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B-spectral theory of linear relations
in complex Banach spaces

By MARCEL ROMAN (Iaşi) and ADRIAN SANDOVICI (Iaşi)

Abstract. Let X and Y be two complex Banach spaces. Let A be a multi-valued

linear operator (a linear relation) from X to Y, and let B be an everywhere defined

bounded operator also from X to Y. Operator B plays the role of a transition operator

from X to Y. It is the main goal of the present note to study the basic spectral properties

of A linked to the transition operator B.

1. Introduction

Let A and B two closed linear operators in a Banach space X with domA ⊂
domB, where domA and domB stand for the domains of the definition of A

and B, respectively. The set

{λ ∈ C : λB −Ahas a single valued and bounded inverse onX}

is called the B modified resolvent set of A (or simply the B resolvent set of A) and

is denoted by ρB(A). The bounded operator (λB−A)−1 is called the B modified

resolvent of A (or simply the B resolvent of A). These notions have been used

in the study of degenerate equations on Banach spaces (see [7] and the references

therein).

However, a large number of partial differential equations arising in physics

and in applied sciences can be only modeled by using two different Banach spaces,

let say X and Y, and two different (possible multi-valued) linear operators, let
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say A and B from X to Y. More precisely, assume that A is a multi-valued linear

operator (a linear relation) from X to Y, and B is an everywhere defined bounded

operator also from X to Y; the operator B can be seen as a transition operator

from X to Y. The main goal of the present note consists in the study of the basic

spectral properties of A linked to the transition operator B. Section 2 contains

some basic material concerning closed multi-valued linear operators (linear rela-

tions) in Banach spaces (more details can be found for instance in [1],[6]). In the

next section, the notions of B-regular points of A and the B-resolvent set of A are

introduced and studied. In Section 4, the B-pseudo-resolvent of A is defined, and

some links with the previous notions are established. Finally, the B-spectrum

of A is discussed in Section 5.

The results obtained in this note complete the corresponding ones in [2], and

they are strongly related to concepts from various spectral problems in applied

sciences (for related works see, for instance, [7], [8], [14], [16]). In particular,

the study of different types of degenerate equations on Banach complex spaces

could be done using the concepts and results obtained in the present note, cf. [7].

Examples to reveal the applicability of our theoretical treatment will be pro-

vided in [13]. More precisely, the main results of this note will be applied to study

various perturbations of linear relations in Banach spaces in the spirit of the re-

sults obtained in [3], [4], [5], [8], [9], [10], [11], [12], [15]. In particular, finite

B-rank perturbations and B-compact perturbations of closed linear relations will

be studied.

2. Linear relations in complex Banach spaces

Let X and Y be two complex Banach spaces and provide the Cartesian prod-

uct X×Y with the product topology, so that the Cartesian product X×Y is also

a complex Banach space. A linear relation, or relation for short, A from X to Y

is a linear subspace of the space X×Y. The notation L[X,Y] will stand for the

class of all linear relations from X to Y. The notations domA, ranA, kerA and

mulA stand for the domain, the range, the kernel and the multi-valued part of A:

domA = {x ∈ X : {x, y} ∈ A}, ranA = {y ∈ Y : {x, y} ∈ A},
kerA = {x ∈ X : {x, 0} ∈ A}, mulA = {y ∈ Y : {0, y} ∈ A}.

The inverse A−1 is a linear relation from Y to X given by

A−1 = {{y, x} : {x, y} ∈ A} ,
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so that

domA−1 = ranA, ranA−1 = domA, kerA−1 = mulA, mulA−1 = kerA.

For linear relations A1 and A2 from X to Y, the operator-like sum A1 +A2 is the

linear relation from X to Y defined by

A1 +A2 = {{x, y1 + y2} : {x, y1} ∈ A1, {x, y2} ∈ A2} ,

so that dom(A1 +A2) = domA1 ∩domA2 and mul(A1 +A2) = mulA1 + mulA2.

