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Parallel axiom and the 2-nd order differentiability
of Busemann functions

By NOBUHIRO INNAMI (Niigata), YOE ITOKAWA (Fukuoka),

TETSUYA NAGANO (Nagasaki) and KATSUHIRO SHIOHAMA (Fukuoka)

Abstract. Busemann has introduced a function to develop the theory of parallels

in G-spaces. The function is called the Busemann function after him. Busemann func-

tions have been used in Riemannian and Finslerian geometry at infinity. We study the

relation of Parallel Axiom to the 2-nd order differentiability of Busemann functions.

1. Introduction

Parallel Axiom has been playing an important role in the development of

geometry. After the discovery of non-Euclidean geometry, H. Busemann [8]

proposed a new theory of parallels in G-spaces, and, nowadays, it is used in the

study of many subjects in geometry, such as the geometry of rays, geodesic flows,

geometry at infinity, etc.

Let f t : SM → SM be a geodesic flow of a unit tangent bundle π : SM →M .

We have used the stable Jacobi vector fields along geodesics π(f t(v)), v ∈ SM ,

in order to study some ergodic properties of the asymptotic behavior of orbits

π(f t(U)), U ⊂ SM . As a dual problem, we are interested in the asymptotic

behavior of geodesic spheres π(f t(SpM)) with center p ∈M or the limit spheres.

Since the distance spheres S(p,R) with center p and radius R are the envelope

of the distance spheres with radius R − r and centers q ∈ S(p, r), the distance
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defined on a Finsler manifold describes Huygens’ principle. We study what hap-

pens on those spheres when the centers go to the infinity along a straight line.

In the present paper we discuss a contribution of Parallel Axiom to the 2-nd order

differentiability of limit spheres in a Finsler manifold.

Busemann introduced a function which has been called the Busemann func-

tion after him. Roughly speaking, the level sets of a Busemann function of a ray

γ are limit sets of distance spheres with centers on γ. The distribution of points

where a Busemann function is not differentiable is influenced by the topology

and metric of the space (cf. [1], [2], [19], [20], [30], [32], [34]). In the study of

geodesic flows, the second and higher order differentiability of Busemann func-

tions are important and, therefore, have been studied (cf. [3], [4], [11], [12]). E.

Hopf [17] (n = 2) and D. Burago–S. Ivanov [7] (n ≥ 3) have proved that any

Riemannian n-torus without conjugate points is flat. Although many results in

Riemannian geometry can be generalized in Finsler geometry, the theorem of E.

Hopf can not (see [8]). In fact, Busemann [8] and N. Zinoviev [36] have given

Finsler metrics on tori without conjugate points which are not Minkowskian and

flat. A condition on flatness of those metrics is given by [13]. Those geodesic flows

are integrable. There is an important class of integrable geodesic flows which is

not without conjugate points, i.e., the geodesic flows of surfaces of revolution.

The behavior of geodesics in a 2-torus of revolution is determined (cf. [6], [10],

[14], [25], [26]). We have studied the asymptotic behavior of distance spheres

in [23] as a topological sub-mixing property.

Recall that any Randers metric F = α + β is pointwise projective to a Rie-

mannian metric g, where α is the norm of the metric g, and β is any closed 1-form

([15], [31]). It means that all geodesics with respect to F and g are identified as

point sets. This fact suggests that it is almost impossible to treat the rigidity

problem in Finsler geometry as the geometry of geodesics without curvature con-

dition. In fact, we easily obtain a class of non-Minkowskian Finsler manifolds

satisfying Parallel Axiom (see Examples 2.1 and 2.2): Let (M, g0) be the Euclid

n-space, and f a smooth function on M . Let F (x, y) =
√
g0(y, y) + df(y) for

y ∈ TxM . It is known (cf. [31]) that F is a Finsler metric on M if |df(y)| < 1

for all y ∈ TxM with ‖y‖g0 = 1. Then (M,F ) satisfies Parallel Axiom and all

Busemann functions are smooth.

The distance spheres propagate according to Huygens’ principle. A limit

sphere S passing through a point p arises as their centers go to infinity along

a ray from p. The limit sphere S is the envelope of limit spheres passing through

points q on S of rays which are perpendicular to S at q. Those limit spheres are

equal if and only if the asymptote relation is symmetric and transitive. This is not
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true for G-spaces without differentiability condition on the distance spheres ([8]).

So far, the 2-nd order differentiability of Busemann functions are proved only

when the asymptote relation is an equivalence relation with additional condition

(cf. [12]).

Since the asymptotic behavior of trajectories of geodesic flows and the rigid-

ity problem of Riemannian metrics have been focused on, we usually and conven-

tionally have looked into the stable Jacobi tensor fields along a straight line, in

studying the 2-nd order differentiability of a Busemann function. In this paper,

we review and study it from the view point of distance geometry with Huygens’

principle (see §3, 4), and use Taylor’s theorem for the distance functions to the

points along a straight line instead (see §5). Observing the behavior of geodesics

in the universal covering space of a 2-torus of revolution (see §6), we propose

a condition that the 2-nd order Taylor polynomials modified from the distance

functions converge to that of a Busemann function as those points go to infin-

ity. Since we can obtain some information of only the 1-st and 2-nd derivatives

of distance functions in the intrinsic geometry, due to Huygens’ principle, we

may assume a certain boundedness of the 3-rd derivatives of distance functions

(see §2). However, the assumption without anything else is not satisfactory for

the convergence of Taylor polynomials. We will see that Parallel Axiom is closely

connected to the existence and continuity of the 2-nd derivatives of a Busemann

function. However, there exists a metric on a plane which does not satisfy Paral-

lel Axiom but Busemann functions are of class C2 (see §6 and Lemma 7.2). The

main result of this paper is precisely stated in Theorem 2.3 after some definitions

are provided.

The 2-nd order differentiability of a Busemann function was discussed in [22]

and [24] for the plane convex billiards, and, however, their proofs are incomplete.

They need a certain assumption that we adopt in this article.

2. Definitions, examples and statements

Let (M,F ) be a Finsler n-manifold which is by definition a smooth n-

manifold equipped with fundamental function F : TM → R such that F is

continuous on TM and smooth on TM r {0}, F (x, ty) = tF (x, y), for all t > 0

and y ∈ TxM , and F is strictly convex on all tangent spaces TxM . Here TM

denotes the tangent bundle of M . We define, as usual, the length LF (c) of a piece-

wise smooth curve c in M with respect to F , and an intrinsic distance d on M
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induced by F , i.e., d(p, q) is the infimum of the lengths of all piecewise smooth

curves from p ∈M to q ∈M . The distance d is not symmetric, in general.

