
i=1

∫ i
n

i−1
n

(
f(x)− f

(
i

n

))
Φn(ϕ̂, x) dx

+ f(1)

∫ 1

0

Φn(ϕ̂, x) dx = M1 +M2 +M3. (3.2)

Putting f(x) ∈ V (0, 1), according to Theorem 3.1, we obtain (see (1.1))

|M1| ≤ sup
1≤i<n

∣∣∣∣ ∫ i
n

0

Φn(ϕ̂, x) dx

∣∣∣∣ n−1∑
i=1

∣∣∣∣f ( in
)
− f

(
i+ 1

n

)∣∣∣∣
≤

1
∨
0
(f) ·Bn(ϕ̂) = O(1)

(
n∑

k=1

a2kλk

) 1
2

, (3.3)

|M2| ≤
n∑

i=1

∫ i
n

i−1
n

∣∣∣∣f(x)− f
(
i

n

)∣∣∣∣ |Φn(ϕ̂, x)| dx

≤
n∑

i=1

sup
x∈[ i−1

n , i
n ]

∣∣∣∣f(x)− f
(
i

n

)∣∣∣∣ ∫ i
n

i−1
n

Φn(ϕ̂, x)| dx

≤
1
∨
0
(f) sup

1≤i≤n

∫ i
n

i−1
n

|Φn(ϕ̂, x)| dx

= O(1)
1√
n

(∫ 1

0

Φ2
n(ϕ̂, x) dx

) 1
2

= O(1)
1√
n

(
n∑

k=1

ϕ̂2
k(f)λ2k

) 1
2

= O(1)

√
λn√
n

( n∑
k=1

ϕ̂2
k(x)λk

) 1
2

= O(1)

(
n∑

k=1

ϕ̂2
k(f)λk

) 1
2

. (3.4)

Besides,

|M3| = |f(1)|
∣∣∣∣ ∫ 1

0

Φn(ϕ̂, x) dx

∣∣∣∣ = O(1) max
1≤i≤n

∣∣∣∣ ∫ i
n

0

Φn(ϕ̂, x) dx

∣∣∣∣ (3.5)

= O(1)Bn(ϕ̂) = O(1)

(
n∑

k=1

ϕ̂2
k(f)λk

) 1
2

.
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Taking in account (3.3), (3.4) and (3.5), from (3.2) we get

∫ 1

0

f(x)Φn(ϕ̂, x) dx = O(1)

(
n∑

k=1

ϕ̂2
k(f)λk

) 1
2

. (3.6)

On the other hand,

n∑
k=1

ϕ̂2
k(f)λk =

∫ 1

0

f(x)

n∑
k=1

ϕ̂k(f)λkϕk(x) dx =

∫ 1

0

f(x)Φn(ϕ̂, x) dx.

From here and (3.6) we get

n∑
k=1

ϕ̂2
k(f)λk = O(1), i.e.

∞∑
k=1

ϕ̂2
k(f)λk < +∞,

for any function from V (0, 1).

Finally, from Theorem 1.2 there follows the summability of the Fourier series

of any function from V (0, 1). �

Consider now the case when condition (3.1) is not satisfied.

Theorem 3.2. Let {ϕn(x)} be ONS on [0, 1], and (λn) a convex sequence

of numbers, lim
n→∞

λn = +∞ (λn = O(log2 n)), and for some sequence of numbers

(bn) ∈ `2,

lim
n→∞

Bn(b)(∑n
k=1 b

2
kλk
)1/2 = +∞.

Then there exists a function f0(x) ∈ A (class of absolute continuous functions)

such that
∞∑

n=1

ϕ̂2
n(f0)λn = +∞.

