
Publ. Math. Debrecen

91/3-4 (2017), 427–439

DOI: 10.5486/PMD.2017.7755

Matchings in hypergraphs andCastelnuovo–Mumford regularity

By SOMAYEH MORADI (Ilam) and FAHIMEH KHOSH-AHANG (Ilam)

Abstract. In this paper, we introduce and generalize to hypergraphs some combi-

natorial invariants of graphs such as matching number and induced matching number.

Then we compare them and present some upper bounds for the regularity of the Stanley–

Reisner ring of ∆H for certain hypergraphs H in terms of the introduced generalizations

of matching numbers.

Introduction

There is a natural correspondence between simplicial complexes and hyper-

graphs. We associate to a hypergraph H the simplicial complex whose faces are

the independent sets of vertices of H, i.e., the sets which do not contain any

edge of H. This simplicial complex is called the independence complex of H and

is denoted by ∆H. Also, we associate to a simplicial complex ∆ a squarefree

ideal I∆, called the Stanley–Reisner ideal of ∆, which is generated by monomi-

als xi1 , . . . , xis where {xi1 , . . . , xis} is not a face of ∆. So squarefree monomial

ideals can be studied using these combinatorial ideas. Recently, edge ideals of

graphs, as the easiest class of squarefree monomial ideals, has been studied by

many researchers. Nice characterizations of the algebraic invariants, in terms of

data from graphs, have been studied (cf. [11], [12], [13], [15], [18] and [22]). Ex-

tending the concepts in graphs to hypergraphs and finding more general results in

hypergraphs, which will cover all squarefree monomial ideals, are of great interest,

see, for example, [6], [8], [9], [16] and [20]. One graph invariant, which has been
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studied extensively, is the matching number or other related graph parameters

(cf. [14]). In this paper, we are going to extend the notion of matchings and

induced matchings to hypergraphs. Then we will examine connections between

algebraic invariants and these extensions of matching numbers.

The Castelnuovo–Mumford regularity (or simply regularity) of an R-module

M is defined as

reg(M) := max{j − i| βi,j(M) 6= 0},

where βi,j(M) is the (i, j)-th Betti number of M . Bounding the Castelnuovo–

Mumford regularity of R/I∆H in terms of invariants of H has been studied ex-

tensively by many authors. In the case that H is a graph, in certain circum-

stances, reg(R/I∆H) is characterized precisely. For instance, in [8], [13] and [18],

respectively for chordal graphs, C5-free vertex-decomposable graphs and sequen-

tially Cohen–Macaulay bipartite graphs G, it was shown that reg(R/I(G)) = cG,

where I(G) is the edge ideal of G and cG is the induced matching number of G.

Furthermore, combinatorial characterizations of the Castelnuovo–Mumford reg-

ularity of the edge ideal of hypergraphs has been the subject of many works.

Indeed, in [9], the authors introduced the concept of 2-collage in a simple hyper-

graph as a generalization of the matching number in a graph, and proved that

the Castelnuovo–Mumford regularity of the edge ideal of a simple hypergraph is

bounded above in terms of 2-collages. In this paper, we provide a counterexam-

ple for [9, Lemma 3.4] which is a main tool to gain this bound (see also [10]).

Also, Morey and Villarreal, in [16], gave a lower bound for the regularity of

the edge ideal of any simple hypergraph in terms of an induced matching of the

hypergraph. Moreover, in [8], for d-uniform properly-connected hypergraphs a

lower bound for the regularity is given. For more results, see [3], [4], [7], [17], [21].

In this paper, we also study the regularity of the Stanley–Reisner ring of ∆H
for some families of hypergraphs, and relate it to some combinatorial concepts

and generalize or improve some results, which had been gained for graphs, such

as [13, Theorem 2.4].

The paper proceeds as follows. After reviewing some hypergraph termi-

nologies in the first section, in Section 2, we define the induced matching and

semi-induced matching numbers for a hypergraph H, which we denote by cH and

c′H, respectively. We compare them under different conditions. Also, we present

a class of hypergraphs H, consisting simple graphs such that cH = c′H.

