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Almost simple groups with the socle PSL(2, pn)
are determined by their complex group algebras

By SOMAYEH HEYDARI (Shahre-kord) and NEDA AHANJIDEH (Shahre-kord)

Abstract. Let n be a natural number, p be a prime number and L be an almost

simple group with the socle PSL(2, pn). In this paper, we prove that L is uniquely

determined by the first column of its character table. As a consequence, we show that

L is uniquely determined by its complex group algebra.

1. Introduction and notation

Throughout this paper, all groups are finite. Let G be a group, p be a prime

number and n be a natural number. G is said to be almost simple if there is

a simple group S such that S ≤ G ≤ Aut(S). G is called quasisimple if G = G′

and G
Z(G) is a non-abelian simple group. The set of prime divisors of |G| forgetting

multiplicities is shown by π(G). We say that G is a Kn-group if |π(G)| = n.

Also, if G is simple, then G is called a simple Kn-group. The set of irreducible

characters of G is shown by Irr(G), X1(G) is the set of irreducible character

degrees of G counting multiplicities, and the set of irreducible character degrees

of G forgetting multiplicities is denoted by cd(G). In fact, cd(G) = {χ(1) | χ ∈
Irr(G)}. In 2000, B. Huppert in [14] conjectured that if G is a group, and S is

a non-abelian simple group such that cd(G) = cd(S), then for some abelian group

A, G ∼= S × A. Huppert in [14] and [15] proved his conjecture for the Suzuki

groups and PSL(2, q), where q is a prime power. In [11], it was proved that some

simple K4-groups can be uniquely determined by their orders and two of their
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irreducible character degrees. The set of prime divisors of the elements of cd(G)

is denoted by ρ(G). Let (a, b) be the greatest common divisor of natural numbers

a and b. The character degree graph of G, which is shown by ∆(G), is a graph

with the vertex set ρ(G), and there is an edge between two vertices a and b if

there is some f ∈ cd(G) such that ab | f . In [13], the authors proved that some

simple groups are determined by their character degree graphs and orders. In [1],

a question (No. 126) is posed as:

Question 1.1. Let X1(G) = X1(Sn). Is it true that G ∼= Sn? Moreover, if

X1(G) = X1(H), where H is a simple group, then do we conclude that G ∼= H?

If H is a group which is not simple, then the second part of Question 1.1 is

not necessarily true. For example, X1(D8) = X1(Q8), while Q8 6∼= D8. But this

problem, in the case that H is simple, is completely different.

H. P. Tong-Viet in [23], [24], [25] and [26] proved that the answer to Ques-

tion 1.1 is positive. After that, some authors tried to verify Question 1.1 when

H is not simple. For example, in [10] and [12], it was shown that some almost

simple groups with the socle PSL(2, pn) are uniquely determined by their X1.

Let C be the complex number field. Then the group algebra of G over C is

denoted by CG. By Molien’s theorem ([1], Theorem 2.13), for the groups G and

L, X1(G) = X1(L) if and only if CG ∼= CL. Thus it was proved that the non-

abelian simple groups and some almost simple groups with the socle PSL(2, pn)

are determined by their complex group algebras.

Also, in [2], [18] and [19], the authors showed that the quasisimple groups,

which are not simple, are determined by their complex group algebras. In this

paper, we prove that:

Theorem 1.2. Let L be an almost simple group with the socle PSL(2, pn),

and let G be a group. Then L ∼= G if and only if X1(G) = X1(L).

As a consequence of Theorem 1.2 and Molien’s theorem, it is proved that:

Corollary 1.3. Let L be an almost simple group with the socle PSL(2, pn).

Then for a group G, L ∼= G if and only if CG ∼= CL.

Throughout this paper, we use the following notations:

If χ =
∑t
i=1 niχi, where for every 1 ≤ i ≤ t, χi ∈ Irr(G), then those χi with

ni > 0 are called irreducible constituents of χ. Also, if N is a normal subgroup

of G, then a character θ ∈ Irr(N) is called extendible to G if there is a character

χ ∈ Irr(G) such that χN = θ, where χN is the restriction of χ to N . The common

divisor graph of G, which is denoted by Γ(G), is a graph with the vertex set
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cd(G) − {1}, and two vertices a and b are adjacent to each other if (a, b) > 1.

Let a be a prime, and let b and m be natural. If am ‖ b, i.e., am | b, but am+1 - b,
then we write |b|a = am. If G is a group of Lie type in characteristic p, then G has

a character of degree |G|p, which is called the Steinberg character and is denoted

by ‘St’. Finally, Φi(q) is the value of the i-th cyclotomic polynomial evaluated

at q.

2. Preliminaries

In this section, we bring some lemmas which will be used in the proof of

Theorem 1.2.

In the following lemma, let δ be a diagonal automorphism of order 2, and let

φ be a field automorphism of order n of PSL(2, pn). It is known that

Aut(PSL(2, pn)) =

{
PSL(2, pn)(〈δ〉 × 〈φ〉), if p 6= 2,

PSL(2, pn)〈φ〉, if p = 2.

Lemma 2.1 determines irreducible character degrees of PSL(2, q) and almost

simple groups with the socle PSL(2, q) that we will use this lemma in the proof

of Theorem 1.2.

Lemma 2.1 ([28]). Let q be a prime power.

(a) If q is odd, then cd(PSL(2, q)) = {1, q−1, q, q+1, q+ε2 }, where ε = (−1)
(q−1)

2 .

(b) If q is even, then cd(PSL(2, q)) = {1, q − 1, q, q + 1}.
(c) Let S = PSL(2, q), where q = pn > 3 for a prime p, A = Aut(S), and let

S ≤ G ≤ A. Set H = PGL(2, q) if δ ∈ G, and H = S if δ 6∈ G, and let

[G : H] = d = 2am, m odd. Also, if p is odd, then set ε = (−1)
(q−1)

2 . Then

cd(G) =

{
1, q,

q + ε

2

}
∪ {(q − 1)2al : l | m} ∪ {(q + 1)j : j | d},

with the following exceptions:

(i) If either p is odd with G 6≤ S〈φ〉 or p = 2, then q+ε
2 is not a degree of G.

(ii) If n is odd, p = 3 and G = S〈φ〉, then l 6= 1.

(iii) If n is odd, p = 3 and G = A, then j 6= 1.

(iv) If n is odd, p = 2, 3 or 5 and G = S〈φ〉, then j 6= 1.

