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B-spectral theory of linear relations
in complex Banach spaces

By MARCEL ROMAN (Iasi) and ADRIAN SANDOVICI (Iasi)

Abstract. Let X and 2) be two complex Banach spaces. Let A be a multi-valued
linear operator (a linear relation) from X to %), and let B be an everywhere defined
bounded operator also from X to ). Operator B plays the role of a transition operator
from X to ). It is the main goal of the present note to study the basic spectral properties
of A linked to the transition operator B.

1. Introduction

Let A and B two closed linear operators in a Banach space X with dom A C
dom B, where dom A and dom B stand for the domains of the definition of A
and B, respectively. The set

{A € C: AB — Ahas a single valued and bounded inverse on X}

is called the B modified resolvent set of A (or simply the B resolvent set of A) and
is denoted by pp(A). The bounded operator (AB — A)~! is called the B modified
resolvent of A (or simply the B resolvent of A). These notions have been used
in the study of degenerate equations on Banach spaces (see [7] and the references
therein).

However, a large number of partial differential equations arising in physics
and in applied sciences can be only modeled by using two different Banach spaces,
let say X and 2, and two different (possible multi-valued) linear operators, let
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say A and B from X to ). More precisely, assume that A is a multi-valued linear
operator (a linear relation) from X to ), and B is an everywhere defined bounded
operator also from X to ); the operator B can be seen as a transition operator
from X to ). The main goal of the present note consists in the study of the basic
spectral properties of A linked to the transition operator B. Section 2 contains
some basic material concerning closed multi-valued linear operators (linear rela-
tions) in Banach spaces (more details can be found for instance in [1],[6]). In the
next section, the notions of B-regular points of A and the B-resolvent set of A are
introduced and studied. In Section 4, the B-pseudo-resolvent of A is defined, and
some links with the previous notions are established. Finally, the B-spectrum
of A is discussed in Section 5.

The results obtained in this note complete the corresponding ones in [2], and
they are strongly related to concepts from various spectral problems in applied
sciences (for related works see, for instance, [7], [8], [14], [16]). In particular,
the study of different types of degenerate equations on Banach complex spaces
could be done using the concepts and results obtained in the present note, cf. [7].

Examples to reveal the applicability of our theoretical treatment will be pro-
vided in [13]. More precisely, the main results of this note will be applied to study
various perturbations of linear relations in Banach spaces in the spirit of the re-
sults obtained in [3], [4], [5], [8], [9], [10], [11], [12], [15]. In particular, finite
B-rank perturbations and B-compact perturbations of closed linear relations will
be studied.

2. Linear relations in complex Banach spaces

Let X and ) be two complex Banach spaces and provide the Cartesian prod-
uct X x ) with the product topology, so that the Cartesian product X x 2) is also
a complex Banach space. A linear relation, or relation for short, A from X to )
is a linear subspace of the space X x ). The notation L[¥,92)] will stand for the
class of all linear relations from X to ). The notations dom A, ran A, ker A and
mul A stand for the domain, the range, the kernel and the multi-valued part of A:

domA={zxecX:{z,y} € A}, ranAd ={yeQ :{z,y} € A},
kerA={zeX:{z,0} € A}, mulA={ye:{0,y} € A}

The inverse A~! is a linear relation from 9) to X given by

ATV = {{y,a} : {z,y} € A},
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so that
domA™!' =ranA, ranA '=domA, kerA !=mulA, mulA~! = kerA.

For linear relations A; and A, from X to %), the operator-like sum A; + A, is the
linear relation from X to Q) defined by

Ar+ Ay = {{z,y1 + o} {z, 01} € Au, {7, 92} € Ao},

so that dom(A; + As) = dom A; Ndom Ay and mul(A; + As) = mul A1 + mul As.
For A\ € C, the linear relation AA from X to 9) is defined by

M = {{z, \y}: {z,y} € A}.

Assume that 3 is also a complex Banach space. For a linear relation A; from X
to 3 and a linear relation As from 3 to 2), the product A3 A; is defined as the
linear relation from X to ) by

A Ay = {{z,y} €e X x Y : {z,2} € A1, {z,y} € A, for somez € 3}.