In the light of [16, Corollary 3.9(a)], cH is a lower bound for reg(R/I∆H),

when H is a hypergraph. In Section 3, we are going to obtain some upper bounds

for reg(R/I∆H) for a hypergraph H. In Theorem 3.6, it is proved that if a vertex

decomposable hypergraphH is (C2, C5)-free, then reg(R/I∆H) ≤c′H ≤dim∆H+1.



Matchings in hypergraphs and Castelnuovo–Mumford regularity 429

This extends a result on graphs from [13] to hypergraphs, which states that for

a C5-free vertex-decomposable graph G, reg(R/I(G)) = cG.

1. A review of hypergraph terminology

In this section, we present some preliminaries on hypergraphs from [1] and [2].

Definition 1.1. A hypergraph is a pair (V, E), where V is a finite set of vertices,

and E is a collection of edges (or hyperedges). A hypergraph is called d-uniform if

all of its edges have the same cardinality d. So, every simple graph is a 2-uniform

hypergraph.

Throughout this paper, we assume that H = (V (H), E(H)) is a simple hy-

pergraph. That means that no element of E(H) contains another. A vertex of H
is called isolated if it is not contained in any edge of H.

Definition 1.2. Assume that H is a hypergraph. For any vertex x ∈ V (H),

H\x is a hypergraph with vertex set V (H)\{x} and edge set {E ∈ E(H) : x /∈ E}.
Moreover, H/x is a hypergraph with vertex set V (H) \ {x} whose edges are the

non-empty minimal elements (with respect to inclusion) of the set {E \ {x} : E ∈
E(H)}. It is clear that H \ x and H/x are two simple hypergraphs. They are

called deletion and contraction of H by x, respectively. Moreover, for a simplicial

complex ∆ with vertex set X and x ∈ X, the link of x in ∆ is defined as

lk∆(x) = {G ∈ ∆ : x /∈ G,G ∪ {x} ∈ ∆},

and the deletion of x is the simplicial complex

del∆(x) = {G ∈ ∆ : x /∈ G}.

One can easily see that lk∆(x) and del∆(x) are also simplicial complexes on

X \ {x}.

Note that for a vertex x ∈ V (H), del∆H(x) = ∆H\x and lk∆H(x) = ∆H/x.

Lemma 1.3. Assume that H is a hypergraph and x is a shedding vertex.

Then for each facet T of ∆H\x there is an edge F in H containing x such that

F \ {x} is contained in T .

Proof. Since x is a shedding vertex, T is not a facet of ∆H/x. So T is not

an independent set of vertices in H/x. This ensures that there is an edge F of H
such that F \ {x} ⊆ T . Since T is an independent set of vertices in H \ x, we

should have x ∈ F . �
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Definition 1.4 (see [2]). A chain in H is a sequence v0, E1, v1, . . . , Ek, vk,

where vi ∈ Ei for 1 ≤ i ≤ k, vi ∈ Ei+1 for 0 ≤ i ≤ k − 1, and E1, . . . , Ek

are edges in H. For our convenience, we denote this chain by E1, . . . , Ek, if

there is no ambiguity. We say that H is Ck-free if it doesn’t contain any chain

v0, E1, v1, . . . , Ek, v0 with k > 1 and distinct vis and Eis.

The following lemma can be easily gained from Definitions 1.2 and 1.4.

Lemma 1.5. Assume that k > 1 is an integer, H is a Ck-free hypergraph

and x ∈ V (H). Then H \ x and H/x are also Ck-free hypergraphs.

Definition 1.6. A d-uniform hypergraph H is called strongly connected if for

each pair of distinct edges E and E′, there is a chain E = E0, E1, . . . , Ek−1, Ek =

E′ of edges of H such that for each i := 0, 1, . . . , k − 1, |Ei ∩ Ei+1| = d− 1.

2. Matching numbers of hypergraphs

In this section, firstly, inspired by the definition of an induced matching

in [16], we introduce the concepts of induced matching number and semi-induced

matching number of a hypergraph. Then we give some equalities and inequalities

between these invariants.

Definition 2.1. A set {E1, . . . , Ek} of edges of a hypergraph H is called

a semi-induced matching if the only edges contained in
⋃k

`=1E` are E1, . . . , Ek.