(v) If n ≡ 2 (mod 4), p = 2 or 3, and G = S〈φ〉 or G = S〈δφ〉, then j 6= 2.
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Lemmas 2.2 and 2.3 help us to obtain information about the normal sub-

groups of a group G according to its irreducible character degrees.

Lemma 2.2 (Ito’s theorem, [16, Theorem 6.15]). Let A be an abelian normal

subgroup of G. Then χ(1) | [G : A], for all χ ∈ Irr(G).

Lemma 2.3 ([16, Lemma 6.8 and Corollary 11.29]). Let N be a normal

subgroup of G and χ ∈ Irr(G). Let θ be an irreducible constituent of χN . Then

θ(1) | χ(1) and χ(1)
θ(1) | [G : N ].

Lemma 2.4 illustrates the structure of a solvable group G, when G′ is the

unique normal minimal subgroup of G. This lemma will be used in the proof

of Lemma 3.6.

Lemma 2.4 ([16, Lemma 12.3]). Let G be solvable, and assume that G′

is the unique normal minimal subgroup of G. Then all non-linear irreducible

characters of G have equal degree f , and one of the following situations obtains:

(a) G is a p-group, Z(G) is cyclic and G
Z(G) is elementary abelian of order f2.

(b) G is a Frobenius group with an abelian Frobenius complement of order f .

Also, G′ is the Frobenius kernel and is an elementary abelian p-group.

Lemma 2.5 ([3]). If Γ(G) is a complete graph, then G is a solvable group.

The following lemma shows that alternating groups and simple groups of Lie

type have some irreducible character degrees which extend to their corresponding

almost simple groups.

Lemma 2.6. (a) ([3]) If n ≥ 6, then An has irreducible characters of degrees
n(n−3)

2 and (n−1)(n−2)
2 that extend to Aut(An).

(b) (Schmid, [20], [21]) Let N be a normal subgroup of a group G, and let N be

isomorphic to a simple group of Lie type. If θ is the Steinberg character for N ,

then θ extends to G.

Lemma 2.7 gives us information about extendible irreducible character de-

grees of a normal minimal subgroup of a group G.

Lemma 2.7 ([3]). Let N be a normal minimal subgroup of G such that for

a non-abelian simple group S, N ∼= S × · · · × S︸ ︷︷ ︸
t

. Let A be the automorphism

group of S. If σ ∈ Irr(S) extends to A, then σ × · · · × σ︸ ︷︷ ︸
t

∈ Irr(N) extends to G.

Lemma 2.8 ([27]). Let S be a simple group of Lie type in characteristic p.

Then no proper multiple of St(1) is a character degree of S.
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Lemma 2.9 ([12]). Let L be an almost simple group with the socle PSL

(2, pn) such that p - [L : PSL(2, pn)]. Then for a group G, L ∼= G if and only if

X1(G) = X1(L).

Lemma 2.10 classifies the simple groups according to their character degree

graphs, which will be used in the proof of Theorem 1.2, Steps c–e.

Lemma 2.10 ([29, Corollary 1.2]). Let G be a simple group. The graph

∆(G) is disconnected if and only if G ∼= PSL(2, q) for some prime power q.

If ∆(G) is connected, then the diameter of ∆(G) is at most 3 and ∆(G) is a com-

plete graph except in the following cases:

(1) The diameter of ∆(G) is 3 if and only if G ∼= J1.

(2) The diameter of ∆(G) is 2 if and only if G is isomorphic to one of the following

groups:

(a) the sporadic Mathieu group M11 or M23,

(b) the alternating group A8,

(c) the Suzuki group 2B2(q2), where q2 = 22m+1 and m ≥ 1,

(d) the linear group PSL(3, q), where q > 2 is even or q is odd, and

(e) the unitary group PSU(3, q), where q > 2 and q + 1 is divisible by

a prime other than 2 or 3.

Note that among the alternating groups, the only groups whose character

degree graphs are disconnected are A5 and A6. Since A5
∼= PSL(2, 4) and

A6
∼= PSL(2, 9), in the above lemma, they are considered as linear groups.

The following lemma leads us to classify the simple K3, K4 and K5-groups

that we will use it in the proof of Lemma 3.9.

Lemma 2.11.

(i) ([9]) If G is a simple K3-group, then G is isomorphic to one of the following

groups:

A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3), PSU(4, 2).

(ii) ([4], [22]) If G is a simple K4-group, then G is isomorphic to one of the

following groups:

(1) A7, A8, A9, A10, M11, M12, J2, 2B2(8), 2B2(32), 3D4(2), 2F4(2)′,

PSL(3, 4), PSL(3, 5), PSL(3, 7), PSL(3, 8), PSL(3, 17), PSL(4, 3),

PSp(4, 4), PSp(4, 5), PSp(4, 7), PSp(4, 9), PSp(6, 2), PΩ+(8, 2),

PSU(3, 4), PSU(3, 5), PSU(3, 7), PSU(3, 8), PSU(3, 9), PSU(4, 3),

PSU(5, 2), G2(3);
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(2) PSL(2, q), where q is a prime power such that q(q2 − 1) = (2, q −
1)2α13α2vα3rα4 , with v, r > 3 distinct prime numbers and for 1 ≤ i ≤ 4,

αi ∈ N.

(iii) ([17]) If G is a simple K5-group, then G is isomorphic to one of the following

groups: PSL(2, q), where |π(q2 − 1)| = 4, PSL(3, q), where |π((q2 − 1)(q3 −
1))| = 4, PSU(3, q), where |π((q2 − 1)(q3 + 1))| = 4, Ω(5, q), where |π(q4 −
1)| = 4, 2B2(q2), where q2 = 22k+1 and |π((q2 − 1)(q4 + 1))| = 4, 2G2(q2),

where q2 is an odd power of 3 and |π((q4 − 1)(q4 − q2 + 1))| = 4 or one of

the following simple groups:

PSL(4, 4), PSL(4, 5), PSL(4, 7), PSL(5, 2), PSL(5, 3), PSL(6, 2), Ω(7, 3),

Ω(9, 2), PSp(6, 3), PSp(8, 2), PSU(4, 4), PSU(4, 5), PSU(4, 7), PSU(4, 9),

PSU(5, 3), PSU(6, 2), PΩ+(8, 3), PΩ−(8, 2), A11, A12, M22, J3, HS, He,

McL, 3D4(3), G2(4), G2(5), G2(7), G2(9).

Let a > 1 be an integer, and let m be a natural number. If there is a prime l

such that l | am − 1 and l - ai − 1 for i < m, then l is called a primitive prime

divisor of am−1, which is shown by rm(a). Also, if m is even, then the definition

of primitive prime divisor of am−1 forces rm(a) - am
2 −1, and so, rm(a) | am

2 +1.