For λ ∈ C, the linear relation λA from X to Y is defined by

λA = {{x, λy} : {x, y} ∈ A} .

Assume that Z is also a complex Banach space. For a linear relation A1 from X

to Z and a linear relation A2 from Z to Y, the product A2A1 is defined as the

linear relation from X to Y by

A2A1 = {{x, y} ∈ X×Y : {x, z} ∈ A1, {z, y} ∈ A2, for some z ∈ Z} .

For λ ∈ C, the notation λA agrees in this sense with (λI)A. The product of linear

relations is associative.

A relation A from X to Y is closed if A is closed as a subset of X × Y.

It is easy to see that kerA and mulA are closed linear subspaces of X and Y,

respectively. The notation LC[X,Y] will stand for the class of all closed linear

relations from X to Y. The closure of A ∈ L[X,Y] will be denoted by closA.

A linear operator B from X to Y with domB ⊂ X and ranB ⊂ Y can be

seen as a relation if it is identified with its graph: {{x,Bx} ∈ X×Y : x ∈ domB}.
The operator B is closed if its graph is closed, and it is closable if the closure of

its graph is the graph of an operator. Equivalently, an operator B is closable if

{0, y} ∈ closB implies that y = 0. An operator B is bounded if it has a bounded

norm, that is

‖B‖ = sup{‖Bx‖ : x ∈ domB, ‖x‖ = 1} <∞.

The closed graph theorem asserts that a closed linear operator B with domB = X

is bounded. The notation [X,Y] will stand for the class of all linear bounded

everywhere defined operators from X to Y. The following well-known result,

whose proof can be founded, for instance, in [6], is often useful.
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Lemma 2.1. Let B be a bounded linear operator from the Banach space X

to the Banach space Y. Then the following statements hold true:

(i) The operator B is closed if and only if domB is closed.

(ii) The operator B is closable and closB is a bounded operator. Furthermore,

‖ closB‖ = ‖B‖.
(iii) dom (clos B) = clos (dom B).

Lemma 2.2. Assume that X and Y are two complex Banach spaces, A ∈
LC[X,Y] and B ∈ [X,Y]. Then the relations A − λB and (A − λB)−1 are also

closed.

Proof. Let {xn, yn} ∈ A− λB such that {xn, yn} → {x, y} ∈ X×Y. Then

{xn, yn + λBxn} ∈ A, yn + λBxn → y + λBx. Since A is closed, it follows that

{x, y + λBx} ∈ A. This implies that {x, y} ∈ A − λB. Thus A − λB is a closed

relation. Then its inverse (A− λB)−1 is also closed. �

3. B-resolvent set

Assume that X and Y are two complex Banach spaces, A ∈ L[X,Y] and

B ∈ [X,Y]. The set γB(A) of B-regular points of A is defined by

γB(A) = {λ ∈ C : (A− λB)−1 is a bounded operator}.

Clearly, λ ∈ γB(A) if and only if there exists a number r > 0 depending on λ

such that

‖y − λBx‖ ≥ r · ‖x‖, for {x, y} ∈ A,

in which case ‖(A− λB)−1‖ ≤ 1

r
.

If A is closed and λ ∈ γB(A), then (A− λB)−1 is a closed bounded operator

so that ran(A− λB) = dom(A− λB)−1 is closed by Lemma 2.1.

Conversely, if ran(A− λB) is closed for some λ ∈ γB(A), then the bounded

operator (A − λB)−1 is closed by Lemma 2.1, which implies that A is closed.

Moreover, γB(closA) = γB(A), which is a consequence of the following identity:

clos(A− λB)−1 = (closA− λB)−1.

Theorem 3.1. Assume that X and Y are two complex Banach spaces, A ∈
LC[X,Y] and B ∈ [X,Y]. Let µ ∈ γB(A), and let λ ∈ C such that |λ− µ| · ‖B‖ ·
‖(A− µB)−1‖ < 1. Then
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(i) λ ∈ γB(A) and

‖(A− λB)−1‖ ≤ ‖(A− µB)−1‖
1− |λ− µ| · ‖(A− µB)−1‖ · ‖B‖

. (3.1)

In particular, γB(A) is open.