Let p, q ∈ M with p 6= q. Let T (p, q) : [0, d(p, q)] → M denote a minimiz-

ing geodesic going from p to q with unit speed such that T (p, q)(0) = p and

T (p, q)(d(p, q)) = q. The minimizing geodesic coming from q to p is given by

T−(q, p)(t) = T (q, p)(d(q, p) + t) for t ∈ [−d(q, p), 0]. This change of parametriza-

tion of T (q, p) is that its domain is just translated from [0, d(q, p)] to [−d(q, p), 0],

but it does not reverse the orientation. By definition, the length of T (p, q) (resp.,

T−(q, p)) equals d(p, q) (resp., d(q, p)). Since the distance d may not be sym-

metric, T (p, q) 6= T (q, p) as sets in general. Even if d(p, q) = d(q, p), it may

happen that T (p, q) 6= T (q, p) as sets. Further, T (p, q) = T (q, p) as a set, and

d(p, q) 6= d(q, p) may be true simultaneously.

In this paper, we say that (M,d) is complete if any Cauchy sequence of

points pj in M converges to a point in M . Here, a Cauchy sequence of points

pj by definition satisfies that for any ε > 0 there exists an integer j0 such that

d(pi, pj) < ε for all i, j > j0. We assume that (M,d) is complete. Then there

exists a minimizing geodesic connecting any two points in M .

Let γ : [0,∞)→M denote a ray which by definition satisfies d(γ(0), γ(t)) = t

for all t ≥ 0. If (M,d) is non-compact, then there exists at least one ray from

any point p ∈ M . A ray α : [0,∞) → M is called a co-ray to γ from q = α(0)

if there exist sequences of points qn converging to q and numbers tn going to ∞
such that the sequence of minimizing geodesics T (qn, γ(tn)) converges to α.

Let β : (−∞, 0] → M denote a backward ray which by definition satisfies

d(β(t), β(0)) = |t| for all t ≤ 0. A backward ray α : (−∞, 0] → M is called

a backward co-ray to β from q = α(0) if there exist sequences of points qn con-

verging to q and numbers tn going to −∞ such that the sequence of minimizing

geodesics T−(β(tn), qn) converges to α.

Let γ : (−∞,∞) → M be a straight line, i.e., d(γ(s), γ(t)) = t − s for all

−∞ < s < t <∞. We say that a straight line α : (−∞,∞)→M is an asymptote

to γ if α|[s,∞) is a co-ray to γ for all s ∈ R. When α is an asymptote to γ, any

sub-ray α|[s,∞) of α is the unique co-ray from α(s) to γ (cf. (22.19) Theorem,

p. 136 of [8]). We say that a straight line α : (−∞,∞) → M is a parallel to γ if

α|[s,∞) is a co-ray to γ and α|(−∞,s] is a backward co-ray to γ for all s ∈ R. If α

is a parallel to γ, then α is the unique parallel to γ through any point α(s).

Let Ω(γ) (resp., Λ(γ)) be the set of all parallels (resp., asymptotes) to

a straight line γ. We consider the following condition on Ω(γ) (resp., Λ(γ))

called Parallel (resp., Asymptote) Axiom:

(1) For any point x ∈M there passes α ∈ Ω(γ) (resp., Λ(γ)) through x.
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(2) If α ∈ Ω(γ) (resp., Λ(γ)), then γ ∈ Ω(α) (resp., Λ(γ)).

(3) If α ∈ Ω(γ) (resp., Λ(γ)) and β ∈ Ω(α) (resp., Λ(α)), then β ∈ Ω(γ) (resp.,

Λ(γ)).

Since any sub-ray of an asymptote to γ is the unique co-ray to γ, it follows

from (1) that an asymptote to γ through any point x ∈ M is unique. In other

words, Λ(γ) and Ω(γ) simply cover M if they satisfy Asymptote Axiom and

Parallel Axiom, respectively.

Let T 2 be a 2-torus of revolution which is not flat, and M its universal

covering space which is homeomorphic to a plane. If γ is a lift of a minimal

parallel circle in T 2 into M , then Ω(γ) is the set of all lifts of minimal parallel

circles in T 2 and Λ(γ) consists of all asymptotes through all points x ∈M . Then,

Ω(γ) satisfies (2) and (3) in Parallel Axiom, but Λ(γ) does not satisfy them (cf.

[1], [10], [25]). On the other hand, if α is a straight line such that α 6∈ Λ(γ) for

any lift γ of any minimal parallel circle in T 2, then Ω(α) satisfies Parallel Axiom

(cf. same as above). In §6, we detail those Axioms for straight lines in M .

We can obtain Finsler manifolds satisfying Parallel Axiom, using a projective

Randers change to the Euclid space.

Example 2.1. Let (M,G) be a Riemannian manifold. Hashiguchi and

Ichijo ([15]) proved that any Randers metric F = α + β is pointwise projective

to G, where α is the norm of G and β is any closed 1-form (cf. [31]). It means

that all geodesics with respect to F and G are identified as point sets. Therefore,

the asymptote and parallel relations are invariant under this change of a metric α.

As a special case, let (M,G0) be the Euclid n-space, and f a smooth function

on M . Let F (x, y) =
√
G0(y, y) + df(y) for y ∈ TxM . It is known (cf. [31]) that

F is a Finsler metric on M if |df(y)| < 1 for all y ∈ TxM with ‖y‖G0
= 1. The

distance between two points p and q is given by dF (p, q) = ‖q−p‖G0
+f(q)−f(p)

for all p, q ∈ M , since dF (p, q) is the infimum of all lengths of piecewise smooth

curves from p to q. Since (M,F ) is pointwise projective to (M,G0), we see that

(M,F ) satisfies Parallel Axiom.

Using this example, we can obtain a Riemannian metric with conjugate points

such that Ω(γ) satisfies Parallel Axiom for a certain straight line γ.

Example 2.2. Let γ be a straight line in (M,F ) constructed in Example 2.1.

Let V (x) be a unit tangent vector at x ∈ M , i.e., F (V (x)) = 1, such that the

straight line with initial tangent vector V (x) is a parallel to γ. Obviously, V is

a smooth vector field on M . Using the fundamental tensor g for F and the vector

field V , we define a Riemannian metric gV (x) = gV (x)(·, ·) on x ∈ M . Here, we
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have, by definition,

gV (x)(u, v) =
1

2

∂2

∂s∂t
F (x, V (x) + su+ tv)2

∣∣∣∣
s=0,t=0

, u, v ∈ TxM.

Then all integral curves of V are geodesics with respect to gV on M (cf. [29]).

Thus the parallels to γ w.r.t. F are also parallels w.r.t. this Riemannian metric gV
in M . Therefore, Ω(γ) satisfies Parallel Axiom in (M, gV ). Other geodesics may

not satisfy Parallel Axiom w.r.t this metric gV and have a conjugate pair on

it. In fact, if f(x + z) = f(x) for all x ∈ M and z ∈ Zn, then gV is a lift of

a Riemannian metric on a torus M/Zn to M . The theorem of E. Hopf [17]

and its higher dimensional case ([7], [11]) state that gV is not without conjugate

points.

In order to study asymptote and parallel relations, Busemann introduced

a function called the Busemann function after him. A (forward) Busemann func-

tion Fγ : M → R for a ray γ is defined by

Fγ(x) = lim
t→∞

d(x, γ(t))− t, x ∈M.