For A\ € C, the notation AA agrees in this sense with (AI)A. The product of linear
relations is associative.

A relation A from X to g) is closed if A is closed as a subset of X x Q).
It is easy to see that ker A and mul A are closed linear subspaces of X and 2,
respectively. The notation LC[X,9)] will stand for the class of all closed linear
relations from X to ). The closure of A € L[X,9)] will be denoted by clos A.

A linear operator B from X to %) with dom B C X and ran B C ) can be
seen as a relation if it is identified with its graph: {{z, Bz} € X x Q) : « € dom B}.
The operator B is closed if its graph is closed, and it is closable if the closure of
its graph is the graph of an operator. Equivalently, an operator B is closable if
{0,y} € clos B implies that y = 0. An operator B is bounded if it has a bounded
norm, that is

|B|| = sup{||Bz|| : € dom B, ||z|| = 1} < cc.

The closed graph theorem asserts that a closed linear operator B with dom B = X
is bounded. The notation [X,9)] will stand for the class of all linear bounded
everywhere defined operators from X to ). The following well-known result,
whose proof can be founded, for instance, in [6], is often useful.
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Lemma 2.1. Let B be a bounded linear operator from the Banach space X
to the Banach space %). Then the following statements hold true:
(i) The operator B is closed if and only if dom B is closed.
(ii) The operator B is closable and clos B is a bounded operator. Furthermore,
[ clos B|| = || Bl
(iii) dom (clos B) = clos (dom B).
Lemma 2.2. Assume that X and ) are two complex Banach spaces, A €

LC[X,9)] and B € [X,9)]. Then the relations A — AB and (A — AB)~! are also
closed.

PROOF. Let {zp,yn} € A — AB such that {z,,y,} — {z,y} € X x Q). Then
{zn,yn + ABx,} € A, yn + ABz,, — y + ABz. Since A is closed, it follows that
{z,y + ABxz} € A. This implies that {z,y} € A — AB. Thus A — AB is a closed
relation. Then its inverse (4 — AB)~! is also closed. O

3. B-resolvent set

Assume that X and 9) are two complex Banach spaces, A € L[X,9)] and
B € [X,9)]. The set yp(A) of B-regular points of A is defined by

vB(A) ={\ € C: (A —AB) tis a bounded operator}.

Clearly, A\ € vg(A) if and only if there exists a number r > 0 depending on A
such that
ly = ABz[| = - [zf|, for{z,y} € A,

in which case (A — AB)~1|| < %

If A is closed and A € yp(A), then (A — AB)~! is a closed bounded operator
so that ran(A — AB) = dom(A4 — AB)~! is closed by Lemma 2.1.

Conversely, if ran(A — AB) is closed for some A € v5(A), then the bounded
operator (A — AB)~! is closed by Lemma 2.1, which implies that A is closed.
Moreover, vg(clos A) = vg(A), which is a consequence of the following identity:

clos(A —AB)™! = (clos A — AB) ™.

Theorem 3.1. Assume that X and ) are two complex Banach spaces, A €
LC[%X,9)] and B € [X,9)]. Let p € v5(A), and let A € C such that |A — pu| - || B -
(A —uB)~ Y| < 1. Then
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(i) A € yg(A) and

[(A = pB)~t|
(A= pl- (A= uB) M- IBI

I(A=AB) ! < —

In particular, yg(A) is open.
(ii) tan (A — AB) is not a proper subset of Tan (A — uB).

PROOF. Let p € yp(A), and let {z,y} € A. Since (A — pB)~! is a bounded
operator, it follows from the identity (A — uB)~!(y — uBx) = = that

(A= uB)7 - ly — uBx|| > [|z|. (3.2)
For each A € C one has

ly = ABz|| = ||(y — pBx) — (A — p) Bz|
2 |ly — pBax|| = [A = pl - || B||
2 |ly = pB| = A= pl - [|B] - [l]- (3-3)

A combination of (3.2) and (3.3) leads to

1A= pB)7 |- lly = ABz|| > [I(A = pB) 7' - |ly — uBx|
— X =l 1A= pB)7H B - |l
> loll = A =l - 1A= pB)~H - 1B - |l
== =pl-lA=pB) - IBI) - llall. - (3.4)

Since {y — ABx,z} € (A — AB)™!, inequality (3.4) shows that (A — AB)~! is
a bounded operator, whose norm is estimated by (3.1).