(ii) ran (A− λB) is not a proper subset of ran (A− µB).

Proof. Let µ ∈ γB(A), and let {x, y} ∈ A. Since (A− µB)−1 is a bounded

operator, it follows from the identity (A− µB)−1(y − µBx) = x that

‖(A− µB)−1‖ · ‖y − µBx‖ ≥ ‖x‖. (3.2)

For each λ ∈ C one has

‖y − λBx‖ = ‖(y − µBx)− (λ− µ)Bx‖
≥ ‖y − µBx‖ − |λ− µ| · ‖Bx‖
≥ ‖y − µBx‖ − |λ− µ| · ‖B‖ · ‖x‖. (3.3)

A combination of (3.2) and (3.3) leads to

‖(A− µB)−1‖ · ‖y − λBx‖ ≥ ‖(A− µB)−1‖ · ‖y − µBx‖

− |λ− µ| · ‖(A− µB)−1‖ · ‖B‖ · ‖x‖

≥ ‖x‖ − |λ− µ| · ‖(A− µB)−1‖ · ‖B‖ · ‖x‖

= (1− |λ− µ| · ‖(A− µB)−1‖ · ‖B‖) · ‖x‖. (3.4)

Since {y − λBx, x} ∈ (A − λB)−1, inequality (3.4) shows that (A − λB)−1 is

a bounded operator, whose norm is estimated by (3.1).

(ii) Assume, by contradiction, that ran (A−λB) is a proper subset of ran (A−
µB). Let α ∈ R such that |λ − µ| · ‖(A − µB)−1‖ · ‖B‖ < α < 1. Using Riesz’

Lemma, it follows that there exists an element y0 ∈ ran (A − µB) such that

‖y0‖ = 1 and ‖y − y0‖ ≥ α for all y ∈ ran (A− λB). Let {yn} ⊂ ran(A− µB) be

such that yn → y0. Then there exists {xn} such that {xn, yn} ∈ A− µB, so that

{xn, yn + (µ− λ)Bxn} ∈ A− λB. Then

α ≤ ‖y0 − (yn + (µ− λ)Bxn)‖
= ‖(y0 − yn) + (λ− µ)Bxn‖ ≤ ‖y0 − yn‖+ |λ− µ| · ‖Bxn‖

≤ ‖y0 − yn‖+ |λ− µ| · ‖(A− µB)−1‖ · ‖B‖ · ‖yn‖.
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Letting n→∞ in this inequality one has

α ≤ |λ− µ| · ‖(A− µB)−1‖ · ‖B‖.

The last inequality contradicts the hypothesis. Hence, ran (A−λB) is not a proper

subset of ran (A− µB). �

The B-resolvent set ρB(A) of A ∈ L[X,Y] is defined by

ρB(A) = {λ ∈ C : ran (A− λB) = Y and (A− λB)−1 is a bounded operator}.

Assume that ρB(A) 6= ∅. Then A is closed if and only if ran(A − λB) = Y,

for some, and hence for all λ ∈ ρB(A). Furthermore, ρB(closA) = ρB(A).

Lemma 3.2. Assume that X and Y are two complex Banach spaces, A ∈
LC[X,Y] and B ∈ [X,Y]. If µ ∈ ρB(A) and |λ − µ| · ‖(A − µB)−1‖ · ‖B‖ < 1,

then λ ∈ ρB(A). In particular, ρB(A) is open.

Proof. Since µ ∈ ρB(A), one has µ ∈ γB(A) and ran (A − µB) = Y.