Hence, rm(a) is called a primitive prime divisor of a
m
2 + 1.

From [8], we can see when am − 1 and am + 1 have primitive prime divisors.

Lemma 2.12 (Zsigmondy’s theorem). Let a > 1 be an integer and m ∈ N.

Then am − 1 has a primitive prime divisor except when a = 2 and m ∈ {1, 6} or

m = 2 and a = 2t − 1, for some natural number t. Also, am + 1 has a primitive

prime divisor except when a = 2 and m = 3 or m = 1 and a = 2t − 1.

Remark 2.13. Let ε′ = ±, a be a prime, m be a natural number and r be a

primitive prime divisor of am + ε′1. Then Fermat’s little theorem shows that if

ε′ = 1, then 2m | r − 1, therefore r - 2m, and if ε′ = −1, then m | r − 1, hence

r - m, and so, r - 2m, because r is odd.

Lemma 2.14 ([7]).

(a) Except the relations (239)2 − 2(13)4 = −1 and (3)5 − 2(11)2 = 1, every

solution of the equation

ar − 2bs = ±1 a, b prime; r, s > 1,

has exponents r = s = 2; i.e., it comes from a unit a− b.2 1
2 of the quadratic

field Q(21/2) for which the coefficients a, b are primes.
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(b) The equation ar − bs = 1, where a and b are primes and r, s > 1, has only

one solution, namely, 32 − 23 = 1.

Lemma 2.15 ([30]).

(as − 1, at + 1) =

{
a(s,t) + 1, if s

(s,t) is even and t
(s,t) is odd,

(a+ 1, 2), otherwise.

3. Main results

Throughout this section, we suppose that PSL(2, pn).L.Aut(PSL(2, pn)),

where p is prime. If δ ∈ L, then set H = PGL(2, pn), and if δ 6∈ L, then set

H = PSL(2, pn). Suppose that [L : H] = 2am, where m is an odd number, and

if p is odd, then set ε = (−1)
(pn−1)

2 . Also, in Table 1, we bring some irreducible

character degrees of the simple groups of Lie type. Note that the irreducible

character degrees of the simple exceptional groups of Lie type available in Table 1

can be found in ([5, §13.9]), and the irreducible character degrees of the simple

classical groups of Lie type mentioned in Table 1 can be calculated by formulas

from ([5, §13.8]). Also, for the irreducible character degrees of the simple groups

of small orders, we refer the reader to [6].

In the following lemmas, let p | [L : PSL(2, pn)], and let G be a group with

X1(G) = X1(L). Thus, since cd(G) = cd(L), we can use Lemma 2.1(c) to obtain

cd(G).

Remark 3.1. Since X1(G) = X1(L),

|G| =
∑

χ∈Irr(G)

(χ(1))2 =
∑

χ∈Irr(L)

(χ(1))2 = |L| = 2a+impn(pn + 1)(pn − 1)

2
,

where i = 1 or i = 0.

Remark 3.2. If p=2 and n=3, then, since 2 - [Aut(PSL(2, 23)) : PSL(2, 23)]

= 3, Lemma 2.9 shows that G ∼= L. So, in the following, we assume that either

p 6= 2 or n 6= 3.

Lemma 3.3. | GG′ | = 2a+im, and also, |G′| = |PSL(2, pn)|.

Proof. Since L
PSL(2,pn) .

Aut(PSL(2,pn))
PSL(2,pn) and Aut(PSL(2,pn))

PSL(2,pn) is abelian, we

conclude that L
PSL(2,pn) is abelian, and hence, L′ . PSL(2, pn). Now, since

PSL(2, pn) is simple and L is non-abelian, L′ ∼= PSL(2, pn). On the other hand,
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we know that for every finite group K, | KK′ | is the number of linear characters

of K. Thus, since X1(G) = X1(L), | GG′ | = | LL′ | = 2a+im. Moreover, by Remark

3.1, |L| = |G|. Now, since we have |L′| = |PSL(2, pn)|, we conclude that |G′| =

|PSL(2, pn)|. �

Lemma 3.4. Let pn + 1 and pn− 1 have primitive prime divisors. Then the

only character degrees of G of prime powers are pn, pn−1
2 = 33−1

2 , a Mersenne

prime pn − 1 = 2n − 1 or a Fermat prime pn + 1 = 2n + 1.

Proof. Considering Lemma 2.14 (a,b) and cd of G completes the proof. �

Hereafter, letK be maximal such thatK is normal inG and G
K is non-abelian.

Remark 3.5. Our assumption on K shows that (GK )′ is the unique normal

minimal subgroup of G
K , so,

(
G

K

)′
.
G

K
. Aut

((
G

K

)′)
. (3.1)

Lemma 3.6. G
K is not solvable.

Proof. On the contrary, let G
K be solvable. We are going to get a contradic-

tion. Since (GK )′ is the unique normal minimal subgroup of G
K , and G

K is solvable,

Lemma 2.4 shows that for some f , cd(GK ) = {1, f}, and one of the following cases

holds:

(a) G
K is a s-group (s ∈ π(G)), and

G
K

Z( G
K )

is of order f2. Thus f2 | |GK |, and

so, f2 | |G|. Now, since cd(GK ) ⊆ cd(G) and f ∈ cd(GK ), we conclude that

f ∈ cd(G). But considering cd(G) shows that there does not exist any

f ∈ cd(G)− {1} such that f2 | |G|, which is a contradiction.

(b) G
K is a Frobenius group with the Frobenius kernel (GK )′ and [GK : (GK )′] = f .

Now, by Lemma 3.3, [G : G′] = 2a+im. So, f | 2a+im. But since f ∈ cd(G),

considering cd(G) leads us to get a contradiction.

These contradictions show that G
K is not solvable. �

Lemma 3.7. If (GK )′∼=PSL(2, pn), then PSL(2, pn).G.Aut(PSL(2, pn)).

Proof. By Lemma 3.3, |G′| = |PSL(2, pn)|. Thus, since (GK )′ = G′K
K
∼=

G′

G′∩K and (GK )′ ∼= PSL(2, pn), we deduce that |G′ ∩ K| = 1. It follows that

G′ ∼= PSL(2, pn) and K ≤ Z(G).