(ii) Assume, by contradiction, that Tan (A—AB) is a proper subset of Tan (A—
uB). Let o € R such that |\ — u| - |[(A — uB)7!|| - |B|]| < a < 1. Using Riesz’
Lemma, it follows that there exists an element yo, € Tan (A — pB) such that
llvoll =1 and |ly — yo|| > « for all y € Tan (A — AB). Let {y,,} C ran(A — uB) be
such that y,, — yo. Then there exists {x,} such that {x,,y,} € A — pB, so that
{Zn,Yn + (0 — N)Bzy,} € A— AB. Then

a < lyo = (yn + (1 = A)By)||
= (o —yn) + A= ) Ban| < llyo — yull + [A = p| - | Bz |
< llyo = ynll + X = gl - (A = uB) M| - 1B - [lynll
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Letting n — oo in this inequality one has
a<A—pl- (A= puB)" M- |BIl.

The last inequality contradicts the hypothesis. Hence, Tan (A—AB) is not a proper
subset of Tan (A — uB). O

The B-resolvent set pp(A) of A € L[X,9)] is defined by
pp(A) ={\ € C:1an (A — AB) =2 and (A — AB)'is a bounded operator}.

Assume that pg(A) # 0. Then A is closed if and only if ran(A — AB) = 2),
for some, and hence for all A € pp(A). Furthermore, pp(clos A) = pp(A).

Lemma 3.2. Assume that X and ) are two complex Banach spaces, A €
LC[%,9)] and B € [X,9)]. If u € pp(A) and |A - u| - [(A - uB)~"| - |B] < 1,
then A € pp(A). In particular, pp(A) is open.

PROOF. Since y € pp(A), one has 1 € vg(A) and Tan (A — pB) = 9.
Hence, A € y5(A) and Tan (A — AB) is not a proper subset of Tan (A — uB) = 9),
cf. Theorem 3.1. Therefore, Tan (A — AB) = %), so that A € pp(A). O

Let now A € LC[X,2)]. Then pp(A) is the set of all A € C for which A —AB
is invertible, in the sense that ran(A — AB) = 2) and ker(A — AB) = {0}. For
each \ € pp(A) it follows that (A — AB)~! € [9), X]. This operator is called the
B-resolvent operator of A.

Theorem 3.3. Assume that X and ) are two complex Banach spaces, A €
LC[%,9)] and B € [X,9)].

(i) If X\, p € C, then
(A=AB) ' —(A—uB) ' =A=pw)(A=AB)'-B-(A—uB)"'.  (3.5)

Furthermore, the B-resolvent operator (A — AB)~! is holomorphic for \ €
pB(A).
(i) If s € pi(4) and |\ — u| - [(A— uB) | | BJ < 1, then

(A-AB) " =S"(A—p) (A= puB) - (B-(A—puB) Y . (3.6)
j=0
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PROOF. (i) Assume that {z,y} € (A—AB)"!—(A—uB)~!, so that {x, 91} €
(A—AB)~ ! and {x,y2} € (A—pB)~! for some y;, yo € Y with y; —y2 = y. One
has {y1,2} € A — AB and

{y2,2} € A—uB=A—-AB+ (A—pu)B.
Then {y2,z — (A — p)Bya} € A — AB, so that
{y, (A = p)By2} = {y1, 2} — {y2,2 — (A — p)By2} € A — AB.