Hence, λ ∈ γB(A) and ran (A− λB) is not a proper subset of ran (A− µB) = Y,

cf. Theorem 3.1. Therefore, ran (A− λB) = Y, so that λ ∈ ρB(A). �

Let now A ∈ LC[X,Y]. Then ρB(A) is the set of all λ ∈ C for which A−λB
is invertible, in the sense that ran(A − λB) = Y and ker(A − λB) = {0}. For

each λ ∈ ρB(A) it follows that (A − λB)−1 ∈ [Y,X]. This operator is called the

B-resolvent operator of A.

Theorem 3.3. Assume that X and Y are two complex Banach spaces, A ∈
LC[X,Y] and B ∈ [X,Y].

(i) If λ, µ ∈ C, then

(A− λB)−1 − (A− µB)−1 = (λ− µ)(A− λB)−1 ·B · (A− µB)−1. (3.5)

Furthermore, the B-resolvent operator (A − λB)−1 is holomorphic for λ ∈
ρB(A).

(ii) If µ ∈ ρB(A) and |λ− µ| · ‖(A− µB)−1‖ · ‖B‖ < 1, then

(A− λB)−1 =

∞∑
j=0

(λ− µ)j · (A− µB)−1 ·
(
B · (A− µB)−1

)j
. (3.6)
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Proof. (i) Assume that {x, y} ∈ (A−λB)−1−(A−µB)−1, so that {x, y1} ∈
(A−λB)−1 and {x, y2} ∈ (A−µB)−1 for some y1, y2 ∈ Y with y1− y2 = y. One

has {y1, x} ∈ A− λB and

{y2, x} ∈ A− µB = A− λB + (λ− µ)B.

Then {y2, x− (λ− µ)By2} ∈ A− λB, so that

{y, (λ− µ)By2} = {y1, x} − {y2, x− (λ− µ)By2} ∈ A− λB.

This implies that {(λ − µ)By2, y} ∈ (A − λB)−1, which shows that {y2, y} ∈
(λ− µ)(A− λB)−1B. Hence,

{x, y} ∈ (λ− µ)(A− λB)−1 ·B · (A− µB)−1, (3.7)

which leads to

(A− λB)−1 − (A− µB)−1 ⊆ (λ− µ)(A− λB)−1 ·B · (A− µB)−1. (3.8)

Conversely, let {x, y} ∈ (λ − µ)(A − λB)−1 · B · (A − µB)−1, so that {x, z} ∈
(A − µB)−1, {z, w} ∈ (λ − µ)B and {w, y} ∈ (A − λB)−1 for some z ∈ X and

w ∈ Y. It follows from {x, z} ∈ (A− µB)−1 that {z, x} ∈ A− µB, so that

{z, x+ (µ− λ)Bz} ∈ A− λB. (3.9)

Since w = (λ − µ)Bz, relation (3.9) implies that {z, x − w} ∈ A − λB, so that

{x− w, z} ∈ (A− λB)−1. Consequently,

{x, z + y} = {x− w, z}+ {w, y} ∈ (A− λB)−1.

Finally,

{x, y} = {x, z + y} − {x, z} ∈ (A− λB)−1 − (A− µB)−1,

so that

(λ− µ)(A− λB)−1 ·B · (A− µB)−1 ⊆ (A− λB)−1 − (A− µB)−1. (3.10)

A combination of (3.8) and (3.10) leads to (3.5).

Assume now that λ, µ ∈ ρB(A), λ 6= µ. It follows from (3.5) that

(A− λB)−1 − (A− µB)−1

λ− µ
= (A− λB)−1 ·B · (A− µB)−1. (3.11)
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This identity further implies that the resolvent operator (A− λB)−1 is holomor-

phic for λ ∈ ρB(A).

(ii) With the notation RB(λ) = (A−λB)−1 it follows by induction from (3.5)

that

RB(λ) =

n∑
j=0

(λ− µ)j ·RB(µ) · (B ·RB(µ))
j

+ (λ− µ)n+1 ·RB(λ) · (B ·RB(µ))
n+1

. (3.12)

From the estimation

‖(λ− µ)n+1 ·RB(λ) · (B ·RB(µ))
n+1 ‖ ≤ ‖RB(λ)‖ · (|λ− µ| · ‖RB(µ)‖ · ‖B‖)n+1

,

and the inequality |λ−µ|·‖RB(µ)‖·‖B‖ < 1, it follows that the rest term in (3.12)

tends to 0 as n→∞. This completes the proof. �

Equation (3.5) with λ, µ ∈ ρB(A) is called the B-resolvent identity of A.