Proof. Consider the sequence of functions

fn(x) =


0 for x ∈

[
0, inn

]
,

1 for x ∈
[ in+1

n , 1
]
,

is continuous and linear on
[
in
n ,

in+1

n

]
,

(3.7)

where

max
1≤i≤n

∣∣∣∣ ∫ i
n

0

Φn(b, x) dx

∣∣∣∣ =

∣∣∣∣ ∫ in
n

0

Φn(b, x) dx

∣∣∣∣.
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Assume in equality (3.2) that f(x) = fn(x) and Φn(ϕ̂, x) = Φn(b, x). Then we

have ∫ 1

0

fn(x)Φn(b, x)dx =

n−1∑
i=1

(
fn

(
i

n

)
− fn

(
i+ 1

n

))∫ i
n

0

Φn(b, x) dx

+

n∑
i=1

∫ i
n

i−1
n

(
fn(x)− fn

(
i

n

))
Φn(b, x)dx

+ fn(1)

∫ 1

0

Φn(b, x) dx = I1 + I2 + I3. (3.8)

Taking into account (3.7), we will have

|I1| =
∣∣∣∣ ∫ in

n

0

Φn(b, x) dx

∣∣∣∣ = Bn(b). (3.9)

Then, since (see (3.7)) |fn(x)− fn( i
n )| = 1 when x ∈

[
in
n ,

in+1

n

]
, we have

|I2| =
∣∣∣∣ n∑
i=1

∫ i
n

i−1
n

(
fn(x)− fn

(
i+ 1

n

))
Φn(b, x) dx

∣∣∣∣ ≤ ∫ in
n

in−1
n

|Φn(b, x)| dx

≤ 1√
n

(
n∑

k=1

b2kλ
2
k

) 1
2

≤
√
λn√
n

(
n∑

k=1

b2kλk

) 1
2

= O(1)

(
n∑

k=1

b2kλk

) 1
2

. (3.10)

Finally,

|I3| =
∣∣∣∣ ∫ 1

0

Φn(b, x) dx

∣∣∣∣ =

∣∣∣∣ n∑
k=1

bkλk

∫ 1

0

ϕk(x) dx

∣∣∣∣
=

(
n∑

k=1

b2kλk

) 1
2
(

n∑
k=1

(∫ 1

0

ϕk(x) dx

)2

λk

) 1
2

. (3.11)

We can assume without loss of generality that

∞∑
k=1

(∫ 1

0

ϕk(x) dx

)2

λk < +∞.

Otherwise, if
∞∑
k=1

(∫ 1

0

ϕk(x) dx

)2

λk = +∞,

we get that the Fourier coefficients of the function f0(x) = 1 satisfy the statement

of Theorem 3.2.
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Therefore, from (3.11) we get

|I3| = O(1)

(
n∑

k=1

b2kλk

) 1
2

. (3.12)

From (3.9), (3.10) and (3.8), according to (3.8), we have

∣∣∣∣ ∫ 1

0

fn(x)Φn(b, x) dx

∣∣∣∣ ≥ Bn(b)−O(1)

(
n∑

k=1

b2kλk

) 1
2

.

Hence ∣∣ ∫ 1

0
fn(x)Φn(b, x) dx

∣∣(∑n
k=1 b

2
kλk
) 1

2

≥ Bn(b)(∑n
k=1 b

2
kλk
) 1

2

−O(1).

Due to the condition of Theorem 3.2, we have

lim
n→∞

∣∣ ∫ 1

0
fn(x)Φn(b, x) dx

∣∣(∑n
k=1 b

2
kλk
) 1

2

= lim
n→∞

Bn(b)(∑n
k=1 b

2
kλk
) 1

2

= +∞. (3.13)

Let A be a class of all absolutely continuous functions, and let ‖f‖A be norm

of functions f(x) ∈ A. Then

‖fn‖A = ‖fn‖C +

∫ 1

0

∣∣∣∣dfn(x)

dx

∣∣∣∣ dx = 2.

Consider on the Banach space A the sequence of bounded linear functionals

Un(f) =

(
n∑

k=1

b2kλk

)−1
2 ∫ 1

0

f(x)Φn(b, x) dx.

