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Weakly stretch Finsler metrics

By BEHZAD NAJAFI (Tehran) and AKBAR TAYEBI (Qom)

Abstract. In this paper, we introduce a new non-Riemannian quantity named

mean stretch curvature. A Finsler metric with vanishing mean stretch curvature is called

weakly stretch metric. This class of Finsler metrics contains the class of stretch metrics.

First, we show that every complete weakly stretch Finsler manifold with bounded mean

Cartan torsion is a weakly Landsberg manifold. Then, we prove a rigidity theorem

stating that every compact weakly stretch manifold with negative flag curvature reduces

to a Riemannian manifold. Finally, we show that every generalized Berwald Randers

metric with a Killing form β with respect to α is a weakly stretch metric if and only if

it is a Berwald metric.

1. Introduction

In Finsler geometry, there are several important non-Riemannian quantities:

the Cartan torsion C, the Berwald curvature B, the Landsberg curvature L, the

mean Landsberg curvature J and the stretch curvature Σ, etc. (see, [9], [21], [17]

and [28]). They all vanish for Riemannian metrics, hence they are said to be non-

Riemannian. These non-Riemannian geometric quantities describe the difference

between Finsler geometry and Riemann geometry. The study of these quantities

is benefit for us to make out their distinction and the nature of Finsler geometry.

Let (M,F ) be a Finsler manifold. There are two basic tensors on Finsler

manifolds: the fundamental metric tensor gy and the Cartan torsion Cy, which

are second and third order derivatives of 1
2F

2
x at y ∈ TxM0, respectively. The

rate of change of the Cartan torsion along geodesics, Ly is said to be Landsberg
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curvature. Taking trace with respect to gy in first and second variables of Cy

and Ly gives rise to mean Cartan torsion Iy and mean Landsberg curvature Jy,

respectively. The mean Landsberg curvature is the rate of change of the mean

Cartan torsion along geodesics.

In [3], L. Berwald introduced a non-Riemannian curvature so-called stretch

curvature and denoted it by Σy. He showed that this tensor vanishes if and only

if the length of a vector remains unchanged under the parallel displacement along

an infinitesimal parallelogram. Then, this curvature investigated by Shibata [16]

and Matsumoto [6]. A Finsler metric is said to be stretch metric if Σ = 0.

Taking trace with respect to gy in first and second variables of Σy gives rise to

mean stretch curvature Σ̄y. A Finsler metric is said to be a weakly stretch metric

if Σ̄ = 0. By definition, every weakly Landsberg metric is a weakly stretch metric.

It is interesting to find some topological condition on the manifold M such that

every weakly stretch metric on M reduces to a weakly Landsberg metric.

Theorem 1.1. Every complete weakly stretch manifold with bounded mean

Cartan torsion is weakly Landsbergian.

In Finsler geometry, it is natural to find the geometric assumptions under

which a Finsler manifold reduces to a Riemannian manifold. The best result

towards this question is due to H. Akbar-Zadeh, who proved that every com-

pact Finsler manifold with negative constant flag curvature is Riemannian [1].

Recently, Shen proved that a closed Finsler manifold with negative flag curva-

ture and constant S-curvature must be Riemannian [15]. He also proved that

if a weakly Landsberg manifold is of non-zero constant flag curvature, then it

must be Riemannian [15]. Then Wu extended this result and proved that any

closed weakly Landsberg manifold with negative flag curvature is Riemannian [31].

In this paper, we generalize their results to weakly stretch metrics as follows.

Theorem 1.2. Every compact weakly stretch manifold with negative flag

curvature is a Riemannian manifold.

A Finsler manifold (M,F ) is called a generalized Berwald manifold if there

exists a covariant derivative ∇ on M such that the parallel translations induced

by ∇ preserve the Finsler function F (see [19], [29] and [30]). If the covariant

derivative ∇ is also torsion-free, then (M,F ) is called a Berwald manifold. In [30],

Vincze showed that a Randers manifold is a generalized Berwald manifold if and

only if the dual vector field of the perturbating term is of constant Riemannian

length. In this paper, we study generalized Berwald Randers metric and prove

the following.