We define a backward Busemann function Bβ : M → R for a backward ray β by

Bβ(x) = lim
t→−∞

d(β(t), x) + t, x ∈M.

Asymptote and Parallel Axioms reflect some properties of Busemann func-

tions (see Lemma 3.4).

Let dp(·) = d(p, ·), dp−(·) = d(·, p), and let fp
± = ±dp± for p ∈ M (double-

sign corresponds, the sign + often omitted). For a straight line γ : (−∞,∞)→M ,

we define and use functions fγ(t)
−(x) = −d(x, γ(t)) and fγ(t)(x) = d(γ(t), x) for

all x ∈ M . In these notations, if γ is a straight line with γ(0) = p, then Fγ and

Bγ are denoted by

Fγ(x) = lim
t→∞

−fγ(t)−(x) + fγ(t)
−(p) and Bβ(x) = lim

t→−∞
fγ(t)(x)− fγ(t)(p)

for x ∈M .

For p ∈ M and v ∈ TpM , let γv denote a constant speed geodesic such that

γv(0) = p and γ̇v(0) = v. Since (M,d) is complete, γv is defined on (−∞,∞). We

define an exponential map expp : TpM → M by expp(v) = γv(1). Similarly, we

define a backward exponential map expp
− : TpM → M by expp

−(v) = γ−v(−1).

Then, both expp and expp
− are smooth on TpM r {0} and of class C1 at 0
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(cf. [9]). Using the exponential maps, the distances between p and q are denoted

by

fp(q) = d(p, q) = min{F (p, v) | v ∈ expp
−1(q)},

−fp−(q) = d(q, p) = min{F (p,−v) | v ∈ (expp
−)−1(q)}.

Let Up be the interior of the set {v ∈ TpM r{0} | expp(v) = q, d(p, q) = F (p, v)},
and Up

− the interior of {v ∈ TpM r {0} | expp
−(v) = q, d(q, p) = F (p,−v)}.

If Vp = expp(Up) and Vp
− = expp

−(Up
−), then expp and expp

− are diffeomor-

phisms from Up to Vp and from Up
− to Vp

−, respectively. In particular, fp (resp.,

fp
−) are smooth on Vp (resp., Vp

−). Furthermore, Vp and Vp
− are open dense

sets in M .

For our argument in this paper, we may assume that there exists a number

K > 0 such that for any point p ∈ M and q ∈ Vp
∓ with d(p, q) > 1, the

absolute values of 3-rd order partial derivatives of fp
∓ are bounded above by K

for some local coordinate neighborhood around q. We mention the details of this

assumption in the form we will use:

Let (V ;x1, . . . , xn) be a coordinate neighborhood around q ∈ M , and Bq(r)

a distance ball with center q and radius r. For a ray (or a backward ray) γ such

that there exists a number R > 0 satisfying that fγ(t)
∓ is of class C3 around q

for any t > R, we define

D(γ, q)∓ = lim
r→0

lim inf
t→±∞

sup

{∣∣∣∣ ∂3fγ(t)∓∂xi∂xj∂xk
(x)

∣∣∣∣ |x ∈ Bq(r), i, j, k = 1, . . . , n

}
.

If D(γ, q)∓ <∞, then for any ε > 0, there exist a number r0 > 0 and a sequence

|tn| going to ∞ such that∣∣∣∣ ∂3fγ(tn)∓∂xi∂xj∂xk
(x)

∣∣∣∣ < D(γ, q)∓ + ε for all x ∈ Bq(r0) and all n.

Any distance function from or to p is smooth except for cut points of p. The

2-nd derivatives are bounded in any compact set if the centers p are far way, since

the distance spheres satisfy Huygens’ principle (see Lemma 5.3). For the 3-rd

derivatives, we do not have any information from the distance geometry.

Let f be a function defined on an open set U ⊂ Rn. We say that g(y) is a k-th

order Taylor polynomial at x ∈ U of a function f if f(x + y) − g(y) = o(‖y‖k).

Here f(x+ y)− g(y) = o(‖y‖k) means that |f(x+ y)− g(y)|/‖y‖k → 0 as y → 0.

From Lemma 7.1, f is of class C2 in U if and only if f has a 2-nd order Taylor

polynomial with continuous coefficients for x ∈ U .
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In Lemma 5.1, we see that if D(γ, γ(s))∓ <∞, we then have the 2-nd order

Taylor polynomials P (x) and Q(x) of Fγ and Bγ at any point q = γ(s), i.e.

Fγ(x)− P (x) = o(‖x− q‖2) and Bγ(x)−Q(x) = o(‖x− q‖2), respectively.

Theorem 2.3. Let γ be a straight line in a complete non-compact Finsler

manifold (M,F ) such that Ω(γ) satisfies Parallel Axiom. If for any compact set N

in M there exists a number K such that D(γ, q)∓ < K for any point q ∈ N , then

the Busemann function Fγ is of class C2.

In order to understand the role of our assumption, we review in §6 what

happens on the asymptotes Λ(γ) and parallels Ω(γ) in the universal covering

space M of a 2-torus T 2 of revolution, where γ is a lift of a minimal parallel circle

in T 2 into M .

3. Co-rays and Busemann functions

Let (M,F ) be a complete non-compact Finsler manifold. Let γ : (−∞,∞)→
M be a straight line with γ(0) = p. Let fγ(x, t) := d(x, γ(t))− t = −fγ(t)−(x) +

fγ(t)
−(p) for t ∈ (0,∞], and bγ(x, s) := d(γ(s), x) + s = fγ(s)(x) − fγ(s)(p) for

s ∈ (−∞, 0). The following lemmas are well known for G-spaces (cf. [8]). The

same proofs are valid for non-symmetric distances.

Lemma 3.1 (cf. [8, p. 131]). The following are true:

(1) fγ(x, t) converges to Fγ(x) uniformly on any compact set in M as t→∞.

(2) bγ(x, s) converges to Bγ(x) uniformly on any compact set in M as s→ −∞.

(3) −d(y, x) ≤ Fγ(x)− Fγ(y) ≤ d(x, y) for all x, y ∈M .

(4) −d(x, y) ≤ Bγ(x)−Bγ(y) ≤ d(y, x) for all x, y ∈M .

Lemma 3.2 (cf. [8, (22.16) and (22.20)]). The following are true:

(1) Let γ be a ray in M . Then, a unit speed curve α : [0,∞) → M is a co-ray

to γ if and only if Fγ(α(t)) = Fγ(α(0))− t for all t ∈ [0,∞).

(2) Let γ be a backward ray in M . Then, a unit speed curve α : (−∞, 0] → M

is a backward co-ray to γ if and only if Bγ(α(t)) = Bγ(α(0)) + t for all

t ∈ (−∞, 0].