A semi-induced matching where all of its elements are mutually disjoint is called

an induced matching. Also, we set

cH := max

{
|

k⋃
`=1

E`| − k : {E1, . . . , Ek} is an induced matching in H

}
,

c′H := max

{
|

k⋃
`=1

E`| − k : {E1, . . . , Ek} is a semi induced matching in H

}
,

and we call them the induced matching number and the semi-induced matching

number of H, respectively.

The following lemma is an immediate consequence of Definition 2.1.

Lemma 2.2. Assume thatH is a hypergraph and x∈V (H). Then c′H\x≤c
′
H.
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Example 2.3. If G is a graph, then the set of all edges of a graph is a perfectly

good semi-induced matching, although the semi-induced matching number will

usually not be achieved by this. For example, if G is a graph on {1, 2, 3, 4} with

edge set {E1 = {1, 2}, E2 = {2, 3}, E3 = {3, 4}, E4 = {2, 4}}, then {E1, E2} is

a semi-induced matching that induces c′G = 1.

Let E1, . . . , Ek be an induced matching of H and for each 1 ≤ i ≤ k, vi ∈ Ei.

Then it is clear that
⋃

(Ei \ {vi}) is an independent set of vertices in H, and

so cH ≤ dim(∆H) + 1. But in the following theorem we gain more. In fact,

it compares the invariants cH, c′H and dim(∆H) for an arbitrary hypergraph H.

Theorem 2.4. For any hypergraph H, we have the following inequalities:

cH ≤ c′H ≤ dim(∆H) + 1

Proof. It is clear that every induced matching ofH is a semi-induced match-

ing. So, we have cH ≤ c′H. To prove the last inequality, suppose that {E1, . . . , Ek}
is a semi-induced matching in H such that c′H = |

⋃k
`=1E`| − k. Set S0 = ∅ and

for each 1 ≤ i ≤ k, if Ei ∩ Si−1 6= ∅, then set Si = Si−1; else, choose a vertex

xi ∈ Ei and set Si = Si−1 ∪ {xi}. Now, consider the set G = (
⋃k

`=1E`) \ Sk. We

claim that G is an independent set of vertices in H. By contrary, assume that

E ⊆ G for some E ∈ E(H). Then E ∩ Sk = ∅ and E ⊆
⋃k

`=1E`. So E = Ei

for some 1 ≤ i ≤ k, since {E1, . . . , Ek} is a semi-induced matching in H. From

the choice of xis, it is clear that xj ∈ Ei ∩ Sk for some 1 ≤ j ≤ i, which is

a contradiction. Therefore, G is contained in a facet F of ∆H. Since |Sk| ≤ k, we

have c′H ≤ |G| ≤ |F | ≤ dim(∆H) + 1, which completes the proof. �

The following example illustrates that the inequalities in Theorem 2.4 can

be strict.

Example 2.5. Let H be a hypergraph with vertex set V = {x1, . . . , x6} and

edges E1 = {x1, x2, x3}, E2 = {x2, x3, x4} and E3 = {x4, x5, x6}. Then one can

see that cH = 2 and c′H = 3. So cH < c′H.

Assume that G is a star graph with vertex set V = {x1, . . . , x4} and edges

{x1, x2}, {x1, x3}, {x1, x4}. Then one can easily see that c′G =1, but dim(∆G)=2.

So, even when H is a graph, the second inequality in Theorem 2.4 can be strict.

Remark 2.6. It is easily seen that when H is a graph, the induced matching

number cH, as we have defined it, coincides with the well-known definition in

graph theory (cf. [5]); i.e., the maximum number of 3-disjoint edges in H. Also,

one may find that a semi-induced matching corresponds to any subset A of non-

isolated vertices of H. So, the semi-induced matching number is the maximum

of the number of vertices in A, minus the number of edges contained in A.
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In the following proposition, we provide conditions under which cH = c′H.

Proposition 2.7. Assume that H is a d-uniform hypergraph such that for

each pair of distinct edges E and E′, E ∩ E′ 6= ∅ implies that |E ∩ E′|= d − 1.

Then cH=c′H. So c′H ≤ mH, for the special class of hypergraphs consisting simple

graphs. (Note that the mentioned condition in this proposition is different from

the property of strongly connectedness for hypergraphs.)