Weakly stretch Finsler metrics 443

Theorem 1.3. Let F = α+β be a Randers metric on a manifold M , and let

β be a Killing 1-form with respect to α. Suppose that F is generalized Berwald

metric. Then F is a weakly stretch metric if and only if F is a Berwald metric.

Throughout this paper, we use the Berwald connection on Finsler manifolds

(see [4], [5], [18] and [20]). The h- and v-covariant derivatives of a Finsler tensor

field are denoted by “ | ” and “, ” respectively.

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space

at x ∈ M , and by TM = ∪x∈MTxM the tangent bundle of M . A Finsler metric

on M is a function F : TM → [0,∞) which has the following properties:

(i) F is C∞ on TM0 := TM \ {0};
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ,

(iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive defi-

nite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define

Cy : TxM ⊗ TxM ⊗ TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian. For y ∈ TxM0, define the mean Cartan

torsion Iy by Iy(u) := Ii(y)ui, where Ii := gjkCijk.

There is a notion of distortion τ = τ(x, y) on TM associated with the

Busemann–Hausdorff volume form dV = σ(x)dx of the Finsler metric F , which

is defined by

τ(x, y) = ln

√
det(gij(x, y))

σ(x)
.

It is well known that Ii = ∂τ
∂yi (see [23]).

Let α =
√
aij(x)yiyj be a Riemannian metric, and β = bi(x)yi be a 1-

form on M with ||β||α := b =< 1. Then F = α + β is called a Randers

metric. To characterize Randers metric among Finsler metrics, we introduce



444 Behzad Najafi and Akbar Tayebi

the Matsumoto torsion. Let (M,F ) be an n-dimensional Finsler manifold. For

y ∈ TxM0, define the Matsumoto torsion My : TxM ⊗ TxM ⊗ TxM → R by

My(u, v, w) := Mijk(y)uivjwk, where

Mijk := Cijk −
1

n+ 1

{
Iihjk + Ijhik + Ikhij

}
,

and hij := gij − 1
F 2 gipy

pgjqy
q is the angular metric. A Finsler metric F is said to

be C-reducible if My = 0. Matsumoto proves that every Randers metric satisfies

My = 0. Later on, Matsumoto–Hōjō prove that the converse is true, too.

Lemma 2.1 ([7]). A Finsler metric F on a manifold of dimension n ≥ 3 is

a Randers metric if and only if My = 0, ∀y ∈ TM0.

The horizontal covariant derivatives of C along geodesics give rise to the

Landsberg curvature Ly : TxM ⊗ TxM ⊗ TxM → R defined by Ly(u, v, w) :=

Lijk(y)uivjwk, where Lijk := Cijk|sy
s. The family L := {Ly}y∈TM0

is called

the Landsberg curvature. A Finsler metric is called a Landsberg metric if L=0.

The horizontal covariant derivatives of I along geodesics give rise to the mean

Landsberg curvature Jy(u) := Ji(y)ui, where Ji := gjkLijk = Ii|sy
s. A Finsler

metric is said to be weakly Landsbergian if J = 0 (see [11] and [12]).

Define the stretch curvature Σy : TxM ⊗ TxM ⊗ TxM ⊗ TxM → R by

Σy(u, v, w, z) := Σijkl(y)uivjwkzl, where

Σijkl := 2(Lijk|l − Lijl|k).

A Finsler metric is said to be stretch metric if Σ = 0 [3]. Every Landsberg

metric is a stretch metric. It is well known that Σ = 0 if and only if the length of

a vector remains unchanged under the parallel displacement along an infinitesimal

parallelogram. Taking an average on the two first indices of the stretch curvature,

we get a new non-Riemannian curvature, namely, mean stretch curvature.

Definition 2.1. For y ∈ TxM0, define Σ̄y : TxM ⊗ TxM → R by Σ̄y(u, v) :=

Σ̄ij(y)uivj , where Σ̄ij := gklΣklij . A Finsler metric is said to be a weakly stretch

metric if Σ̄ = 0.

It is easy to see that every Landsberg metric or stretch metric is a weakly

stretch metric.