Now, we claim that K = 1. On the contrary, suppose that K 6= 1. By

Lemma 2.1(c), G has irreducible character degrees pn, 2am(pn−1) and α(pn+1),
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where α is a natural number with α | 2am. Let χ, β, η ∈ Irr(G) such that

χ(1) = pn, β(1) = 2am(pn − 1) and η(1) = α(pn + 1). Then, applying Ito’s

theorem to K,χ, β and η shows that for some y ≥ 1, |K| = 2jpy, where j = 0

or 1. Set M = G′×K, and let κ ∈ Irr(M) such that [βM , κ] 6= 0. Then Lemma 2.3

implies that β(1)
κ(1) |

|G|
|M | and so, |K|(pn − 1) | κ(1). But this is a contradiction,

because cd(M) = cd(G′) = cd(PSL(2, pn)), and by Lemma 2.1(a,b),

{1, pn, pn − 1, pn + 1} ⊆ cd(PSL(2, pn)) ⊆
{

1, pn, pn − 1, pn + 1,
pn + ε

2

}
.

Thus K = 1, and hence 3.1 shows that G′ . G . Aut(G′), and since G′ ∼=
PSL(2, pn), the proof is complete. �

Lemma 3.8. If PSL(2, pn) . G . Aut(PSL(2, pn)), then G ∼= L.

Proof. The proof goes back to [12], Steps 5–11 in the proof of the main

theorem. �

Lemma 3.9. If p = 2 and n = 2 or n = 6, then G ∼= L.

Proof. Let p = 2 and n = 6. As was mentioned before, assume that K is

maximal such that K is normal in G and G
K is non-abelian. Then Lemma 3.6

shows that G
K is non-solvable. Hence, (GK )′ is isomorphic to a direct product of

some non-abelian simple group S. Now, by an easy calculation, we can see that

26.32.5.7.13 | |L| and |L| | 27.33.5.7.13 and so, π(L) = {2, 3, 5, 7, 13}. Moreover,

Remark 3.1 shows that |G| = |L|, and so, G is a K5-group. Now, since π(S) ⊆
π(G), we conclude that S is a simple K3, K4 or K5-group. Hence, 5, 7 or 13

belongs to π(S).

On the other hand, |G|13 = 13, |G|7 = 7 and |G|5 = 5. Thus |GK |13 | 13,

|GK |7 | 7 and |GK |5 | 5, and so, |(GK )′|13 | 13, |(GK )′|7 | 7 and |(GK )′|5 | 5. It follows

that (GK )′ is simple. Hence, considering Lemma 2.11 and |G| shows that (GK )′ is

isomorphic to one of the following groups:

A5, A6, A7, A8, PSL(3, 3), PSU(3, 3), PSL(3, 4), PSL(2, 7), 2B2(8), PSL(2, 8),

PSL(2, q), where |π(q2 − 1)| = 3, PSL(2, q),where |π(q2 − 1)| = 4, PSL(3, q),

where |π((q2−1)(q3−1))|=4, PSU(3, q),where |π((q2−1)(q3+1))|=4,Ω(5, q),

where |π(q4 − 1)| = 4, 2G2(q2),where q2 = 32m+1,m ≥ 1

and |π((q4 − 1)(q4 − q2 + 1))| = 4, 2B2(q2),

where q2 = 22k+1and |π((q2 − 1)(q4 + 1))| = 4. (3.2)
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By our assumption, p = 2 | [L : PSL(2, pn)], and so, L 6∼= PSL(2, pn),

PSL(2, pn).Z3. Thus, considering Lemma 2.1(c) shows that

cd(L) ⊆ {1, 26, 26 + 1, 2(26 + 1), 3(26 + 1), 6(26 + 1), 2(26 − 1), 6(26 − 1)}. (3.3)

Now, since cd(G) = cd(L) and cd(GK ) ⊆ cd(G), we conclude that cd(GK ) is a subset

of 3.3.

If (GK )′ is a simple group of Lie type, then Lemma 2.6(b) shows that ‘St’

extends to G
K , where ‘St’ is the Steinberg character of (GK )′. Now, since St(1) is

a prime power, considering cd(GK ) (mentioned in 3.3) shows that St(1) = 26.

Now, let (GK )′ be a simple K3 or K4-group. Then 3.2 shows that (GK )′ ∼=
PSL(3, 4), A5, A6, A7, A8, PSL(3, 3), PSU(3, 3), PSL(2, 7), PSL(2, 8), 2B2(8)

or PSL(2, q), where |π(q2− 1)| = 3. First, suppose that (GK )′ ∼= PSL(3, 4). Then

20 ∈ cd(PSL(3, 4)) = cd((GK )′). Now, let θ ∈ Irr((GK )′) and Υ ∈ Irr(GK ) such

that θ(1) = 20 and [Υ( G
K )′ , θ] 6= 0. Then 3.1 shows that |

G
K

( G
K )′
| | |Aut(( G

K )′)

( G
K )′

| =

12. Hence, Lemma 2.3 implies that Υ(1) = 20, 40, 60, 120 or 240, which is a

contradiction by considering cd(GK ) (mentioned in 3.3). Also, the same reasoning

as above rules out (GK )′ ∼= A5, A6, A7, A8, PSL(3, 3), PSU(3, 3), PSL(2, 7),

PSL(2, 8) or 2B2(8). Thus (GK )′ ∼= PSL(2, q), where |π(q2 − 1)| = 3. Hence, by

Table 1, St(1) = q. Also, as was mentioned above, the degree of the Steinberg

character of (GK )′ is 26, and so, q = 26. Thus q2 − 1 = 32.5.7.13, which is a

contradiction to |π(q2 − 1)| = 3.

Therefore, (GK )′ is a simple K5-group. So, 3.2 shows that (GK )′ is a simple

group of Lie type, and we use Table 1 to obtain the degree of the Steinberg char-

acter of (GK )′. Now, as was mentioned, St(1) = 26. Thus (GK )′ is not isomorphic

to 2G2(q2), where q2 = 32m+1,m ≥ 1, because the degree of the Steinberg char-

acter of 2G2(q2) is q6 = 33(2m+1). If (GK )′ ∼= Ω(5, q), then St(1) = q4 = 26, which

is imposssible. Let (GK )′ ∼= PSL(3, q), where |π((q2 − 1)(q3 − 1))| = 4. Then

St(1) = q3 = 26, and so, q = 4. Thus (q2 − 1)(q3 − 1) = 33.5.7, which is a

contradiction, because |π((q2 − 1)(q3 − 1))| = 4. Also, the same argument leads

us to see that (GK )′ is not isomorphic to PSU(3, q) or 2B2(q2).