This implies that {(A — u)Bys2,y} € (A — AB)~!, which shows that {y2,y} €
(A — u)(A — AB)"1B. Hence,

{z,y} e A=p)(A=AB)™"-B-(A—puB)™", (3.7)
which leads to
(A—=AB) ' —(A—uB) ' C(A—p)(A=AB)"-B-(A—uB)"'.  (3.8)

Conversely, let {z,y} € (A — p)(A—AB)™' - B- (A — puB)™!, so that {z,z} €
(A—uB)™, {z,w} € (\— p)B and {w,y} € (A — AB)~! for some z € X and
w € 9. It follows from {x,z} € (A — pB)~! that {z,2} € A — uB, so that

{z,x+ (u—N)Bz} € A— \B. (3.9)

Since w = (A — p)Bz, relation (3.9) implies that {z,2 — w} € A — AB, so that
{z —w, z} € (A—AB)~1. Consequently,

{z,2+y} ={z —w, 2} +{w,y} € (A-A\B)"".
Finally,
{z,yy ={z.2+y} —{z,2} € (A= AB)™' = (A—uB)™},
so that
A=p)(A=AB)™ - B-(A—uB) ' C(A-AB) ' —(A—puB)™'.  (3.10)

A combination of (3.8) and (3.10) leads to (3.5).
Assume now that A\, u € pp(A), A # p. It follows from (3.5) that

(A= AB)™' — (A — uB)~!

- =(A-AB)"'-B-(A—uB)™". (3.11)
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This identity further implies that the resolvent operator (4 — AB)~! is holomor-
phic for A € pp(A).

(ii) With the notation Rp(A\) = (A—AB)~! it follows by induction from (3.5)
that

Rp(\) = Z(/\ — )’ Rp(p) - (B~ Rp(p))’
+ (=)™ Rp(N) - (B Rp(n)™*. (3.12)
From the estimation

IA= )" - Re(N) - (B- Re(w))" || < [IReWII - (1A =l - | Rl - | BI)",
and the inequality [A—p|-||Re(p)| || B|l < 1, it follows that the rest term in (3.12)
tends to 0 as n — oo. This completes the proof. (I

Equation (3.5) with A\, p1 € pp(A) is called the B-resolvent identity of A.
In the case X = %) and B = [, the classical notion of resolvent identity is obtained.

4. B-pseudo-resolvents

Let B € [%,9)], and let Q C C. Assume that for each A\, u € Q there exists
an operator Rp(-) € [, X] such that

Rp(A) = Rp(n) = (A —p) - Rp(A) - B- Rp(p). (4.1)

Such a family of operators (Rp(A)),cq, is called a B-pseudo-resolvent.

Theorem 4.1. Assume that X and ) are two complex Banach spaces and
B € [X,9)]. Let {Rp()\)},cq be a B-pseudo-resolvent. Then there exists a unique
linear relation A € LC[X,9)] such that Q C pg(A) and Rg(\) = (A—AB)~!, A €
Q. In particular, the B-pseudo-resolvent Rp(\) has a unique maximal extension
to pB (A)

PROOF. The linear relation Rp(\)~! + AB does not depend on A € .
To see this, let {x,y} € Rp(\)~! + AB, so that {z,y — ABz} € Rg(\)~!. Then
Rp(A\)(y — ABx) = x. Using (4.1), one has

Rp(p)(y — ABz) = (I + (b — A)Rp(p)B)Rp(N)(y — A\Bx),
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which implies that
Rp(p)(y — ABx) =z + (. — A)Rp(p) Bz.

Then Rp(p)(y — uBz) = x, so that {z,y} € Rp(u)~' + pB. Hence it follows
that Rg(\)"1+AB C Rp(u) "'+ pB. The reverse inclusion follows by symmetry.
Hence,

Rp(\) "' 4+ AB = Rp(u)~' + uB.

Define the linear relation A by A = Rp(\)~! + AB, which is equivalent to
Rp(\) = (A — AB)~'. Clearly, the relation A is uniquely defined. Since
Rp(N) € [9,X] for A € Q, this implies that A € pp(A). Hence Q C pp(A4). O

Theorem 4.2. Let A be a closed linear relation. Then
vg(A) Nclospp(A) C pp(A).

PrROOF. Let u € yp(A) Nclospp(A), and let (u,) C pp(A) C y5(A) such
that i, — p. It follows from inequality (3.1) that the sequence (|(A — p,B)7*|)
is bounded. Hence, the resolvent identity implies that

(A=, B)™" = (A= pmB) Y| =0, n,m-— oo.