In the case X = Y and B = I, the classical notion of resolvent identity is obtained.

4. B-pseudo-resolvents

Let B ∈ [X,Y], and let Ω ⊂ C. Assume that for each λ, µ ∈ Ω there exists

an operator RB(·) ∈ [Y,X] such that

RB(λ)−RB(µ) = (λ− µ) ·RB(λ) ·B ·RB(µ). (4.1)

Such a family of operators (RB(λ))λ∈Ω is called a B-pseudo-resolvent.

Theorem 4.1. Assume that X and Y are two complex Banach spaces and

B ∈ [X,Y]. Let {RB(λ)}λ∈Ω be a B-pseudo-resolvent. Then there exists a unique

linear relation A ∈ LC[X,Y] such that Ω ⊂ ρB(A) and RB(λ) = (A−λB)−1, λ ∈
Ω. In particular, the B-pseudo-resolvent RB(λ) has a unique maximal extension

to ρB(A).

Proof. The linear relation RB(λ)−1 + λB does not depend on λ ∈ Ω.

To see this, let {x, y} ∈ RB(λ)−1 + λB, so that {x, y − λBx} ∈ RB(λ)−1. Then

RB(λ)(y − λBx) = x. Using (4.1), one has

RB(µ)(y − λBx) = (I + (µ− λ)RB(µ)B)RB(λ)(y − λBx),
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which implies that

RB(µ)(y − λBx) = x+ (µ− λ)RB(µ)Bx.

Then RB(µ)(y − µBx) = x, so that {x, y} ∈ RB(µ)−1 + µB. Hence it follows

that RB(λ)−1 +λB ⊂ RB(µ)−1 +µB. The reverse inclusion follows by symmetry.

Hence,

RB(λ)−1 + λB = RB(µ)−1 + µB.

Define the linear relation A by A = RB(λ)−1 + λB, which is equivalent to

RB(λ) = (A − λB)−1. Clearly, the relation A is uniquely defined. Since

RB(λ) ∈ [Y,X] for λ ∈ Ω, this implies that λ ∈ ρB(A). Hence Ω ⊂ ρB(A). �

Theorem 4.2. Let A be a closed linear relation. Then

γB(A) ∩ clos ρB(A) ⊂ ρB(A).

Proof. Let µ ∈ γB(A) ∩ clos ρB(A), and let (µn) ⊂ ρB(A) ⊂ γB(A) such

that µn → µ. It follows from inequality (3.1) that the sequence
(
‖(A− µnB)−1‖

)
is bounded. Hence, the resolvent identity implies that

‖(A− µnB)−1 − (A− µmB)−1‖ → 0, n,m→∞.

Hence, the B-resolvent RB(λ) = (A − λB)−1 has an extension to µ, and the

resolvent identity shows that RB(λ) extended to µ is a B-pseudo-resolvent, which

implies that µ ∈ ρB(A). �

5. The B-spectrum

Let X and Y be two complex Banach spaces, A ∈ L[X,Y] and B ∈ [X,Y].

It follows from A− λB = {{x, y − λBx} : {x, y} ∈ A} that

ker(A− λB) = {x : {x, λBx} ∈ A}.

A complex number λ ∈ C is said to be a B-eigenvalue of A when there is a non-

zero element x ∈ ker(A− λB). Furthermore, ∞ is said to be a B-eigenvalue of A

when there is a non-zero element m ∈ mulA. The B-point spectrum σpB(A)

of A is the set of all B-eigenvalues λ ∈ C ∪ {∞} of A. It may happen that

σpB = C ∪∞. Indeed, if there is a non-zero element z ∈ X such that {z, 0} ∈ A
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and {0, Bz} ∈ A, then {z, λBz} ∈ A for any λ ∈ C. When λ ∈ C, the identity

mul(A− λB)−1 = ker(A− λB) implies that

λ ∈ σpB(A) ⇔ (A− λB)−1 is not an operator.