These contradictions show that (GK )′ ∼= PSL(2, q), where |π(q2 − 1)| = 4.

Thus q = St(1) = 26, and so, (GK )′ ∼= PSL(2, 26). Therefore, Lemma 3.7 forces

PSL(2, 26) . G . Aut(PSL(2, 26)), and hence, by Lemma 3.8, G ∼= L, as

wanted.

Also, when p = n = 2, the same argument completes the proof. �

Remark 3.10. Since cd(GK ) ⊆ cd(G), we conclude that

cd

(
G

K

)
⊆ {1, pn} ∪ {j(pn + 1) : j | 2am} ∪ {2al(pn − 1) : l | m} ∪

{
pn + ε

2

}
.
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If cd(GK ) ⊆ {1, pn}, then Γ(GK ) is complete and hence, Lemma 2.5 shows that G
K is

solvable, which is a contradiction to Lemma 3.6. Thus for some natural numbers

r, l with r | 2am and l | m, G
K has some irreducible character degree j(pn + 1),

pn+ε
2 (if p is odd) or 2al(pn − 1).

Remark 3.11. If pn + 1 and pn − 1 have primitive prime divisors and Ω,Ψ ∈
Irr(GK ) such that r2n(p) | Ω(1) and rn(p) | Ψ(1), then considering cd(GK ) (men-

tioned in Remark 3.10) and the facts that (pn + 1, pn − 1) | 2 and (pn + 1, p) =

(pn−1, p) = 1 shows that Ω(1) = f(pn+1) or Ω(1) = pn+1
2 (if p is odd and ε = 1)

and Ψ(1) = 2ak(pn − 1) or Ψ(1) = pn−1
2 (if p is odd and ε = −1), where f, k are

natural numbers with f | 2am and k | m.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. If G ∼= L, then it is obvious that X1(G) = X1(L).

Thus in the following, we assume that X1(G) = X1(L). If p - [L : PSL(2, pn)],

then Lemma 2.9 completes the proof of Theorem 1.2. So, we assume that p |
[L : PSL(2, pn)]. By considering Remark 3.2 and Lemma 3.9, we can assume

that either p 6= 2 or n 6= 2, 3, 6. Since either p 6= 2 or n 6= 3, 6, Lemma 2.12

guarantees that pn + 1 and pn− 1 have primitive prime divisors r2n(p) and rn(p),

respectively. Let b and c be natural numbers such that (r2n(p))c ‖ pn + 1 and

(rn(p))b ‖ pn − 1. Also, since PSL(2, pn) . L . Aut(PSL(2, pn)) and cd(G) =

cd(L), Lemma 2.1(c) helps us to obtain cd(G).

Let K be maximal such that K is normal in G and G
K is non-abelian. Then

(GK )′ is the unique normal minimal subgroup of G
K . Now, Lemma 3.6 shows that

G
K is non-solvable. Hence, there exists a simple group S and a natural number t

such that (GK )′ ∼= S × · · · × S︸ ︷︷ ︸
t

. In the following steps, we are going to prove that

t = 1 and (GK )′ ∼= PSL(2, pn). Next, Lemmas 3.7 and 3.8 prove that G ∼= L.

Step (a). (i) Let ω ∈ Irr(GK ) such that ω(1) ∈ {2al(pn− 1), j(pn + 1), p
n+ε
2 },

where l, j are natural numbers with l | m and j | 2am, and let $ ∈ Irr((GK )′) such

that [ω( G
K )′ , $] 6= 0. If ω(1) = j(pn + 1) or pn+1

2 , then (r2n(p))c ‖ $(1) and if

ω(1) = 2al(pn − 1) or pn−1
2 , then (rn(p))b ‖ $(1).

(ii) If ς ∈ Irr((GK )′) such that r2n(p) | ς(1) or rn(p) | ς(1), then (r2n(p))c ‖ ς(1)

or (rn(p))b ‖ ς(1), respectively.

(iii) If θ ∈ Irr((GK )′) such that θ(1) is not a prime power, then only one of

rn(p) and r2n(p) divides θ(1).

Proof. (i) Let ω ∈ Irr(GK ), and let $ ∈ Irr((GK )′) such that [ω( G
K )′ , $] 6= 0,

and ω(1) = 2al(pn − 1) or pn−1
2 (ω(1) = j(pn + 1) or pn+1

2 ). Then Lemma 2.3



478 Somayeh Heydari and Neda Ahanjideh

implies that ω(1)
$(1) | [GK : (GK )′]. Now, since [GK : (GK )′] | [G : G′], considering

Lemma 3.3 shows that [GK : (GK )′] | 2a+im. It follows that ω(1)
(ω(1),2a+im) | $(1).

On the other hand, 2a+im | 2n, and so, Remark 2.13 implies that r2n(p), rn(p) -
2a+im. Thus (rn(p))b ‖ ω(1)

(ω(1),2a+im) ((r2n(p))c ‖ ω(1)
(ω(1),2a+im) ), and hence, (rn(p))b ‖

$(1) ((r2n(p))c ‖ $(1)).

(ii) Now, let ς ∈ Irr((GK )′) such that r2n(p) | ς(1), and let Θ ∈ Irr(GK )

such that [Θ( G
K )′ , ς] 6= 0. Then Lemma 2.3 shows that ς(1) | Θ(1), and so,

r2n(p) | Θ(1). Hence, Remark 3.11 shows that for some natural number e with

e | 2a+im, Θ(1) = e(pn + 1) or p is odd, ε = 1 and Θ(1) = pn+1
2 . Thus (i) implies

that (r2n(p))c ‖ ς(1). Also, when rn(p) | ς(1), the same argument completes the

proof.

(iii) Let θ ∈ Irr((GK )′) such that θ(1) is not a prime power, and let % ∈ Irr(GK )

such that [%( G
K )′ , θ] 6= 0. Then Lemma 2.3 shows that θ(1) | %(1). Thus since

θ(1) is not a prime power, considering cd(GK ) shows that %(1) ∈ {2al(pn − 1),

j(pn + 1), p
n+ε
2 }, where l, j are natural numbers with l | m and j | 2am. Hence,

part (i) implies that one of rn(p) and r2n(p) divides θ(1). Now, suppose that

rn(p)r2n(p) | θ(1). Then since θ(1) | %(1), we obtain rn(p)r2n(p) | %(1), which is

a contradiction by considering cd(GK ). �

Step (b). (GK )′ is simple.