Given a Finsler manifold (M,F ), a global vector field G is induced by F

on TM0, which in a standard coordinate (xi, yi) for TM0 is given by G = yi ∂
∂xi −

2Gi(x, y) ∂
∂yi , where

Gi(x, y) :=
1

4
gil

{
∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
.
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The vector field G is called the associated spray to (M,F ). In local coordinates,

a curve c = c(t) is a geodesic if and only if its coordinates (ci(t)) satisfy c̈i +

2Gi(ċ) = 0 (see [10]).

The notion of Riemann curvature for Riemann metrics can be extended to

Finsler metrics and sprays. For a vector y ∈ TxM0, the Riemann curvature

Ry : TxM → TxM is defined by

Ry(u) = Rik(y)uk
∂

∂xi
,

where

Rik(y) := 2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk

Take an arbitrary plane P ⊂ TxM (flag) and a non-zero vector y ∈ P (flag pole),

the flag curvature K = K(P, y) is defined by

K(P, y) :=
gy
(
Ry(v), v

)
gy(y, y)gy(v, v)− gy(v, y)gy(v, y)

,

where v is an arbitrary vector in P such that P = span{y, v}. F is said to be

of scalar curvature if, for any non-zero vector y ∈ TxM0 and any flag P ⊂ TxM ,

x ∈M , with y ∈ P , K(P, y) = λ(x, y) is independent of P , or equivalently,

Ry = λ(x, y)F 2(y)
{
I − gy(y, .)y

}
, y ∈ TxM, x ∈M,

where I : TxM → TxM denotes the identity map and gy(y, .) = 1
2 [F 2]yidy

i. It is

said to be of constant curvature λ if the above identity holds for the constant λ.

For a vector y ∈ TxM0, define By : TxM ⊗ TxM ⊗ TxM → TxM and

Ey : TxM ⊗ TxM → R by By(u, v, w) := Bijkl(y)ujvkwl ∂
∂xi |x and Ey(u, v) :=

Ejk(y)ujvk, where

Bijkl(y) :=
∂3Gi

∂yj∂yk∂yl
(y), Ejk(y) :=

1

2
Bmjkm(y),

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. B and E are called the Berwald

curvature and mean Berwald curvature, respectively (see [8]). A Finsler metric

is called a Berwald metric and a mean Berwald metric if B = 0 and E = 0,

respectively.
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3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. For this, we need the

following.

Lemma 3.1. Let (M,F ) be a Finsler manifold. Suppose that F is a weakly

stretch metric. Then, for any geodesic c = c(t) and any parallel vector field

V = V (t) along c, the function I(t) := Iċ(V (t)) must be in the following form:

I(t) = t J(0) + I(0). (1)

Proof. By definition, we have

Σ̄ij = 2(Ji|j − Jj|i).

By assumption, F is weakly stretch metric. Then

Ji|j = Jj|i. (2)

Contracting (2) with yj , we have

Ji|jy
j = 0. (3)

Let

J(t) := Jċ(V (t)). (4)

From our definition of Jy, we have J(t) = I
′
(t). Then by (4), we obtain

I
′′
(t) = J

′
(t) = Ji|l(ċ(t))ċ

l(t)V i(t) = 0. (5)

Then (5) yields (1). �

Remark 3.1. Suppose that F is a weakly stretch metric, i.e., Ji|j = Jj|i.

Then, we have Ji|jy
j = 0, which means that the rate of change of the mean

Landsberg curvature is constant along any geodesic.

Remark 3.2. Let (M,F ) be a Finsler space and c : [a, b]→M be a geodesic.