Since ‖fn‖A = 2, taking into account (3.13), lim sup
n
|Un(fn)| = +∞, in virtue of

the Banach–Steinhaus theorem, there exists the function f0(x) ∈ A such that

lim
n→∞

1(∑n
k=1 b

2
kλk
) 1

2

∣∣∣∣ ∫ 1

0

f0(x)Φn(b, x) dx

∣∣∣∣ = +∞. (3.14)

Then ∣∣∣∣ ∫ 1

0

f0(x)Φn(b, x) dx

∣∣∣∣ =

∣∣∣∣ n∑
k=1

bkλk

∫ 1

0

f0(x)ϕk(x) dx

∣∣∣∣ =
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=

∣∣∣∣ n∑
k=1

bk
√
λkϕ̂k(f0)

√
λk

∣∣∣∣ ≤
(

n∑
k=1

b2kλk

) 1
2
(

n∑
k=1

ϕ̂2
k(f0)λk

) 1
2

.

From here and (3.14), we get

lim
n→∞

n∑
k=1

ϕ̂2
k(f0)λk = +∞.

Theorem 3.2 is completely proved. �

It has been proved above that in the general case the Fourier coefficients of

the function from V (0, 1) do not satisfy condition (3.7). It should be mentioned,

however, that any ONS {ϕn(x)} contains the subsystem {ϕnk
(x)} with respect to

which the Fourier coefficients of any function from V (0, 1) satisfy condition (1.3).

We will prove this theorem below.

Theorem 3.3. From any ONS {ϕn(x)} we can single out the subsystem

with respect to which the Fourier coefficients of any function from V (0, 1) satisfy

condition (1.5).

Proof. Let f(x) = 1 for x ∈ [0, i
n ], and f(x) = 0 for x ∈ ( i

n , 1]. Then due

to Bessel’s inequality

∞∑
n=1

(∫ i
n

0

ϕn(x) dx

)2

≤
∞∑

n=1

(∫ 1

0

f(x)ϕn(x) dx

)2

≤
∫ i

n

0

f2(x) dx ≤ 1.

By p(n) denote the natural number such that

∞∑
m=p(n)

(∫ i
n

0

ϕm(x) dx

)2

≤ 2−2n, i = 1, 2, . . . , n.

Hence ∣∣∣∣ ∫ i
n

0

ϕm(x) dx

∣∣∣∣ < 2−n, i = 1, 2, . . . , n,

when m ≥ p(n).

Assume that p(n+ 1) > p(n) + 2n, and put

ψ2n+1(x) = ϕp(n)+1(x), ψ2n+s(x) = ϕp(n)+s(x),

where 1 ≤ s ≤ 2n, n = 0, 1, . . . .
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Thus, we have obtained the sequence of functions {ψm(x)} which satisfy the

conditions ∣∣∣∣ ∫ i
n

0

ψm(x) dx

∣∣∣∣ =

∣∣∣∣ ∫ i
n

0

ϕp(n)+l(x) dx

∣∣∣∣ < 2−n,

where m = 2n + l (1 ≤ l < 2n).

The number j(i) (1 ≤ i ≤ n) is chosen so that
∣∣ i
n −

j(i)
2m

∣∣ < 2−m. Then using

the above inequality, we get ((an) ∈ `2)∣∣∣∣ ∫ i
n

0

2m+1−1∑
s=2m

asλsψs(x) dx

∣∣∣∣
≤
∣∣∣∣ ∫ j(i)

2m

i
n

2m+1−1∑
s=2m

asλsψs(x) dx

∣∣∣∣+

∣∣∣∣ ∫ j(i)
2m

0

2m+1−1∑
s=2m

asλsψs(x) dx

∣∣∣∣
≤ 2−

m
2

2m+1−1∑
s=2m

a2sλ
2
s

 1
2

+

2m+1−1∑
s=2m

|as|λs · 2−m. (3.15)

Assume now that n = 2d + n1 (1 ≤ n1 ≤ 2d), then according to (3.15)∣∣∣∣ ∫ i
n

0

d−1∑
m=0

2m+1−1∑
s=2m

asλsψs(x) dx

∣∣∣∣ ≤ d−1∑
m=0

2m+1−1∑
s=2m

|as|λs · 2−m

+

d−1∑
m=0

2−
m
2

2m+1−1∑
s=2m

a2sλ
2
s

 1
2

≤

(
d−1∑
m=0

2−mλ2m+1

) 1
2

 d−1∑
m=0

2m+1−1∑
s=2m

a2sλs

 1
2

+

(
d−1∑
m=0

2−mλ2m+1

) 1
2

 d−1∑
m=0

2m+1−1∑
s=2m

a2sλs

 1
2

=O(1)