Proof. On the contrary, suppose that t > 1. According to Remark 3.10,
G
K has some irreducible character degree r(pn+1), p

n+ε
2 (if p is odd) or 2al(pn−1),

where r, l are natural numbers with r | 2am and l | m.

In the following, without loss of generality, we suppose that ϕ ∈ Irr(GK ) such

that ϕ(1) = r(pn + 1). Also, let γ ∈ Irr((GK )′) such that [ϕ( G
K )′ , γ] 6= 0. Then

since (GK )′ ∼= S × · · · × S︸ ︷︷ ︸
t

, for every 1 ≤ j ≤ t, there exists some γj ∈ Irr(S)

such that γ(1) = γ1(1) × γ2(1) × · · · × γt(1). Moreover, Step (a)(i) shows that

(r2n(p))c ‖ γ(1). Without loss of generality, we suppose that r2n(p) | γ1(1).

Since (γ1(1))t, γ1(1)× 1× · · · × 1︸ ︷︷ ︸
t−1

∈ cd((GK )′), Step (a)(ii) shows that (r2n(p))c ‖

(γ1(1))t, γ1(1), which is a contradiction. This contradiction proves that t = 1,

and hence (GK )′ is simple. �

Step (c). Let (GK )′ be a simple group of Lie type. Then the degree of the

Steinberg character of (GK )′ is pn.

Proof. On the contrary, let St(1) 6= pn. By Lemma 2.6(b), the Steinberg

character of (GK )′ extends to G
K , and so, St(1) ∈ cd(GK ). Since St(1) is a prime
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power and cd(GK ) ⊆ cd(G), considering Lemma 3.4 shows that St(1) is a Fermat

prime pn + 1 = 2n + 1 = r2n(2), a Mersenne prime pn − 1 = 2n − 1 = rn(2) or
pn−1

2 = 33−1
2 = r3(3). Thus St(1) is an odd prime.

First, we are going to prove that ∆((GK )′) is disconnected. For this reason,

we prove that for every l ∈ cd((GK )′)−{St(1)}, (l,St(1)) = 1. On the contrary, let

St(1) 6= l ∈ cd((GK )′) and (l,St(1)) 6= 1. Then, since St(1) is prime, we conclude

that St(1) | l, which is a contradiction to Lemma 2.8. This contradiction shows

that ∆((GK )′) is disconnected.

So, Lemma 2.10 implies that for some prime power q, (GK )′ ∼= PSL(2, q).

Hence, q = St(1) is an odd prime, and by considering Lemma 2.1(a), we can see

that

cd((
G

K
)′) = cd(PSL(2, q)) =

{
1, q, q − 1, q + 1,

q + (−1)
q−1
2

2

}
.

Now, we consider the following cases:

(i) Let p = 2, and let q be a Fermat prime 2n + 1. Then, since m is odd and

m | n, m = 1. Now, let ς ∈ Irr((GK )′) and γ ∈ Irr(GK ) such that [γ( G
K )′ , ς] 6= 0

and ς(1) = q + 1 = 2n + 2. Then Lemma 2.3 implies that 2n + 2 | γ(1). But

considering cd(GK ) (mentioned in Remark 3.10) and the facts that 2n + 2 - 2n,

(2n + 2, 2n + 1) = 1, 2n + 2 - n and m = 1 shows that γ(1) = 2a(2n − 1). Hence,

2n+ 2 | 2a(2n−1), and so, 2n−1 + 1 | 2n−1. Thus since, (2n−1 + 1, 2n−1) | 3, we

conclude that 2n−1 + 1 = 1 or 2n−1 + 1 = 3. The first case is impossible. Also,

the latter case implies that 2n−1 = 2 and so, n = 2. But this is a contradiction,

because by our assumption either p 6= 2 or n 6= 2.

(ii) Let p = 2, and let q be a Mersenne prime 2n − 1. Since 2 = p | [L :

PSL(2, pn)], [L : PSL(2, pn)] | n and n is prime, we deduce that n = 2. But this

is a contradiction, because by our assumption either p 6= 2 or n 6= 2.

(iii) Let St(1) = q = pn−1
2 = 33−1

2 = 13. Also, let ι ∈ Irr((GK )′) such that

ι(1) = q − 1 = 12. Then, since ι(1) is not a prime power, Step (a)(iii) shows that

r6(3) = 7 or r3(3) = 13 divides ι(1), which is impossible.

These contradictions show that St(1) = pn. �

Step (d). ∆((GK )′) is not complete.

Proof. On the contrary, let ∆((GK )′) be complete. By Remark 3.10, for

some natural numbers r and k with r | 2am and k | m, GK has irreducible character

degree r(pn + 1), 2ak(pn − 1) or pn+ε
2 . Thus r2n(p) or rn(p) belongs to ρ(GK ).

Now, we claim that only one of r2n(p) and rn(p) belongs to ρ(GK ). On the

contrary, suppose that ζ, ν ∈ Irr(GK ) such that r2n(p) | ζ(1) and rn(p) | ν(1).
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Then, by considering Remark 3.11 and without loss of generality, we can assume

that ζ(1) = r(pn + 1) and ν(1) = 2ak(pn − 1). Thus Step (a)(i) guarantees that

r2n(p), rn(p) ∈ ρ((GK )′). Now, since ∆((GK )′) is complete, we conclude that there

exists some θ ∈ Irr((GK )′) such that r2n(p)rn(p) | θ(1). But this is a contradiction

to Step (a)(iii).

In the following, without loss of generality, we suppose that r2n(p) ∈ ρ(GK ).

If ψ ∈ Irr(GK ) such that r2n(p) | ψ(1), then Remark 3.11 shows that ψ(1) =

r(pn + 1) or ψ(1) = pn+1
2 (if p is odd and ε = 1), where r is a natural number

with r | 2am. Now, if pn 6∈ cd(GK ), then, since for every γ ∈ Irr(GK ) − {1},
r2n(p) | γ(1), we conclude that Γ(GK ) is complete, which is a contradiction by

considering Lemma 2.5 and the fact that G
K is non-solvable. This contradiction

shows that pn ∈ cd(GK ).

Now, the classification theorem of the simple groups shows that (GK )′ is an al-

ternating group of degree at least 5, a sporadic simple group or a simple group of

Lie type. Thus, by considering Lemma 2.10, we have the following cases:

Case 1. Let for some 8 6= l ≥ 7, (GK )′ ∼= Al. Then Lemma 2.6(a) shows

that (GK )′ has two irreducible characters as δ and ϑ such that δ(1) = l(l−3)
2 and

ϑ(1) = (l−1)(l−2)
2 , and these characters extend to Aut(GK ). Hence, Lemma 2.7

guarantees that δ(1), ϑ(1) ∈ cd(GK ). Also, we can see that δ(1) and ϑ(1) are

consecutive integers.