For a parallel vector field V (t) along c,

gċ
(
V (t), V (t)

)
= constant. (6)
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Proof of Theorem 1.1. Let (M,F ) be a complete Finsler manifold. Sup-

pose that F is a weakly stretch metric. Take an arbitrary unit vector y ∈ TxM
and an arbitrary vector v ∈ TxM . Let c = c(t) be the geodesic with c(0) = x and

ċ(0) = y, and V (t) be the parallel vector field along c with V (0) = v. Then by

Lemma 3.1, we get

I(t) = t J(0) + I(0). (7)

Suppose that Iy is bounded, i.e., there is a constant A <∞ such that

||I||x := sup
y∈TxM0

sup
v∈TxM

Iy(v)

[gy(v, v)]
3
2

≤ A. (8)

By Remark 3.2, we have |I(t)| ≤ AQ 3
2 <∞ for some constant Q. Therefore, I(t)

is a bounded function on (−∞,∞). Thus, letting t → ±∞ in (7) implies that

Jy(v) = J(0) = 0. Hence, F is a weakly Landsberg metric. �

4. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. First, we must mention

that weakly stretch curvature has a delicate relation with the flag curvature.

Indeed, we discover a relation between the distortion and the flag curvature on

weakly stretch manifolds of scalar flag curvature K = K(x, y). Indeed, we have

Proposition 4.1. Let (M,F ) be an n-dimensional Finsler manifold. Sup-

pose that F is a weakly stretch metric of non-zero scalar flag curvature K =

K(x, y). Then K is given by following

K = εe
n+1
3 (σ−τ), (9)

where ε = ±1 depending on the sign of K, σ = σ(x) is a scalar function on M

and τ is the distortion of F .

Proof. For Finsler metric F of scalar flag curvature K, the following holds:

Lijk|sy
s + KF 2Cijk +

1

3
F 2
{
hijKk + hjkKi + hkiKj

}
= 0, (10)

where Ki = ∂K
∂yi (for more details, see [1]). Multiplying (10) with gjk and using

Ji|sy
s = 0, we get

KIi +
3

n+ 1
Ki = 0. (11)



448 Behzad Najafi and Akbar Tayebi

Taking into account Ii = ∂τ
∂yi , we get the following:

{
τ +

3

n+ 1
ln(εK)

}
yi

= 0. (12)

Thus, for some scalar function σ = σ(x) on M , we have

τ +
3

n+ 1
ln(εK) = σ, (13)

and consequently we get (9). �

Proof of Theorem 1.2. Let F be a weakly stretch metric of negative flag

curvature on a compact manifold M . Define f := F 2IiI
i, where Ii is the mean

Cartan torsion of F . The scalar function f is homogeneous of degree zero on TM0.

It is known that £G(F ) = 0, i.e., F is constant on every geodesic. Therefore, we

have

£G(f) = f|sy
s = F 2IiIi|sy

s + F 2Ii|sy
sIi = 2F 2J iIi = 0, (14)

where we have used Theorem 1.1. (14) means that f is constant along geodesics

of F . Using a Ricci identity given in [15], we get

f,pR
p
i + f,i|p|qy

pyq = 0. (15)

Let c : R→M be an arbitrary unit speed geodesic, and put

φ(t) := f,if,jg
ij
(
c(t), ċ(t)

)
.

It is easy to see that

φ′′(t) = 2f,i|p|qf,j ċ
pċqgij + 2f,i|pf,j|q ċ

pċqgij . (16)

Plugging (15) into (16), we get

φ′′(t) = −2Rikf,if,jg
jk + 2f,i|pf,j|q ċ

pċqgij . (17)

Since F has negative flag curvature, we have φ′′(t) ≥ 0. It means that φ is

a convex function. Therefore, for every t0, we have

φ(t) ≥ φ(t0) + φ′(t0)(t− t0), ∀t ∈ R. (18)
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If φ′(t0) 6= 0 for some t0, then letting t → ∞ or t → −∞ implies that φ is

an unbounded function which is a contradiction with compactness of M . Thus,

φ′ is zero function, and consequently φ′′ = 0. It follows form (17) that

Rikf,if,jg
jk = f,i|pf,j|q ċ

pċqgij = 0. (19)

The non-negatively curved condition and the arbitrariness of the geodesic c imply

that f,i = 0. It means that f is a function of position. From (14), we get

∂f

∂xi
yi = 0.