The B-spectrum σB(A) of A is defined by σB(A) = C \ ρB(A), and the B-

approximative point spectrum (or B-spectral kernel) of A is defined by ΠB(A) =

C \ γB(A).

Theorem 5.1. Let X and Y be two complex Banach spaces, A ∈ L[X,Y]

and B ∈ [X,Y]. The B-approximative point spectrum ΠB(A) of A is contained

in the B-spectrum σB(A) of A, and both sets are closed. Moreover, λ ∈ ΠB(A)

if and only if there exists a sequence ({xn, yn}) ⊂ A such that

‖xn‖ = 1, yn − λBxn → 0, n→∞.

Proof. It follows from ρB(A) ⊂ γB(A) that ΠB(A) ⊂ σB(A). It has been

already shown that the sets ρB(A) and γB(A) are open, so that their complements

σB(A) and ΠB(A) are closed.

Assume that λ ∈ ΠB(A). Then for each ε > 0 there exists an element

{xε, yε} ∈ A with ‖xε‖ = 1 and ‖yε − λBxε‖ ≤ ε. This implies the existence

of the requested sequence. Conversely, assume that such a sequence exists. Then

does not exist a number ε0 > 0 such that ‖y − λx‖ ≥ ε0‖x‖ for all {x, y} ∈ A.

This shows that λ ∈ ΠB(A). �

Theorem 5.1 shows that σpB(A) \ {∞} is contained in the B-approximative

point spectrum ΠB(A). It is possible to separate various points of the spectrum.

Observe that for any λ ∈ C there are three different situations with respect to

ker(A− λB):

K1. ker(A− λB) = {0}, (A− λB)−1 is bounded;

K2. ker(A− λB) = {0}, (A− λB)−1 is not bounded;

K3. ker(A− λB) 6= {0}.
Similarly, there are three different situations with respect to ran(A− λB):

R1. ran(A− λB) = Y;

R2. ran (A− λB) = Y, ran(A− λB) 6= Y;

R3. ran (A− λB) 6= Y.

According to these possibilities, the complex plane C can be divided into nine

mutually disjoint subsets. Furthermore, the following equivalences hold true:

(1) λ ∈ γB(A) (points of B-regular type) ⇔ λ ∈ K1 ∩ (R1 ∪R2 ∪R3);
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(2) λ ∈ ΠB(A) (B-approximative point spectrum) ⇔
⇔ λ ∈ (K2 ∪K3) ∩ (R1 ∪R2 ∪R3);

(3) λ ∈ ρB(A) (B-resolvent set) ⇔ λ ∈ K1 ∩ (R1 ∪R2);

(4) λ ∈ σB(A) ⇔ λ ∈ ((K2 ∪K3) ∩ (R1 ∪R2 ∪R3)) ∪ (K1 ∩R3);

(5) λ ∈ σpB(A) (B-point spectrum) ⇔ λ ∈ K3 ∩ (R1 ∪R2 ∪R3).

Theorem 5.2. Let X and Y be two complex Banach spaces, A ∈ LC[X,Y]

and B ∈ [X,Y]. Then the subsets K1 ∩R2 and K2 ∩R1 are empty.

Proof. Assume that λ ∈ K1 ∩R2, so that (A− λB)−1 is a bounded closed

operator with a closed domain of definition dom(A − λB)−1 = ran(A − λB),

a contradiction.

Assume now that λ ∈ K2 ∩R1, so that (A− λB)−1 is an unbounded closed

operator with the domain of definition dom(A − λB)−1 = ran(A − λB) = Y,

which leads to a contradiction by the closed graph theorem. �
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