2d−1∑
m=1

a2mλm

 1
2

. (3.16)

Besides (n = 2d + n1, n1 < 2d)∣∣∣∣ ∫ i
n

0

n∑
s=2d

asλsψs(x) dx

∣∣∣∣ ≤ ∫ j(i)

2d

i
n

∣∣∣∣ n∑
s=2d

asλsψs(x) dx

∣∣∣∣+

n∑
s=2d

|as|λs2−d

≤ 2−
d
2

√
λn

(
n∑

s=2d

a2sλs

) 1
2

+ 2−
d
2

√
λn

(
n∑

s=2d

a2sλs

) 1
2

= O(1)

(
n∑

s=2d

a2sλs

) 1
2

. (3.17)
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From (3.16) and (3.17), we can conclude that

Bn(a) = max
1≤i≤n

∣∣∣∣ ∫ i
n

0

n∑
m=1

amλmψm(x) dx

∣∣∣∣ = O(1)

(
n∑

m=1

a2mλm

) 1
2

for any sequence (an) ∈ `2. From here and Theorem 3.1, it follows that for any

function from V (0, 1) (1.5) is satisfied. �

4. Problems of efficiency

We will call condition (1.5) efficient if it is easily verified for classical ONS

(the trigonometric system, the Walsh and Haar systems, etc. . . . ).

Theorem 4.1. Let {ϕn(x)} be ONS such that (for all x ∈ [0, 1])∫ x

0

ϕn(t) dt = O

(
1

n

)
. (4.1)

Then condition (1.5) is satisfied.

Proof. We have ((an) ∈ `2)

max
1≤i≤n

∣∣∣∣ ∫ i
n

0

n∑
k=1

akλkϕk(x) dx

∣∣∣∣ = max
1≤i≤n

∣∣∣∣ n∑
k=1

akλk

∫ i
n

0

ϕk(x) dx

∣∣∣∣
= O(1)

n∑
k=1

|ak|λk
k

= O(1)

(
n∑

k=1

λk
k2

) 1
2
(

n∑
k=1

a2kλk

) 1
2

= O(1)

(
n∑

k=1

a2kλk

) 1
2

.

The trigonometric system and the Walsh system [5] satisfy condition (1.4),

and hence, according to Theorem 4.1, they satisfy (1.5). �

Theorem 4.2. If {χn(x)} is a Haar system (see [6, p. 57]), then condi-

tion (1.5) is fulfilled.

Proof. Using the definition of Haar’s system, we get (i = 1, 2, . . . , n, (an) ∈
`2)) ∣∣∣∣ ∫ i

n

0

2s+1−1∑
k=2s

akλkχk(x) dx

∣∣∣∣ ≤ 2−
s
2 |ak(i)|λk(i),

where 2s ≤ k(i) ≤ 2s+1 − 1.
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Consequently, (n = 2p + l),

max
1≤i≤n

∣∣∣∣ ∫ i
n

0

2p−1∑
k=1

akλkχk(x) dx

∣∣∣∣ = max
1≤i≤n

∣∣∣∣ p−1∑
k=0

∫ i
n

0

2k+1−1∑
m=2k

amλmχm(x) dx

∣∣∣∣
≤ max

1≤i≤n

p−1∑
k=0

2−
k
2 |ak(i)|λk(i) ≤ max

1≤i≤n

(
p−1∑
k=0

a2k(i)λk(i)

) 1
2
(

p−1∑
k=0

2−k · λk(i)

) 1
2

≤

p−1∑
k=0

2k+1−1∑
m=2k

a2mλm

 1
2

max
1≤i≤n

(
p−1∑
k=0

2−k · λk(i)

) 1
2

= O(1)

(
2p∑
k=1

a2kλk

) 1
2

.

In a similar way, it is proved that

max
1≤i≤n

∣∣∣∣ ∫ i
n

0

n∑
k=2p

akλkχk(x) dx

∣∣∣∣ = O(1)

(
2p∑
k=1

a2kλk

) 1
2

.

Hence Theorem 4.2 is completely proved. �
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