Hence, the B-resolvent Rp(\) = (A — AB)~! has an extension to u, and the
resolvent identity shows that Rp()\) extended to u is a B-pseudo-resolvent, which
implies that u € pp(A). O

5. The B-spectrum

Let X and ) be two complex Banach spaces, A € L[X,9)] and B € [X,9)].
It follows from A — AB = {{z,y — ABz} : {z,y} € A} that

ker(A — AB) = {x : {z, A\Bx} € A}

A complex number A € C is said to be a B-eigenvalue of A when there is a non-
zero element z € ker(A — AB). Furthermore, oo is said to be a B-eigenvalue of A
when there is a non-zero element m € mulA. The B-point spectrum o,5(A)
of A is the set of all B-eigenvalues A\ € C U {oo} of A. It may happen that
ope = CUoo. Indeed, if there is a non-zero element z € X such that {z,0} € A
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and {0, Bz} € A, then {z,A\Bz} € A for any A € C. When \ € C, the identity
mul(A — AB)™! = ker(A — AB) implies that

A €o,5(A) & (A—AB)™!is not an operator.

The B-spectrum op(A) of A is defined by op(A) = C\ pp(A4), and the B-
approximative point spectrum (or B-spectral kernel) of A is defined by IIg(A) =

C\vB(A).

Theorem 5.1. Let X and 2) be two complex Banach spaces, A € L[X,9)]
and B € [X,9)]. The B-approximative point spectrum IIg(A) of A is contained
in the B-spectrum op(A) of A, and both sets are closed. Moreover, A € IIg(A)
if and only if there exists a sequence ({x,,yn}) C A such that

|znll =1, yn— ABxn, — 0, n — 0.

ProoOF. It follows from pp(A) C yp(A) that IIg(A) C op(A). It has been
already shown that the sets pp(A) and y5(A) are open, so that their complements
op(A) and IIg(A) are closed.

Assume that A € IIg(A). Then for each & > 0 there exists an element
{ze,y:} € A with ||z.|| = 1 and ||ye — ABx.|| < e. This implies the existence
of the requested sequence. Conversely, assume that such a sequence exists. Then
does not exist a number gy > 0 such that ||y — Az|| > eo||lz| for all {z,y} € A.
This shows that A € IIg(A). O

Theorem 5.1 shows that o,5(A) \ {oo} is contained in the B-approximative
point spectrum ITz(A). It is possible to separate various points of the spectrum.
Observe that for any A € C there are three different situations with respect to
ker(A — AB):

Ki. ker(A — AB) = {0}, (A — AB)~! is bounded;

Ks. ker(A — AB) = {0}, (A — AB)~! is not bounded;

Ks. ker(A — AB) # {0}.

Similarly, there are three different situations with respect to ran(A — AB):

R;. ran(A — AB) = 9);

Ry. Tan (A — AB) =9), ran(A — AB) # 9);

R;. tan (A — AB) # 9.

According to these possibilities, the complex plane C can be divided into nine
mutually disjoint subsets. Furthermore, the following equivalences hold true:

(1) A € v5(A) (points of B-regular type) < A € K1 N (R U Ry U R3);
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(2) X €Ilg(A) (B-approximative point spectrum) <
< Ne (Ko UK3)N (R U Ry U R3);
(3) A€ pp(A) (B-resolvent set) < A € K3 N (R U Ry);
(4) Neop(A) & Xe (K2UKs)N (R URyUR3)) U (K1 N Ry);
(5) X € 0p5(A) (B-point spectrum) < X € K3 N (R U R2 U R3).

Theorem 5.2. Let X and 2) be two complex Banach spaces, A € LC[X,9)]
and B € [X,9)]. Then the subsets K1 N Ry and K2 N Ry are empty.

PROOF. Assume that A € K3 N Rg, so that (A — AB)~! is a bounded closed
operator with a closed domain of definition dom(4 — AB)~™! = ran(A — AB),
a contradiction.

Assume now that A € Ky N Ry, so that (A — AB)~! is an unbounded closed
operator with the domain of definition dom(A — AB)™! = ran(4A — AB) = 9,
which leads to a contradiction by the closed graph theorem. O
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