Thus, ∂f
∂xi = 0, and as a result f is a constant. We recall that Ii = ∂τ

∂yi . For

a fixed point x0 ∈ M , the distortion attains its extremum on indicatrix of F at

x0. At this point f vanishes, and constancy of f implies that f = 0. The proof

follows from Deicke’s theorem. �

One can relax the topological condition from Theorem 1.2 and still get the

same result under a stronger condition on the flag curvature. More precisely, we

have the following.

Corollary 4.1. Every weakly stretch manifold with non-zero constant flag

curvature is a Riemannian manifold.

Proof. Multiplying (10) with gjk and using Ji|sy
s = 0 and Ki = 0, we get

KIi = 0. By Deicke’s theorem, it follows that F is Riemannian. �

A Finsler space is said to be R-quadratic if the Riemannian curvature Ry

of Berwald connection is quadratic in y ∈ TxM . Here, we prove that every R-

quadratic Finsler manifold is a stretch metric and get the following.

Corollary 4.2. Every R-quadratic Finsler manifold of non-zero scalar flag

curvature with dimension n ≥ 3 is a Riemannian manifold of constant curvature.

Proof. Indeed, a Finsler metric is R-quadratic if and only if the h-curvature

of the Berwald connection depends on position only in the sense of Bácsó–

Matsumoto [2]. We have the following Bianchi identity

Rhmij,k = Bhmjk|i −B
h
mik|j . (20)

Contracting (20) with yh yields

yhR
h
mij,k = yhB

h
mjk|i − yhB

h
mik|j = −2Lmjk|i + 2Lmik|j = Σmikj . (21)

Then, every R-quadratic Finsler metric is a stretch metric. In [8], it is proved

that every R-quadratic Finsler manifold of scalar flag curvature with dimension

n ≥ 3 is of constant flag curvature. By Corollary 4.1, we get the proof. �
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5. Proof of Theorem 1.3

In this section, we are going to prove Theorem 1.3. Suppose that F = α+β is

a Randers metric, where α =
√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi

is a 1-form on a manifold M . First, we find the stretch curvature and the mean

stretch curvature of F . Then, we get the following.

Lemma 5.1. Let F = α+β be a Randers metric. Then the stretch and the

mean stretch curvatures are given by following:

Σijkm =
2

n+ 1

{
Ji|mhjk − Ji|khjm + Jj|mhik − Jj|khim

}
− 2

n+ 1

{
(Jm|k − Jk|m)hij + 2JkLijm − 2JmLijk

}
, (22)

Σ̄km = 2(Jk|m − Jm|k). (23)

Proof. By Lemma 2.1, F is C-reducible:

Cijk =
1

n+ 1

{
Iihjk + Ijhik + Ikhij

}
. (24)

Taking a horizontal derivation of (24) implies that

Lijk =
1

n+ 1

{
Jihjk + Jjhik + Jkhij

}
. (25)

Since hij = gij − F−2yiyj , F|l = 0 and yi|l = 0, we have

hij|l = gij|l = −2Lijl.

Then by taking a horizontal derivation of (25), we get

Lijk|m =
1

n+ 1

{
Ji|mhjk + Jj|mhik + Jk|mhij

}
− 2

n+ 1

{
JiLjkm + JjLikm + JkLijm

}
. (26)

By definitions of stretch and mean stretch curvatures, and by relations (25) and

(26), we get (22) and (23). �

It is known that for a Randers metric L = 0 if and only if J = 0 if and only

if B = 0. On the other hand, Randers metrics have bounded Cartan and mean

Cartan torsions [24]. Therefore, by Theorem 1.1, we have the following.
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Corollary 5.1. Let F = α + β be a complete Randers metric on a mani-

fold M . Then F is a weakly stretch metric if and only if F is a Berwald metric.

Remark 5.1. In [27], it is proved that if a Randers metric F is a Douglas

metric, then F is a stretch metric if and only if F is a Berwald metric.

Let ∇β = bi;jdx
i ⊗ dxj be the covariant derivative of β with respect to α.

Put

sij =
1

2

(
bi;j − bj;i

)
, rij =

1

2

(
bi;j + bj;i

)
,

sij = aikskj , sj = bisij , rj = birij , ri0 := rijy
j ,

si0 := sijy
j , r0 := rjy

j , s0 := sjy
j , eij := rij + bisj + bjsi.