(3) Let γ be a straight line in M . Then, a unit speed curve α : (−∞,∞) → M

is a parallel to γ if and only if Fγ(α(t)) = Fγ(α(s)) − (t − s) for all t > s,

and Bγ(α(t)) = Bγ(α(s)) + (t− s) for all t < s. In particular, if a unit speed

curve α is a parallel to γ, then Fγ(α(t)) +Bγ(α(t)) is constant for all t ∈ R.
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Lemma 3.3 (cf. [19]). Let γ : (−∞,∞) → M be a straight line. If Λ(γ)

satisfies (1) of Asymptote Axiom, then the Busemann function Fγ is differentiable

on M and its differential at q ∈ M equal that of −fγq(t)− for t > 0, i.e., dFγ =

−dfγq(t)−, where γq ∈ Λ(γ) with γq(0) = q.

When we prove (2) of Lemma 4.2, we will use a similar computation for this

lemma.

Lemma 3.4 (cf. [8]). Let γ be a straight line such that Λ(γ) satisfies Asymp-

tote Axiom, and let V (x) be the unit tangent vector of an asymptote through x

to γ at all x ∈M . Let y ∈ TxM . Then the following are true:

(1) V is continuous on M .

(2) Fγ − Fα is constant Fγ(α(0)) on M for any α ∈ Λ(γ).

Furthermore, if Ω(γ) satisfies Parallel Axiom, then

(3) Fγ +Bγ is constant 0 on M .

Proof. Assume that γ : (−∞,∞)→M is a straight line. Let β : (−∞,∞)

→ M be an asymptote to γ with β(0) = x. Hence, β̇(0) = V (x). From (1)

of Asymptote and Parallel Axioms and (1), (2) in Lemma 3.2, if a sequence of

asymptotes to γ converges a straight line β, then β is an asymptote to γ. Hence,

V (x) continuously depends on x ∈M , proving (1).

Let x ∈M and γx ∈ Λ(γ) with γx(0) = x. As was mentioned in Lemma 3.3,

Fγ , Fα and Bγ are differentiable on M and dFγ = dFα = −dBγ = −dfγx(t)− at x.

This proves (2) and (3). �

Since the level sets of a Busemann function are called the limit spheres cen-

tered at γ(t) as |t| → ∞, the items (2) and (3) of Lemma 3.4 play important roles

in the argument for the 2-nd order differentiability.

4. The 2-nd order differentials of distance functions

Let γ be a straight line in a complete non-compact Finsler manifold (M,F ).

For y ∈ TpM , let c(u), u ∈ (−ε, ε), be a curve such that c(0) = p and c′(0) =

y, where c′ implies the differentiation of c by its parameter. Let fγ(s)
±(u) =

±dγ(s)±(c(u)) for u ∈ (−ε, ε) (double-sign corresponds).

Lemma 4.1. Let γ : (−∞,∞) → M be a straight line such that γ(0) = p.

Let a and s be numbers such that 0 < a < s. Then, fγ(a)
−′′(0) ≤ fγ(s)−′′(0).
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Proof. From Lemma 3.3, we have fγ(a)
−′(0) = fγ(s)

−′(0). We use the

notation above. Since d(c(u), γ(s)) ≤ d(c(u), γ(a)) + d(γ(a), γ(s)), we have

fγ(s)
−(u)− fγ(s)−(0) = −d(c(u), γ(s)) + s

≥ −d(c(u), γ(a)) + a = fγ(a)
−(u)− fγ(a)−(0).

Therefore,

fγ(s)
−′′(0) = 2 lim

u→0

fγ(s)
−(u)− fγ(s)−(0)− fγ(s)−′(0)u

u2

≥ 2 lim
u→0

fγ(a)
−(u)− fγ(a)−(0)− fγ(a)−′(0)u

u2
= fγ(a)

−′′(0). �

Let γ : (−∞,∞)→M be a straight line with γ(0) = p. Recall that fγ(x, t) =

−fγ(t)−(x) + fγ(t)
−(p) for t ∈ (0,∞], and bγ(x, s) = fγ(s)(x) − fγ(s)(p) for s ∈

(−∞, 0).

Lemma 4.2. Let γ : (−∞,∞) → M be a straight line with γ(0) = p. Let

s, t ∈ (−∞,∞) satisfy s < 0 < t. Then the following are true:

(1) bγ(x, s) + fγ(x, t) ≥ 0, and equality holds if and only if x = γ(u) for some

u ∈ [s, t].

(2) fγ(s)
′′(0) ≥ fγ(t)−′′(0).

Proof. Let s < 0 < t. Since

t− s = d(γ(s), γ(t)) ≤ d(γ(s), x) + d(x, γ(t)),

we have

bγ(x, s) + fγ(x, t) = (d(γ(s), x) + s) + (d(x, γ(t))− t)
≥ d(γ(s), γ(t))− (t− s) = 0.

This proves (1).

Let y ∈ TpM , and let c(u) be a curve such that c(0) = p and c′(0) = y. Let

f(u) = bγ(c(u), s) + fγ(c(u), t). Differentiate f(u) at u = 0, and we have

f ′(0) = fγ(s)
′(0)− fγ(t)−′(0) = 0.

Furthermore, we have

f ′′(0) = fγ(s)
′′(0)− fγ(t)−′′(0) ≥ 0, (4.1)

because f(0) = 0 is a minimum of f on M , proving (2). �
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5. The 2-nd order differentiability of a Busemann function

Let γ be a straight line in a complete non-compact Finsler manifold (M,F ),

and let γx ∈ Λ(γ) pass through x ∈ M with γx(0) = x. Let (V, x1, . . . , xn) be

a local coordinate system around x which is compatible with the differentiable

structure of M . Let y =
∑n
i=1 y

i∂/∂xi ∈ TxM . It follows from Lemmas 4.1 and

4.2 that

n∑
i,j=1

∂2fγx(b)
−

∂xi∂xj
(x)yiyj ≤

n∑
i,j=1

∂2fγx(t)
−

∂xi∂xj
(x)yiyj ≤

n∑
i,j=1

∂2fγx(a)

∂xi∂xj
(x)yiyj

for any a < 0 < b < t. Hence, we have(
∂2fγx(b)

−

∂xi∂xj
(x)

)
≤
(
∂2fγx(t)

−

∂xi∂xj
(x)

)
≤
(
∂2fγx(a)

∂xi∂xj
(x)

)
, (5.1)

where (·) is a symmetric matrix whose (i, j)-entries are the second partial deriva-

tives by the i-th and j-th coordinates. Since the symmetric matrices in the middle

are monotone non-decreasing, there exists the limit

−Hx = lim
t→∞

(
∂2fγx(t)

−

∂xi∂xj
(x)

)
, −Hx,ij = lim

t→∞

∂2fγx(t)
−

∂xi∂xj
(x). (5.2)

Lemma 5.1. In the notation above, if D(γx, x)∓ < ∞, we then have the

2-nd order Taylor polynomial of Fγx at x:

Fγx(x+ y) = Fγx(x) +

n∑
i=1

yiDx,i(x) +

n∑
i,j=1

yiyjHx,ij

+
1

2

n∑
i,j,k=1

yiyjykRx,ijk(y), (5.3)

where

Dx,i = −
∂fγx(t)

−

∂xi
(x), Rx,ijk(y) = − lim

t→∞

∫ 1

0

(1− u)2
∂3fγx(t)

−

∂xi∂xj∂xk
(c(u)) du.