Proof. In view of Theorem 2.4, it is enough to show that c′H ≤ cH. To

this end, assume that {E1, . . . , Ek} is a semi-induced matching in H such that

|
⋃k

`=1E`| − k = c′H. It is sufficient to show that there is a subset S of {1, . . . , k}
such that {E` : ` ∈ S} is an induced matching in H and

|
k⋃

`=1

E`| − k ≤ |
⋃
`∈S

E`| − |S|.

We use induction on k. The result is clear when k = 1. So assume inductively

that k > 1, and the result is true for smaller values of k. We may consider the

following cases.

Case 1. Suppose that there is an integer 1 ≤ i ≤ k such that Ei∩(
⋃k

`=1, 6̀=iE`)

= ∅. Then by inductive hypothesis, there is a subset S of {1, . . . , i−1, i+1, . . . , k}
such that {E` : ` ∈ S} is an induced matching in H, and we have

|
k⋃

`=1, 6̀=i

E`| − (k − 1) ≤ |
⋃
`∈S

E`| − |S|.

Now, set S′ = S ∪ {i}. It is obvious that {E` : ` ∈ S′} is an induced matching

in H, and we have

|
k⋃

`=1

E`| − k = |
k⋃

`=1, 6̀=i

E`| − (k − 1) + |Ei| − 1

≤ |
⋃
`∈S

E`| − |S|+ |Ei| − 1 = |
⋃
`∈S′

E`| − |S′|

as desired.

Case 2. Suppose that there is an integer 1 ≤ i ≤ k such that 0 < |Ei ∩
(
⋃k

`=1, 6̀=iE`)| < |Ei|. Then inductive hypothesis implies that there is a subset S



Matchings in hypergraphs and Castelnuovo–Mumford regularity 433

of {1, . . . , i− 1, i+ 1, . . . , k} such that {E` : ` ∈ S} is an induced matching in H,

and

|
k⋃

`=1, 6̀=i

E`| − (k − 1) ≤ |
⋃
`∈S

E`| − |S|.

On the other hand, by our assumption onH, we should have |Ei∩(
⋃k

`=1, 6̀=iE`)| =
d− 1. Now, we have

|
k⋃

`=1

E`| − k = |
k⋃

`=1, 6̀=i

E`| − (k − 1) + |Ei| − |Ei ∩ (

k⋃
`=1, 6̀=i

E`)| − 1

≤ |
⋃
`∈S

E`| − |S|+ d− (d− 1)− 1 = |
⋃
`∈S

E`| − |S|

as desired.

Case 3. Suppose that for each 1 ≤ i ≤ k, Ei ⊆
⋃k

`=1, 6̀=iE`. Then by

inductive hypothesis, there is a subset S of {1, . . . , k − 1} such that {E` : ` ∈ S}
is an induced matching in H, and

|
k−1⋃
`=1

E`| − (k − 1) ≤ |
⋃
`∈S

E`| − |S|.

So, we have

|
k⋃

`=1

E`| − k = |
k−1⋃
`=1

E`| − (k − 1)− 1

≤ |
⋃
`∈S

E`| − |S| − 1 ≤ |
⋃
`∈S

E`| − |S|

as desired. �

Remark 2.8. Note that although the conditions of Proposition 2.7 look like

so extremely, it contains the following types of hypergraphs:

(i) H is a graph;

(ii) H is a hypergraph whose every connected component has either the vertex

set V = {x1, . . . , xd−1, y1, . . . , yn} and edge set {Ei = {x1, . . . , xd−1, yi} :

1 ≤ i ≤ n}; or the vertex set V = {x1, . . . , xd+1} and its edge set is a subset

of the set of all d-subsets of V .

So, one may reduce the proof in each case separately.

As an immediate consequence of Proposition 2.7, we obtain the following.

Corollary 2.9. For a simple graph G, we have cG = c′G.



434 Somayeh Moradi and Fahimeh Khosh-Ahang

3. Regularity of edge ideals of certain hypergraphs

In this section, we show that for a hypergraph H, the introduced invariants

in Section 2 give bounds for reg(R/I∆H), and for some families of hypergraphs

we are able to calculate reg(R/I∆H) exactly in terms of these numbers. We begin

by the following remark.