First, note that since l ≥ 7, l − 1, l − 2 6= 1. Hence, ϑ(1) cannot be a prime

power, and so, considering cd(GK ) shows that ϑ(1) = k(pn + 1) or pn+1
2 (if p is

odd and ε = 1), where k | 2am. Thus, since (δ(1), ϑ(1)) = 1, considering cd(GK )

leads us to see that δ(1) = l(l−3)
2 = pn.

On the other hand, (l, l − 3) | 3. It follows that p = 3, and so, for some

natural numbers t, z, l = 3t and l−3
2 = 3z. Now, an easy calculation shows

that z = 1 and t = 2, hence l = 9 and n = 3, and so, (GK )′ ∼= A9. Thus 3.1

implies that A9 . G
K . Aut(A9) = S9, and hence, G

K
∼= A9 or S9. Now, since

8 ∈ cd(A9), cd(S9), we conclude that 8 ∈ cd(GK ). It follows that 8 ∈ cd(G), which

is a contradiction, because

cd(G)⊆{1, 33, 33+1, 2(33+1), 3(33+1), 6(33+1), 33−1, 2(33−1), 3(33−1), 6(33−1)}.
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Case 2. Let (GK )′ be isomorphic to one of 27 sporadic simple groups. Let

(GK )′ ∼= B. Then

{4371, 96255, 1139374, 9458750} ⊆ cd(B).

Now, since the mentioned degrees are not prime power, Step a(iii) guarantees that

(rn(p))b or (r2n(p))c divides these degrees. Now, since rn(p) 6∈ ρ((GK )′), we get

(r2n(p))c | 4371, 96255, 1139374, 9458750. Hence, r2n(p) | (4371, 96255) = 3.31

and r2n(p) | (1139374, 9458750) = 2.23.47, which is impossibe. Now, let (GK )′ ∼=
J2. Then {21, 160} ⊆ cd(J2). Since 160 and 21 are not prime powers, Step (a)(iii)

and the fact that rn(p) 6∈ ρ((GK )′) show that (r2n(p))c | 21 and (r2n(p))c | 160,

and so, r2n(p) | (21, 160) = 1, which is impossible.

Also, the same argument as used in the above cases rules out the possibility

that (GK )′ is isomorphic to the other sporadic simple groups.

Groups Labels Degrees

2G2(q2), St q6

q2 = 32k+1, k ≥ 1 µ 1√
3
qΦ1(q)Φ2(q)φ4(q)

G2(q) St q6

µ 1
3
qΦ2

1(q)Φ2
2(q)

E6(q) St q36

µ qΦ8(q)Φ9(q)

2F4(q2), St q24

q2 = 22k+1, k ≥ 1 µ 1
3
q4Φ2

1(q)Φ2
2(q)Φ2

4(q)Φ2
8(q)

E8(q) St q120

µ qΦ2
4(q)Φ8(q)Φ12(q)Φ20(q)Φ24(q)

2B2(q2), St q4

q2 = 22k+1, k ≥ 1 µ 1√
2
qΦ1(q)φ2(q)

Ω(2k + 1, q) or St qk
2

PSp(2k, q), k ≥ 3 µ q(qk+1)(qk−1−1)
2(q−1)

PΩ+(2k, q), St qk(k−1)

k ≥ 4 µ q(qk−2+1)(qk−1)

q2−1
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Groups Labels Degrees

PSU(4, q) St q6

µ q2Φ4(q)

PSL(2, q) St q

3D4(q3) St q12

µ 1
2
q3Φ2

1(q)Φ2
3(q)

F4(q) St q24

µ 1
2
q13Φ2

2(q)Φ2
6(q)Φ8(q)

E7(q) St q63

µ qΦ7(q)Φ12(q)Φ14(q)

2E6(q2) St q36

µ qΦ8(q)Φ18(q)

PSL(k + 1, q), St q
k(k+1)

2

k ≥ 2 µ q(qk−1)
q−1

PΩ−(2k, q), St qk(k−1)

k ≥ 4 µ q(qk−2−1)(qk+1)

q2−1

PSU(k + 1, q), St q
k(k+1)

2

k ≥ 2, k 6= 3 µ q(qk−(−1)k)
q+1

Ω(5, q) St q4

µ q(q+1)2

2

Table 1: Irreducible character degrees of the simple groups of Lie type

Case 3. Let (GK )′ be isomorphic to a simple group of Lie type over a finite

field with q-elements (q2-elements), where for a prime number l and a natural

number f , q = lf (q2 = lf ). Also, let µ,St ∈ Irr((GK )′) be as shown in Table 1.

Then, according to Step (c), St(1) = pn. On the other hand, Table 1 shows that

St(1) is a power of q, and so, q is a power of p. Hence, an easy calculation implies

that µ(1) is as in Table 2, and so, µ(1) is not a prime power. Thus, considering

Step (a)(iii) and the fact that rn(p) 6∈ ρ((GK )′) leads us to see that r2n(p) | µ(1).

Now, for example, let for k ≥ 2, (GK )′ ∼= Ω(2k + 1, q). First, suppose that
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k = 2. Then, since r2n(p) | µ(1) = p
n
4 (p

n
4 +1)2

2 , r2n(p) | pn
4 + 1. But this

contradicts the definition of the primitive prime divisor, because n
4 < n. Now,

assume that k ≥ 3. Then again, r2n(p) | µ(1) = p
n
k2 (p

n
k +1)(p

n(k−1)

k2 −1)
2(p

n
k2 −1)

, and so,

r2n(p) | pn
k + 1 or p

n(k−1)

k2 − 1. Now, since k ≥ 3, the first case contradicts

the definition of the primitive prime divisor. Thus r2n(p) | p
n(k−1)

k2 − 1, and

hence, r2n(p) | (p
n(k−1)

k2 − 1, pn + 1). Therefore, Lemma 2.15 shows that r2n(p) |(
p

n(k−1)

k2 − 1, pn + 1
)

= p(
n(k−1)

k2 ,n) + 1 or r2n(p) | (2, p + 1). Since r2n(p) is odd,

the latter case is impossible. Thus r2n(p) | p(
n(k−1)

k2 ,n) + 1. Now, since k ≥ 3, we

can see that n(k−1)
k2 < n, and hence, (n(k−1)k2 , n) < n, which is a contradiction by

considering the definition of the primitive prime divisor.
Also, the same argument rules out the possibility that (GK )′ is isomorphic to

the other simple groups whose character degree graphs are complete.