Proof. Applying Taylor’s theorem to −fγx(t)− − t at x, we have

− fγx(t)
−(x+ y)− t = −fγx(t)

−(x)− t−
n∑
i=1

yi
∂fγx(t)

−

∂xi
(x)

−
n∑

i,j=1

yiyj
∂2fγx(t)

−

∂xi∂xj
(x)− 1

2

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1− u)2
∂3fγx(t)

−

∂xi∂xj∂xk
(c(u)) du.
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Because of Dx,i is constant for t and the definitions of Hx and Rx, we have

equation (5.3) as t → ∞. Here, Rx,ijk(y) = O(1), meaning that |Rx,ijk(y)| ≤ C

as y → 0 for some C ≥ 0. �

We will see a relation of Hx to the second order differential of Fγ at x.

Lemma 5.2. Let N be a compact set in M . Let αx,t : (−∞,∞) → M be

a geodesic which is the extension of T (x, γ(t)) for every t > 0. Then, the sequence

of points αx,t(b) uniformly converges to γx(b) on x ∈ N as t→∞ for any constant

b ∈ R.

Proof. Suppose for indirect proof that there exist ε > 0 and a sequence of

points xj ∈ N and a sequence tj going to ∞ such that d(γxj (b), αxj ,tj (b)) > ε.

Since N is compact, there exists a subsequence xi of xj converging to a point

x ∈ N . Then, γxi and αxi,ti converges to γx, because γx is the unique asymp-

tote to γ passing through x, meaning that d(γxi(b), αxi,ti(b)) → 0 as ti → ∞,

a contradiction. �

Lemma 5.3. Let γ be a straight line in (M,F ) such that Λ(γ) satisfies

Asymptote Axiom. Then, the absolute values of the second derivatives of fγ(t)
±

are bounded in all compact set N in M as t→ ±∞.

Proof. From Lemma 5.2, we can set

A =

(
∂2fγx(b)

−

∂xi∂xj
(x)

)
= lim
t→∞

(
∂2fαx,t(b)

−

∂xi∂xj
(x)

)
,

B =

(
∂2fγx(a)

−

∂xi∂xj
(x)

)
= lim
t→∞

(
∂2fαx,t(a)

−

∂xi∂xj
(x)

)
.

Further, we note that inequality (5.1) is true for a minimizing geodesic β : (c, d)→
M with c < a < 0 < b < t < d even if its extension is not minimizing in a whole

real line. Applying these facts to minimizing geodesics containing T (x, γ(t)), we

can find, from (5.1), a number t1 > 0 such that

A <

(
∂2fγ(t)

−

∂xi∂xj
(x)

)
< B,

for all x ∈ N and all t > t1. �

Set −Hfγ(t)−(x) =
(
∂2fγ(t)

−

∂xi∂xj (x)
)

.

Lemma 5.4. Let γ be a straight line in a complete Finsler manifold (M,F )

such that Λ(γ) satisfies Asymptote Axiom. If for any compact set N in M there

exists a number K such that D(γ, q)∓ < K for all points q ∈ N , then Hfγ(t)−(x)

converges to Hx for all x ∈M as t→∞.
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Proof. Let (U ;x1, . . . , xn) be a coordinate neighborhood around q such that

q = (q1, . . . , qn) and let c(u) = (q1 + uy1, . . . , qn + uyn) denote a curve in U . We

then have

fγ(t)
−(q + y)− fγ(t)−(q) =

n∑
i=1

yi
∂fγ(t)

−

∂xi
(q) +

n∑
i,j=1

yiyj
∂2fγ(t)

−

∂xi∂xj
(q)

+
1

2

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1− u)2
∂3fγ(t)

−

∂xi∂xj∂xk
(c(u)) du, (5.4)

and hence,

(fγ(t)
−(q + y)− fγq(t)

−(q + y))− (fγ(t)
−(q)− fγq(t)

−(q))

=

n∑
i=1

yi
(
∂fγ(t)

−

∂xi
(q)−

∂fγq(t)
−

∂xi
(q)

)
+

n∑
i,j=1

yiyj
(
∂2fγ(t)

−

∂xi∂xj
(q)−

∂2fγq(t)
−

∂xi∂xj
(q)

)

+
1

2

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1−u)2×
(
∂3fγ(t)

−

∂xi∂xj∂xk
(c(u))−

∂3fγq(t)
−

∂xi∂xj∂xk
(c(u))

)
du. (5.5)

From (2) of Lemma 3.4,

lim
t→∞

(fγ(t)
−(q + y)− fγq(t)

−(q + y))− (fγ(t)
−(q)− fγq(t)

−(q))

= (−Fγ(q + y) + Fγq (q + y)) + (Fγ(q)− Fγq (q)) = 0. (5.6)

Therefore, from Lemmas 3.4 and 5.3, and since the absolute 2-nd and 3-rd deriva-

tives of fγ(t)
− are bounded above by K, we have

lim
t→∞

n∑
i=1

yi
(
∂fγ(t)

−

∂xi
(q)−

∂fγq(t)
−

∂xi
(q)

)
= 0, (5.7)

lim
t→∞

n∑
i,j=1

yiyj
(
∂2fγ(t)

−

∂xi∂xj
(q)−

∂2fγq(t)
−

∂xi∂xj
(q)

)
= 0, (5.8)

lim
t→∞

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1− u)2

×
(

∂3fγ(t)
−

∂xi∂xj∂xk
(c(u))−

∂3fγq(t)
−

∂xi∂xj∂xk
(c(u))

)
du = 0. (5.9)

Equation (5.7) implies that dfγ(t)
−(q) converges to dfγq

−(q) as t → ∞. Equa-

tion (5.8) implies that Hfγ(t)−(q) converges to Hq as t→∞ because of (5.2). �
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From the limit situation of equation (5.4) as t → ∞, we can have the 2-nd

order Taylor polynomial of the Busemann function Fγ at q. We proceed to prove

that they have continuous coefficients for q. In the argument, we need to assume

Parallel Axiom.

Lemma 5.5. Let γ be a straight line in (M,F ) such that Ω(γ) satisfies

Parallel Axiom. If for any compact set N in M there exists a number K such

that D(γ, q)∓ < K at all points q ∈ N , then Hx = Hx
− for all x ∈M .