The mean Landsberg curvature of a Randers metric F = α+β on an n-dimensional

manifold M is given by the following:

Ji =
n+ 1

4α2F 2

{
2α
[
(ei0α

2 − yie00)− 2β(siα
2 − yis0) + si0(α2 + β2)

]
+ 4α2βsi0

+ α2(ei0β − bie00) + β(ei0α
2 − yie00)− 2(siα

2 − yis0)(α2 + β2)

}
. (27)

Lemma 5.2. Let F = α + β be a Randers metric on a manifold M . Then

F is a generalized Berwald metric with a Killing form β with respect to α if and

only if rij = 0 and si = 0.

Proof. Since β is a Killing form, it has a skew-symmetric covariant deriv-

ative with respect to the Levi–Civita connection of α, i.e., rij = 0. Suppose that

F is a generalized Berwald metric. Then, [30, Theorem 2] implies that the dual

vector field of β is of constant length, that is, ri + si = 0. Using that rij = 0 and

contracting rij with bj , one can get si = 0.

Conversely, rij = 0 and si = 0 imply that F is a generalized Berwald manifold

with a Killing form β with respect to α. �

Proof of Theorem 1.3. By Lemma 5.2, we have rij = 0 and si = 0.

In this case, the mean Landsberg curvature and spray of F are given by

Gi = Ḡi + αsi0, (28)

Ji =
n+ 1

2
α−1si0, (29)
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where the index 0 means contracting with yj . By taking a horizontal derivation

of (29), we get
2

n+ 1
Ji|j = (α−1)|j si0 + α−1sik|jy

k. (30)

A direct computation shows that

(α−1)|j = α−2s0j , (31)

and

sik|jy
k = yk

∂sik
∂xj

− st0Gtij − sitGtj . (32)

Substituting (31) and (32) into (30) yields

2

n+ 1
Ji|j = α−2s0jsi0 + α−1

(
yk
∂sik
∂xj

− st0Gtij − sitGtj

)
. (33)

Putting (28) and (33) into (23), we get

α2

n+ 1
Σ̄ij = α

[
yk
(∂sik
∂xj

− ∂sjk
∂xi

)
+ sitḠ

t
j − sjtḠti

]
+ tj0yi − ti0yj , (34)

where tij := siks
k
j and ti0 := tijy

j . Decomposing (34) into its rational and

irrational parts with respect to (yi) implies the following

yk
(∂sik
∂xj

− ∂sjk
∂xi

)
+ sitḠ

t
j − sjtḠti = 0, (35)

tj0yi − ti0yj = 0. (36)

Contracting (36) with bi and using the assumption si = 0, we get tj0β = 0, which

implies either tij = 0 or β = 0. The former and sij = 0 imply that β is parallel

with respect to α, and then F is a Berwald metric. This completes the proof. �

Randers metrics belong to a class of Finsler metrics named (α, β)-metrics.

An (α, β)-metric is a Finsler metric defined by F := αΦ(s), s := β/α, where Φ is

a smooth function on a symmetric interval (−b0, b0) with certain regularity, α is

a Riemannian metric and β is a 1-form on the base manifold (see [22], [25] and

[26]). These metrics form an important class of Finsler metrics, appearing itera-

tively in formulating Physics and Seismology, Biology, Ecology, Control Theory,

etc.

If the function

AΦ(s) := Φ′(−s)Φ(s) + Φ(−s)Φ′(s)
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has a fixed sign on a symmetric interval (−b0, b0), then we say that the (α, β)-

metric F = αΦ(s), s = β/α, satisfies the sign property [19]. In [19], the second

author with Barzegari extend Vincze’s Theorem for the class of (α, β)-metrics

with sign property. More precisely, they show that every (α, β)-Finsler function

with sign property is a generalized Berwald manifold if and only if β] is of constant

Riemannian length. Next, we would like to study the class of generalized Berwald

(α, β)-metrics with sign property and vanishing mean stretch curvature. Are they

Berwaldian metric? This problem remains open.
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