As a main result of this paper, we are going to show that c′H is an upper

bound for reg(R/I∆H) for a certain class of hypergraphs. To this end, we need to

recall the following definition.

Definition 3.1. Let∆be a simplicial complex on the vertex setV={x1, . . . ,xn}.
Then ∆ is vertex-decomposable if either:

(1) The only facet of ∆ is {x1, . . . , xn}, or ∆ = ∅.
(2) There exists a vertex x ∈ V such that del∆(x) and lk∆(x) are vertex-decom-

posable, and every facet of del∆(x) is a facet of ∆.

A vertex x ∈ V for which every facet of del∆(x) is a facet of ∆ is called

a shedding vertex of ∆. Note that this is equivalent to say that no facet of lk∆(x)

is a facet of del∆(x).

A hypergraph H is called vertex-decomposable, if the independence complex

∆H is vertex-decomposable, and a vertex of H is called a shedding vertex if it is

a shedding vertex of ∆H. So the next lemma immediately follows.

Lemma 3.2. Let H be a hypergraph. Then

(i) if x is a shedding vertex of H and {E1, . . . , Ek} is the set of all edges of H
containing x, then every facet of H \ x contains Ei \ {x} for some 1 ≤ i ≤ k.

(ii) the vertex x is a shedding vertex of H if and only if for every maximal

independent set I of H \ x, there is an edge E of H containing x, such that

I contains E \ {x}.

For our main result, we also need to illustrate the relations between c′H,

c′H\x and c′H/x for a vertex x of H. Note that it is obvious that cH\x ≤ cH
and c′H\x ≤ c′H. Now, suppose that {E1 \ {x}, . . . , Ek \ {x}} is a semi-induced

matching in H/x such that c′H/x = |
⋃k

`=1(E` \ {x})| − k. The following example

shows that it is not necessarily true that {E1, . . . , Ek} is a semi-induced matching

in H.

Example 3.3. Let H be a hypergraph with V (H) = {x1, . . . , x5} and E(H) =

{E1 = {x1, x2, x3}, E2 = {x2, x3, x4}, E3 = {x4, x5}}. Then E(H/x1) = {E1 \
{x1}, E3 \{x1}}. It is clear that {E1 \{x1}, E3 \{x1}} is a semi-induced matching

in H/x1, but {E1, E3} is not a semi-induced matching in H.
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Now, the following two lemmas provide conditions under which we can get

to a semi-induced matching in H from one in H/x, for a vertex x of H.

Lemma 3.4. Assume that H is a C2-free hypergraph, x is a vertex of H
and k is the smallest integer such that there exists a semi-induced matching

{E1 \ {x}, . . . , Ek \ {x}} in H/x such that c′H/x = |
⋃k

`=1(E` \ {x})| − k. Then

{E1, . . . , Ek} is a semi-induced matching inH, and c′H/x ≤ c
′
H. Moreover if x ∈ Ei

for some 1 ≤ i ≤ k, we have c′H/x + 1 ≤ c′H.

Proof. Suppose that there is an edge E of H such that E ⊆
⋃k

`=1E`. Then

E \ {x} ⊆
⋃k

`=1(E` \ {x}), and by the definition of semi-induced matching, when

E \ {x} is an edge, then E \ {x} = Ei \ {x} for some 1 ≤ i ≤ k. Now, we have

three cases.

Case 1. If x ∈ E, then E \{x} = Ei\{x}, for some 1 ≤ i ≤ k. If x 6∈ Ei, then

E strictly contains Ei, which is a contradiction. So, x ∈ Ei, and hence E = Ei

as desired.

Case 2. If x 6∈ E and E is an edge of H/x, then E = Ei \ {x}, for some

1 ≤ i ≤ k. If x ∈ Ei, then Ei strictly contains E, which is a contradiction. So,

x 6∈ Ei, which implies that E = Ei as desired.