Proof. Let (U ;x1, . . . , xn) be a coordinate neighborhood around q such that

q = (q1, . . . , qn), and let c(u) = (q1 + uy1, . . . , qn + uyn) denote a curve in U . We

then have

fγq(t)
−(q + y)− fγq(t)

−(q) =

n∑
i=1

yi
∂fγq(t)

−

∂xi
(q) +

n∑
i,j=1

yiyj
∂2fγq(t)

−

∂xi∂xj
(q)

+
1

2

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1− u)2
∂3fγq(t)

−

∂xi∂xj∂xk
(c(u)) du, (5.10)

and hence, for t > 0,

(−fγq(t)
−(q + y) + fγq(−t)(q + y))− (−fγq(t)

−(q) + fγq(−t)(q))

=

n∑
i=1

yi
(
−
∂fγq(t)

−

∂xi
(q)+

∂fγq(−t)

∂xi
(q)

)
+

n∑
i,j=1

yiyj
(
−
∂2fγq(t)

−

∂xi∂xj
(q)+

∂2fγq(−t)

∂xi∂xj
(q)

)

+
1

2

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1−u)2×
(
−
∂3fγq(t)

−

∂xi∂xj∂xk
(c(u))+

∂3fγq(−t)

∂xi∂xj∂xk
(c(u))

)
du. (5.11)

From (3) of Lemma 3.4,

lim
t→∞

(−fγq(t)
−(q + y) + fγq(−t)(q + y))− (−fγq(t)

−(q) + fγq(−t)(q))

= (Fγq (q + y) +Bγq (q + y))− (Fγq (q) +Bγq (q)) = 0. (5.12)

Therefore, we have

lim
t→∞

n∑
i=1

yi
(
∂fγq(t)

−

∂xi
(q)−

∂fγq(−t)

∂xi
(q)

)
= 0, (5.13)

lim
t→∞

n∑
i,j=1

yiyj
(
∂2fγq(t)

−

∂xi∂xj
(q)−

∂2fγq(−t)

∂xi∂xj
(q)

)
= 0, (5.14)



Parallel axiom and the 2-nd order. . . 417

lim
t→∞

n∑
i,j,k=1

yiyjyk
∫ 1

0

(1− u)2

×
(
∂3fγq(t)

−

∂xi∂xj∂xk
(c(u))−

∂3fγq(−t)

∂xi∂xj∂xk
(c(u))

)
du = 0. (5.15)

Equation (5.13) implies that dfγq(t)
−(q) = dfγq(−t)(q). Equation (5.14) implies

that Hq
− = Hq, because of (5.2). �

Proof of Theorem 2.3. Let N be a compact set in M and ε > 0. Let

q ∈ N . From the definition of Hq, Hq
− and Lemma 5.5, there exists a number

t0 > 0 such that

‖Hfγq(t0)
−(q)−Hq(q)‖ < ε/9, ‖Hfγq(−t0)

(q)−Hq
−(q)‖ < ε/9,

‖Hq −Hq
−‖ < ε/9.

Hence, ‖Hfγq(t0)
−(q) − Hfγq(−t0)

(q)‖ < ε/3. Set p0 = γq(−t0) and p1 = γq(t0).

There exist neighborhoods Uq
′ of q, Up0 of p0 and Up1 of p1 such that

‖Hfy1
−(x)−Hfy0

(x)‖ < ε/3, (5.16)

‖Hfγx(t0)
−(x)−Hfy1

−(x)‖ < ε/3, (5.17)

‖Hfγx(−t0)
(x)−Hfy0

(x)‖ < ε/3, (5.18)

for any x ∈ Uq
′, y0 ∈ Up0 and y1 ∈ Up1 . Moreover, we can find a number

t(q) > 0 and a neighborhood Uq ⊂ Uq ′ such that the maximal minimizing geodesic

containing T (x, γ(t)) intersects both Up0 and Up1 for any x ∈ Uq and any number

t > t(q), because T (x, γ(t)) converges to a sub-ray of γx as t → ∞. We may

assume that γx(−t0) ∈ Up0 and γx(t0) ∈ Up1 for all x ∈ Uq.
Let x ∈ Uq be given, and let αx,t : (−∞,∞) → M be a unit speed geodesic

satisfying αx,t(0) = x and αx,t(d(x, γ(t))) = γ(t) for t > t(q). Then αx,t converges

to the unique parallel γx as t→∞. We may assume that y0(t) = αx,t(−t0) ∈ Up0
and y1(t) = αx,t(t0) ∈ Up1 . In the setting above, from Lemmas 4.1 and 4.2, we

have

‖Hfγx(t0)
−(x)−Hfγx(−t0)

(x)‖ < ε/3, (5.19)

Hfγx(t0)
−(x) < Hx = Hx

− < Hfγx(−t0)
(x), (5.20)

Hfy1(t)
−(x) < Hfγ(t)−(x) < Hfy0(t)

(x). (5.21)

From (5.20) and (5.21),

Hfy1(t)
−(x)−Hfγx(−t0)

(x) < Hfγ(t)−(x)−Hx < Hfy0(t)
(x)−Hfγx(t0)

−(x).
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The norm of the right hand side is evaluated by (5.18) and (5.19):

‖Hfy0(t)
(x)−Hfγx(t0)

−(x)‖
< ‖Hfy0(t)

(x)−Hfγx(−t0)
(x)‖+ ‖Hfγx(−t0)

(x)−Hfγx(t0)
−(x)‖ < ε,

and, similarly, by (5.17) and (5.19):

‖Hfγx(−t0)
(x)−Hfy1(t)

−(x)‖
< ‖Hfγx(−t0)

(x)−Hfγx(t0)
−(x)‖+ ‖Hfγx(t0)

−(x)−Hfy1(t)
−(x)‖ < ε.

Therefore, we have

‖Hfγ(t)−(x)−Hx‖
< max{‖Hfy0(t)

(x)−Hfγx(t0)
−(x)‖, ‖Hfγx(−t0)

(x)−Hfy1(t)
−(x)‖} < ε.

This implies that Hfγ(t)−(x) uniformly converges to Hx in x ∈ Uq. Therefore, Hx

is continuous. Moreover, Fγ has the 2-nd order Taylor polynomial with continuous

coefficients. Applying Lemma 7.1, we conclude that Fγ is of class C2. �

6. Parallel Axiom for the covering space of a torus of revolution

In this section, we review the property of straight lines in the universal cov-

ering space (M,ds2) of a Riemannian 2-torus of revolution. The same results

shown in this section are true (see [25]) even if M is a Finsler 2-torus of revolu-

tion but not Riemannian. However, we deal with a Riemannian case, since the

purpose of this section is to see what happens to Asymptote and Parallel Axiom.

Riemannian geometry is more familiar to us than Finsler geometry.

Let M = R2 and g : ds2 = f(y)2dx2 + dy2, where f(y) = f(x, y) > 0 and

f(y + k) = f(y) for all y ∈ R and integers k ∈ Z. Let τs(x, y) = (x + s, y) and

ψ(x, y) = (x, y + 1) for all (x, y) ∈ R2 and any s ∈ R. Then, all τs and ψn

are isometries on (M, g). If Φ is a group of isometries generated by τ1 and ψ,

then T 2 = M/Φ is a Riemannian 2-torus of revolution. In order to classify the

geodesics in a surface of revolution, Clairaut’s relation is most useful.

In the following lemma, we do not have to assume that f(y + k) = f(y) for

all k ∈ Z.