Groups q(q2) µ(1)

2G2(q2), p
n
3 3k(p

2n
3 − 1)

q2 = 32k+1, k ≥ 1

G2(q) p
n
6 1

3
p

n
6 (p

n
3 − 1)2

2F4(q2), p
n
12 1

3
p

n
6 (p

n
3 − 1)2

q2 = 22k+1, k ≥ 1

2E6(q2) p
n
36 p

n
36 (p

n
9 + 1)(p

n
6 − p

n
12 + 1)

2B2(q2), p
n
2 2k(p

n
2 − 1)

q2 = 22k+1, k ≥ 1

PSL(k + 1, q), p
2n

k(k+1) p
2n

k(k+1) (p
2n
k+1−1)

p
2n

k(k+1)−1

k ≥ 2

Ω(2k + 1, q) or p
n
k2 p

n
k2 (p

n
k +1)(p

n(k−1)

k2 −1)

2(p
n
k2 −1)

PSp(2k, q), k ≥ 3

PΩ−(2k, q), p
n

k(k−1) p
n

k(k−1) (p

n(k−2)
k(k−1) −1)(p

n
k−1 +1)

p
2n

k(k−1)−1

k ≥ 4
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Groups q(q2) µ(1)

PΩ+(2k, q), p
n

k(k−1) p
n

k(k−1) (p

n(k−2)
k(k−1) +1)(p

n
k−1−1)

p
2n

k(k−1)−1

k ≥ 4

PSU(k + 1, q), p
2n

k(k+1) p
2n

k(k+1) (p
2n

(k+1)−(−1)k)

p
2n

k(k+1) +1

k ≥ 2, k 6= 3

PSU(4, q) p
n
6 p

n
3 (p

n
3 + 1)

Ω(5, q) p
n
4

p
n
4 (p

n
4 +1)2

2

E7(q) p
n
63 p

n
63 (p

4n
63 − p

2n
63 + 1)

×(p
2n
21 − p

5n
63 + p

4n
63 − p

n
21 + p

2n
63 − p

n
63 + 1)

×(p
2n
21 + p

5n
63 + p

4n
63 + p

n
21 + p

2n
63 + p

n
63 + 1)

F4(q) p
n
24 1

2
p

13n
24 (p

n
24 + 1)2(p

n
12 − p

n
24 + 1)2(p

n
6 + 1)

E6(q) p
n
36 p

n
36 (p

n
9 + 1)(p

n
6 + p

n
12 + 1)

3D4(q3) p
n
12 1

2
p

n
4 (p

n
12 − 1)2(p

n
6 + p

n
12 + 1)2

E8(q) p
n

120 p
n

120 (p
n
60 + 1)2(p

n
30 + 1)(p

n
30 − p

n
60 + 1)(p

n
15 − p

n
30 + 1)

×(p
n
15 − p

n
20 + p

n
30 − p

n
60 + 1)

Table 2: Irreducible character degrees of the simple groups of Lie type

Thus we proved that ∆((GK )′) is not complete. �

Step (e). (GK )′ ∼= PSL(2, pn).

Proof. By Step (d), ∆((GK )′) is not complete. Now, we claim that ∆((GK )′)

is disconnected. On the contrary, suppose that ∆((GK )′) is connected. Before

beginning the proof, we note that if (GK )′ is a simple group of Lie type, then

we suppose that µ,St ∈ Irr((GK )′) be as shown in Table 1. Then, by the same

argument as used in Case (3) of Step d, we can see that µ(1) is not a prime power

and it is as in Table 2.

Now, by considering Lemma 2.10, we have the following cases:

(1) Let (GK )′ ∼= 2B2(q2), where q2 = 22k+1, k ≥ 1. Since µ(1) is not a prime

power, by Step (a)(iii), we can see that either r2n(p) | µ(1) or rn(p) | µ(1). Hence,
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rn(p) | q − 1 = p
n
2 − 1 or r2n(p) | q − 1 = p

n
2 − 1. But the first case contradicts

the definition of the primitive prime divisor, because n
2 < n. Therefore, r2n(p) |

p
n
2 − 1, and so, r2n(p) | (pn

2 − 1, pn + 1). Now, Lemma 2.15 implies that r2n(p) |
(p

n
2 − 1, pn + 1) = (p− 1, 2), which is impossible.

(2) Let (GK )′ ∼= PSL(3, q) or PSU(3, q), where q is a prime power. Since

µ(1) is not a prime power, Step (a)(iii) leads us to see that if (GK )′ ∼= PSL(3, q),

then one of r2n(p) and rn(p) divides p
n
3 + 1, and if (GK )′ ∼= PSU(3, q), then either

r2n(p) or rn(p) divides p
n
3 − 1. If r2n(p) | pn

3 + 1 or rn(p) | pn
3 − 1, then, since

n
3 < n, considering the definition of the primitive prime divisor leads us to get

a contradiction. If rn(p) | pn
3 + 1, then rn(p) | p 2n

3 − 1, which is a contradiction.

Also, if r2n(p) | pn
3 − 1, then r2n(p) | (pn

3 − 1, pn + 1), and so, Lemma 2.15 shows

that r2n(p) | (p+ 1, 2), which is a contradiction.

(3) Let (GK )′ ∼= M11, A8, M23 or J1. Let (GK )′ ∼= M11. Then {10, 44, 55} ⊆
cd(M11). Since 10 and 44 are not prime powers and (10, 44) = 2, by considering

Step (a)(iii), we conclude that one of r2n(p) and rn(p) divides 10, and the other

one divides 44. Hence, {rn(p), r2n(p)} = {5, 11}. But since 55 ∈ cd((GK )′),

considering Step(a)(iii) leads us to get a contradiction. The same argument rules

out (GK )′ ∼= A8, M23 or J1.

These contradictions show that ∆((GK )′) is not connected. Thus Lemma 2.10

implies that (GK )′ ∼= PSL(2, q), where q is a prime power. Hence, St(1) = q.

Moreover, by Step (c), St(1) = pn. Therefore, q = pn, and so, we get that

(GK )′ ∼= PSL(2, pn). �

Step (f). L ∼= G.

Proof. We get from Step (e) and Lemma 3.7 that PSL(2, pn) . G .
Aut(PSL(2, pn)), and hence, Lemma 3.8 shows that G ∼= L, as desired. �
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