Case 3. If x 6∈ E and E is not an edge of H/x, then there is an edge E′ of H
containing x such that E′ \{x} ⊂ E and E′ \{x} is an edge of H/x. So, E∩E′ =

E′ \ {x}. Since H is C2-free, |E′ \ {x}| = 1. Since E′ \ {x} ⊆
⋃k

`=1(E` \ {x}), we

get that E′ \ {x} = Ei \ {x} for some 1 ≤ i ≤ k. Thus |Ei \ {x}| = 1. Moreover,

Ei \ {x} *
⋃k

`=1, 6̀=i(E` \ {x}), since otherwise Ei \ {x} ⊆ Ej \ {x} for some j 6= i,

which is impossible. Therefore, {E` \ {x}, 1 ≤ ` ≤ k, ` 6= i} is a semi inducing

matching inH/x and |
⋃k

`=1, 6̀=i(E`\{x})|−(k−1) = |
⋃k

`=1(E`\{x})|−1−(k−1) =

c′H/x, which contradicts our assumption on k. So this case cannot occur.

Hence, {E1, . . . , Ek} is a semi-induced matching in H. Now, if x ∈ Ei for

some 1 ≤ i ≤ k, we have

c′H/x = |
k⋃

`=1

(E` \ {x})| − k = |
k⋃

`=1

E`| − k − 1 ≤ c′H − 1,

which completes the proof. �

Lemma 3.5. Assume that H is a (C2, C5)-free hypergraph, x is a shedding

vertex of H and {E1 \ {x}, . . . , Ek \ {x}} is a semi-induced matching in H/x such

that x 6∈ E` for all 1 ≤ ` ≤ k. Then there is an edge F of H containing x such

that {E1, . . . , Ek, F} is a semi-induced matching in H. Moreover, c′H/x + 1 ≤ c′H.
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Proof. By definition of semi-induced matching, {E1, . . . , Ek} forms a semi-

induced matching inH. Suppose, in contrary, that there is no edge F containing x

such that {E1, . . . , Ek, F} is a semi-induced matching. Then for each edge F

containing x, there is an edge F ′ such that F ′ /∈ {E1, . . . , Ek, F}, F ′ ∩F 6= ∅ and

F ′ \ F is contained in
⋃k

`=1E`.

Since H is C2-free, the intersection of any two edges contains at most one

vertex. Thus, F ∩ F ′ contains a single vertex y, and y is the unique vertex of F ′

that is not contained in
⋃k

`=1E`. Also, if F and G are both edges containing x,

then F ∩G = {x}. It follows that F ′ does not contain x, and that F ′ and G′ are

distinct.

Now, set S =
⋃

x∈F (F ′ \ F ). We claim that S is an independent set of

vertices in H/x. Suppose, in contrary, that S is not independent. Then, since S

is contained in the vertex set of the semi-induced matching {E1, . . . , Ek}, there

is some E` ∈ {E1, . . . , Ek} with E` ⊆ S. In particular, for some edges F,G

containing x, the edge E` intersects non-trivially with both F ′ and G′. By the

distinctness of F,G, F ′, G′, the edges E` − −F ′ − −F − −G − −G′ − −E` form

a C5 in H (note that for each pair of integers 1 ≤ i, j ≤ s, Fj ∩ F ′j 6⊆ F ′i \ Fi,

because otherwise, since F ′i \ Fi and F ′j \ Fj are contained in
⋃k

`=1E`, we should

have F ′j ⊆
⋃k

`=1E`, which is a contradiction. Hence, E` ∩ F ′i 6= Fj ∩ F ′j for all

1 ≤ ` ≤ k). This is a contradiction, so we conclude that S is an independent set.

Finally, let T be a maximal independent set of vertices in H/x containing S.

Since x is a shedding vertex in H, by Lemma 1.3 there is an edge F of H with

x ∈ F such that F \ {x} ⊆ T . But then F ′ ⊆ S ∪ (F \ {x}) ⊆ T , a contradiction.

We conclude that there is an edge F such that {E1, . . . , Ek, F} is a semi-

induced matching in H. By hypothesis, F \ {x} is not contained in
⋃k

`=1E`,

so

c′H/x + 1 ≤ |F ∪
k⋃

`=1

E`| − (k + 1) ≤ c′H. �

Now, we are ready to state our main result of this section.

Theorem 3.6. Let H be a (C2, C5)-free vertex-decomposable hypergraph.

Then

reg(R/I∆H) ≤ c′H.

Proof. We use induction on |V (H)|. If |V (H)| = 2, the result is clear.