Lemma 6.1 (Clairaut, cf. [33, p. 213]). Let γ(t) = (x(t), y(t)), t ∈ (−∞,∞),

be a unit speed geodesic in (M, g). Then, g(γ̇(t), ∂/∂x) is constant for t ∈
(−∞,∞). If we denote the angle of γ̇(t) with ∂/∂x by ϕ(t), then f(y(t)) cosϕ(t)

is constant for t ∈ (−∞,∞).
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Proof. Here we show this lemma, using a property of a Jacobi vector

field. Since τs is a 1-parameter group of isometries, ∂/∂x is a Jacobi vector field

along γ(t). Hence, there exist constants A,B such that g(γ̇(t), ∂/∂x) = At + B

for all t ∈ (−∞,∞). The values in the left hand side around t = t0 are calculated

locally for any t0 ∈ (−∞,∞), in other words, in a thin strip S bounded by two tra-

jectories of τs containing γ(t0). The constants A,B are determined there. Let g1
be a Riemannian metric on R2 such that a bounded function f1(y) on R with

f1(y) = f(y) for (x, y) ∈ S replaces f(y). Then, for a geodesic γ1(t) which is iden-

tified with γ(t) around t = t0, we have the same equation g1(γ̇1(t), ∂/∂x) = At+B

for all t ∈ (−∞,∞). Since the left hand side is bounded, we have A = 0. �

The behavior of geodesics in a 2-torus of revolution is determined (cf. [6],

[10], [14], [25], [26] ). We mention the classification of straight lines in M from the

viewpoint of asymptote and parallel relations. In the following argument, we use

Lemma 6.1 without saying anything.

If p0 = (x0, y0) is a point such that f(y0) = min f , then all geodesics through

p0 defined on R are straight lines. Let γ(t) = (x(t), y(t)), t ∈ R, be a straight line

with γ(0) = p0 such that y(t) is not constant for t ∈ R. Then, |x(t)|, |y(t)| → ∞
as |t| → ∞. If γs = τs ◦ γ for all s ∈ R, then all γs are parallel to each other and

simply covers M . Namely, Ω(γ) = {γs | s ∈ R} satisfies Parallel Axiom.

We consider the case where y(t) = y0 for all t ∈ R. Let αp(t) = τt(p)

for all t ∈ R. The speed of αp is not 1, in general, but constant. As was

mentioned above, for p = (x, y), αp is a straight line if f(y) = min f . Next, for

any point q = (x3, y3) with f(y3) 6= min f , let p1 = (x1, y1) and p2 = (x2, y2)

be points such that y1 < y3 < y2, f(y1) = f(y2) = min f and R × (y1, y2)

contains no minimum point of f . Then there exist two straight lines γq
u and

γq
l such that they pass through q = γq

u(0) and γq
u (resp., γq

l) is asymptotic

to αp2 (resp., αp1). Further, the backward straight lines γq
u− and γq

`− are

asymptotes to the backward straight lines αp1
− and αp2

−, respectively. Therefore,

Ω(αp0) = {αp | p = (x, y), where f(y) = min f}, and it does not satisfy Parallel

Axiom if M is not flat.

However, in R× (y1, y2), if we set Ωu(αp2 , y1, y2) = {γqu | q = (x, y), y1 < y <

y2} and Ω`(αp1 , y1, y2) = {γq` | q = (x, y), y1 < y < y2}, then they satisfy Parallel

Axiom. Using this fact, we find what Λ(αp0) is. Let {. . . , z−1, z0 = y0, z1, . . . }
be the set of all minimum points of f such that zk < zk+1. Then, Λ(αp0) =

∪∞k=0Ωu(αp0 , z−k−1, z−k)∪∪∞k=0Ω`(αp0 , zk, zk+1)∪Ω(αp0). The set Λ(αp0) simply

covers M , but it does not satisfy Asymptote Axiom.

In the other case, when a straight line γ does not pass through any minimum

point of f , we take y1 and y2 such that f(y1) = f(y2) = min f , f(y) 6= min f
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for y ∈ (y1, y2), and γ lies in S = R × (y1, y2). Then, either γ = γγ(0)
u or

γ = γγ(0)
`. If p1 = (x, y1) and p2 = (x, y2), then Λ(γ) = Λ(αp2) if γ = γγ(0)

u, and

Λ(γ) = Λ(αp1) if γ = γγ(0)
`. Thus, we see that one of Fγ − Fαp2 and Fγ − Fαp1

is constant on M .

From these facts, we find the gradient vector fields of Busemann functions

onM and discuss their differentiability. Let γ(t) = (x(t), y(t)), t ∈ R, be a straight

line. We may assume that it passes through a minimum point p0 = (x0, y0) of f .

Recall that either (1) y((−∞,∞)) = R or (2) y(t) is constant for all t ∈ R.

Let V be the gradient vector field of Fγ on M . Since α ∈ Λ(γ) implies

τs ◦ α ∈ Λ(γ) for all s ∈ R, we have (τs)∗V (q) = V (τs(q)) for all q ∈ M and

s ∈ R. From this, the angle ϕ(q) of V (q) and ∂/∂x at q depends only on the

y-coordinate of q. Therefore, we can write g(−V (q), ∂/∂x) = f(y) cosϕ(y), and

−V (q) = (cosϕ(y)/f(y), sinϕ(y)) for q = (x, y) ∈M .

In case (1), from Clairaut’s relation, f(y) cosϕ(y) = f(y0) cosϕ(y0). Since

ϕ(y0) 6= 0, π, we have ϕ(y) 6= 0 for all y ∈ R. From these equations, ϕ is smooth,

proving that V and Fγ are smooth on M . Some precise equations of differentials

are seen in the argument for case (2).

In case (2), we examine the differentiability of the tangent vector field given

by γ̇u(0) = −V ((x, y)) for y < y0. Let γu(t) = (x(t), y(t)) and γ̇u(t)=(x′(t), y′(t))

for all t ∈ R. Then, x′(t) = cosϕ(y(t))/f(y(t)) and y′(t) = sinϕ(y(t)) for all

t ∈ R.

We may first suppose y′(t) > 0 for all t ∈ R, meaning that ϕ(y(t)) 6= 0, π.

Then, the straight line can be reparametrized by y, and we have f(y) cosϕ(y) =

const. Hence, along γu, differentiating both sides by y, we have

f ′ cosϕ− fϕ′ sinϕ = 0 and ϕ′ =
f ′ cosϕ

f sinϕ
. (6.1)

This implies that the vector field generated by γu(0) is differentiable at all points

(x, y) with f(y) 6= min f or equivalently ϕ(y) 6= 0, π. At those points, ϕ′ = 0 if

and only if f ′ = 0, since ϕ 6= π/2.

We evaluate the value of ϕ′(y) when ϕ(y + h) approaches to 0 = ϕ(y). We

assume that ϕ(y) = 0. Then, f ′(y) = 0, because f(y) = min f . Let K(y) be the

Gauss curvature of M at (x, y). Then it satisfies f ′′(y) + K(y)f(y) = 0. As we

see in Lemma 7.2 later, if K(y) < 0, we then have

ϕ′(y ± 0) = ±
√
−K(y) and ϕ′′(y ± 0) = − K ′(y)

3ϕ′(y ± 0)
,

where the double-sign corresponds. This means that the gradient vector field V

is not differentiable when ϕ(y) = 0, and its second derivatives are bounded.
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Since ϕ′(y ± 0) and ϕ′′(y ± 0) have the opposite signs when we use γ`(0),

i.e., ϕ(y + h) < 0, we conclude that if p0 = (x0, y0) with f(y0) = min f , then the

Busemann function Fαp0 is of class C1 on M , not differentiable twice at p = (x, y)

with f(y) = min f and y 6= y0. However, its 3-rd derivatives are bounded on M

when K(y) < 0 for y with f(y) = min f .

Furthermore, when K(y0) = 0 for y0 with f(y0) = min f , we see from

Lemma 7.2 that a Busemann function Fαp0 is at least of class C3 on M , although

Λ(γ) does not satisfy Asymptote Axiom for any geodesic γ(t) = (x(t), y0).

7. Taylor polynomials and higher order differentiability

In this section, we prove two lemmas which were used in the previous sec-

tions. We note that a function f may not be differentiable twice at p under the

assumption that there exists a Taylor polynomial of f at single point p.

Lemma 7.1. Let U be an open set in Rn, and f(x) a function defined

on U . Assume that f(x) has the 2-nd order Taylor polynomial with continuous

coefficients. Then, f(x) is of class C2.

Proof. Let e1, . . . , en be a natural basis of Rn and hi = hei for h ∈ R. We

denote the 2-nd order Taylor polynomial of f(x) at x ∈ U by

f(x+ y) = a(x) +

n∑
i=1

bi(x)yi +

n∑
i,j=1

cij(x)yiyj + o(‖y‖2), (7.1)

where the matrix function (cij(x)) is symmetric. From the assumption, a(x),

bi(x) and cij(x) are continuous for all x ∈ U . Setting y = 0, we have a(x) = f(x).

Setting y = hi, we then have

f(x+ hi)− f(x)− bi(x)h

h
= cii(x)h+

o(h2)

h
.

As h→ 0, we see fi(x) = bi(x) for all x ∈ U . Since bi(x) are continuous, f(x) is

continuously differentiable on U .

Next, setting y = hi + hj , we have

f(x+ hi + hj) = f(x+ hi) + fj(x+ hi)h+ cjj(x+ hi)h
2 + o(h2)

= f(x) + fi(x)h+ cii(x)h2 + o(h2)

+ fj(x+ hi)h+ cjj(x+ hi)h
2 + o(h2), (7.2)

and
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f(x+ hi + hj) = f(x) + (fi(x)h+ fj(x))h

+ (cii(x) + 2cij(x) + cjj(x))h2 + o(h2). (7.3)

Subtracting (7.3) from (7.2) in both sides, we have

0 = (fj(x+ hi)− fj(x)− 2cij(x)h)h+ (cjj(x+ hi)− cjj(x))h2 + o(h2). (7.4)

Hence,

fj(x+ hi)− fj(x)− 2cij(x)h

h
= −(cjj(x+ hi)− cjj(x)) +

o(h2)

h2
.

Since cjj(x) are continuous, we see fj(x) have partial derivatives and fji(x) =

2cij(x). Since they are continuous on U , f(x) is of class C2. �

Lemma 7.2. Let f(h) be a smooth function on a interval (−a, a) such that

f(h) > 0 and f(0) = min f =: c. Let K(h) := −f ′′(h)/f(h) for h ∈ (−a, a). We

define a continuous function ϕ(h) on (−a, a) satisfying that f(h) cosϕ(h) = c,

ϕ(h) ≥ 0 and ϕ(0) = 0. If K(0) < 0, then

ϕ′(±0) = ±
√
−K(0) and ϕ′′(±0) = − εK ′(0)

3
√
−K(0)

.

If K(0) = 0, we then have ϕ′(0) = 0 and ϕ′′(0) =
√
−K′′(0)

3 .

Proof. From the definition of ϕ(h), we have

sinϕ(h) =

√
f(h)2 − c2
f(h)

.

When h 6= 0, ϕ(h) is differentiable and

ϕ′(h) =
c2f ′(h)

f(h)2 cosϕ(h)
√
f(h)2 − c2

=
cf ′(h)

f(h)
√
f(h)2 − c2

. (7.5)

Let k ≥ 1 be the minimum integer such that f (k)(0) 6= 0. Since f(0) = c is the

minimum of f , the integer k is even and f (k)(0) > 0. The functions in the right

hand side of (7.5) have their higher order Taylor polynomials as in the following:

f(h) = f(0) +
f (k)(0)

k!
hk +

f (k+1)(0)

(k + 1)!
hk+1 + o(hk+1), (7.6)
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f ′(h) =
f (k)(0)

(k − 1)!
hk−1 +

f (k+1)(0)

k!
hk + o(hk). (7.7)

From (7.6), we have

f(h)2 = f(0)2 +
2f(0)f (k)(0)

k!
hk +

2f(0)f (k+1)(0)

(k + 1)!
hk+1 + o(hk+1).

Therefore, because of
√

1 + h = 1 + 1
2h+ o(h),

√
f(h)2 − f(0)2 = |h| k2

√
2f(0)f (k)(0)

k!

(
1 +

f (k+1)(0)

2(k + 1)f (k)(0)
h+ o(h)

)
.

The denominator in the right hand side of (7.5) is denoted by

f(h)
√
f(h)2 − f(0)2

= |h| k2 f(0)

√
2f(0)f (k)(0)

k!

(
1 +

f (k+1)(0)

2(k + 1)f (k)(0)
h+ o(h)

)
. (7.8)

Substituting (7.7) and (7.8) into (7.5), we have, if |h| = εh,

ϕ′(h) = ε
k
2 h

k
2−1

√
k!

2f(0)f (k)(0)

(
f (k)(0)

(k − 1)!
+
f (k+1)(0)(k + 2)

2(k + 1)!
h+ o(h)

)
. (7.9)

Assume that K(0) 6= 0. Then k = 2. From f ′′(0) = −K(0)f(0) and f (3)(0) =

−K ′(0)f(0), we have

ϕ′(h) = ε
√
−K(0)− εK ′(0)

3
√
−K(0)

h+ o(h).

Thus, we have ϕ′(±0) = ε
√
−K(0) and ϕ′′(±0) = − εK′(0)

3
√
−K(0)

.

Assume that K(0) = 0. Then k ≥ 4 and ϕ′(0) = 0. If k ≥ 6, we then have

ϕ′′(0) = 0, K ′(0) = 0 and K ′′(0) = 0. If k = 4, we then have

ϕ′(h) =

√
−K ′′(0)

3
h+ o(h).

Hence we have ϕ′′(0) =
√
−K′′(0)

3 . �
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