Suppose, inductively, that the result has been proved for smaller values of |V (H)|.
Assume that x is a shedding vertex of H. In the light of Lemma 1.5, H \ x and

H/x are (C2, C5)-free vertex-decomposable hypergraphs. By inductive hypothesis,
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we have

reg(R/I∆H\x) ≤ c′H\x and reg(R/I∆H/x
) ≤ c′H/x.

On the other hand, by [9, Theorem 4.2], we have the inequality

reg(R/I∆H) ≤ max{reg(R/I∆H\x), reg(R/I∆H/x
) + 1}.

Hence

reg(R/I∆H) ≤ max{c′H\x, c
′
H/x + 1}.

Now, the result immediately follows from Lemmas 2.2, 3.4 and 3.5. �

Remark 3.7. Note that, in the light of Theorems 2.4 and 3.6, ifH is a (C2, C5)-

free vertex-decomposable hypergraph, then we have

reg(R/I∆H) ≤ c′H ≤ dim(∆H) + 1.

Recall that a subset C of the edges of a hypergraph H is called a 2-collage for

H if for each edge E of H we can delete a vertex v such that E \ {v} is contained

in some edge of C.

Example 3.8. Assume that d ≥ 3, and H is a d-uniform simple hypergraph

with vertex set V (H) =
⋃k

i=1

⋃d−1
j=1{xi,j} ∪ {x} and edge set E(H) = {Ei =

{xi,1, . . . , xi,d−1, x} : 1 ≤ i ≤ k}. One can easily check that H is a (C2, C5)-free

vertex-decomposable hypergraph, and {E1, . . . , Ek} is the semi-induced matching

of H such that c′H = |
⋃k

i=1Ei| − k. Hence, by Theorem 3.6, we have

reg(R/I∆H) ≤ k(d− 2) + 1.

We remark that this is an improvement over the bound obtained for this hyper-

graph by [9, Theorem 1.2]. For one may find out that the only 2-collage of H is

{E1, . . . , Ek}. So, in the light of [9, Theorem 1.2], we have

reg(R/I∆H) ≤ k(d− 1).

The above example illustrates that for d ≥ 3 and large enough values of k,

the upper bound on reg(R/I∆H) presented in [9, Theorem 1.2] in this special

case is much larger than the actual value of reg(R/I∆H), and our upper bound

in Theorem 3.6 is better than the one given in [9, Theorem 1.2]. Note that the

proof of [9, Lemma 3.4] has some flaws, and so the proof of [9, Theorem 1.2] will

be uncertain. The following example shows this defect.
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Example 3.9. Assume that H is a hypergraph with vertex set V = {a, b, c, d,
e, f} and edge set {{a, b}, {a, c}, {d, f}, {e, f}, {b, c, d, e}}. With the notations

in [9], for each edge E of H, let HE be the hypergraph whose edge set consists of

the minimal (under inclusions) members of {E∪E′ : E′ 6= E is an edge of H}. So,

by considering E = {a, b}, the edge set of HE is {{a, b, c}, {a, b, d, f}, {a, b, e, f}}.
Now, one can easily see that {E0 = {b, c, d, e}} is a 2-collage for H, but {E ∪E0}
is not even an edge of HE and it doesn’t contain any 2-collage of HE . Also, for

each choice of E 6= E0, the above assertion holds. This shows the mentioned

defect of the proof of [9, Lemma 3.4].

In the situation when cH = c′H, by [16, Corollary 3.9(a)] together with The-

orem 3.6, we have that

reg(R/I∆H) = cH = c′H.

It is thus natural to ask: for what hypergraphs does the equality cH = c′H hold?

With this point of view, [16, Corollary 3.9(a)], Proposition 2.7 and Theorems 2.4

and 3.6 imply the following corollaries, which characterize reg(R/I∆H) precisely

in terms of combinatorial invariants.

Corollary 3.10 (compare [13, Theorem 2.4]). If H is a (C2, C5)-free vertex-

decomposable hypergraph such that cH = c′H, then

reg(R/I∆H) = cH.

In particular, we recover the following.

Corollary 3.11 (see [13, Theorem 2.4]). If G is a simple C5-free vertex-

decomposable graph, then

reg(R/I∆G
) = cG.
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