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On a family of set-valued functions

By JOLANTA PLEWNIA (Kraków)

Abstract. Let G be a linear continuous set-valued function defined on a closed
convex cone C in a Banach space X. The aim of this paper is to show that for every

x ∈ C and t ≥ 0 a series Bt(x) =
P∞

i=0
ti

i!
Gi(x) is convergent in the space of non-

empty compact convex subsets of X with the Hausdorff metric. Moreover the inclusion
(Bt ◦Bs)(x) ⊂ Bt+s(x) for x ∈ C and t, s ≥ 0 holds true.

1. Preliminaries

Throughout the paper vector spaces are always real. The symbols R
and N denote the set of all real numbers and the set of positive integers,
respectively.

Let X be a vector space and let A, B be subsets of X. The algebraic
sum of A and B is the set defined as follows:

A + B = {a + b : a ∈ A, b ∈ B}.
For any t ∈ R the set tA contains all vectors of the form ta, a ∈ A and
only those. It is easily seen that the algebraic sum of convex sets is convex
and if A,B are compact sets in a topological vector space X, then A + B
is compact as well.

It is clear that we have the following.

Lemma 1. If A,B are subsets of a vector space X and s, t ∈ R, then

(i) s(A + B) = sA + sB
(ii) (s + t)A ⊂ sA + tA.
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If A is a convex subset of X, then (s + t)A = sA + tA for all s, t ≥ 0
or s, t ≤ 0.

The next lemma can be found in [4].

Lemma 2. Let A,B and C be subsets of a normed space such that

A + C ⊂ B + C.

If B is closed and convex and C is non-empty and bounded, then A ⊂ B.

The above lemma allows us to get the following.

Corollary 1. If A and B are closed and convex subsets of a normed
space X and C is non-empty and bounded, then the equality

A + C = B + C

implies A = B.

Let X be a normed space, and let in the sequel n(X) be the family
of all non-empty subsets of X. The families bd(X), c(X), cc(X) consist
of the bounded, closed, compact, and convex compact members of n(X),
respectively. Define the norm of a set A ∈ n(X) in the natural way as

‖A‖ := sup{‖a‖ : a ∈ A}.
It is easy to check that

‖A + B‖ ≤ ‖A‖+ ‖B‖ for A, B ∈ n(X)

and
‖tA‖ =| t | ‖A‖ for A ∈ n(X) and t ∈ R.

Let A and B be members of bd(X). The excess of A over B is defined
as

e(A,B) = sup{d(x,B) : x ∈ A},
where d(x,B) = inf{d(x, y) : y ∈ B}. The Hausdorff distance of A and B
is

h(A,B) = max{e(A,B), e(B,A)}.
This function is a metric in the space bd(X). If the normed space X is
complete, then the space of all closed and bounded non-empty subsets with
the Hausdorff metric is complete as well (see [1] and [2]).

It is not difficult to verify that

(1) h(A,B) = inf{ε > 0 : A ⊂ B + εS, B ⊂ A + εS},
where S is the closed unit ball in X.
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The following equalities will be useful:

(2) h(A + C, B + C) = h(A,B) for all A, B,C ∈ cc(X)

and

(3) h(λA, λB) =| λ | h(A,B) for all A,B ∈ cc(X), λ ∈ R,

(cf. for example [2], [5]).
The relation An −→ A means that the sequence {An}n∈N is conver-

gent to A with respect to the Hausdorff metric in the space cc(X).
Properties of the above convergence may be collected in the following

Lemma 3. If An −→ A, Bn −→ B, then

(i) An + Bn −→ A + B
(ii) λAn −→ λA, λ ∈ R
(iii) The inclusions An ⊂ Bn for n ∈ N, imply A ⊂ B.

This lemma is known, e.g. (i) can be found in [3] in a general setting,
but we will give its

Proof. (i) follows in virtue of the triangle inequality and by (2)

h(An + Bn, A + B) ≤ h(An + Bn, An + B) + h(An + B, A + B) =

= h(Bn, B) + h(An, A).

(ii) is an obvious consequence of (3). Now we shall prove (iii). Let us fix
an ε > 0. With respect to the convergence of {An}n∈N, {Bn}n∈N one has

h(An, A) < ε and h(Bn, B) < ε

for large enough n ∈ N, say n ≥ n0. Thus, (1) yields

A ⊂ An + εS and Bn ⊂ B + εS for n ≥ n0

hence the inclusions An ⊂ Bn, n ∈ N imply

A ⊂ An + εS ⊂ Bn + εS ⊂ B + εS + εS = B + 2εS,

because S is a convex set. The obtained inclusion A ⊂ B + 2εS gives the
inequality

e(A,B) ≤ 2ε.

Take an a belonging to A. Then

d(a,B) ≤ sup{d(a,B) : a ∈ A} = e(A,B) ≤ 2ε.

Now d(a,B) = 0 in view of the unrestricted choice of ε > 0. Consequently
a ∈ B by the closedness of B.
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Finally recall some definitions connected with set-valued functions
(abbreviated to “s.v. functions” in the sequel).

Let X, Y, Z be vector spaces and let C be a convex cone in X. An s.v.
function A : C → n(Y ) is said to be additive (superadditive) iff it satisfies
the condition

(4) A(x + y) = A(x) + A(y) ( A(x + y) ⊃ A(x) + A(y) ),

respectively, for all x, y ∈ C.
An s.v. function A is said to be linear iff it is additive and

(5) A(tx) = tA(x) for all X ∈ C and t ∈ (0,+∞).

An s.v. function is called Q+–homogeneous iff (5) holds true for all t ∈
Q∩(0, +∞). For a given s.v. function F : X → Y and sets A ⊂ X, B ⊂ Y
we define the sets

F (A) =
⋃{F (x) : x ∈ A}

F−(B) = {x ∈ X; F (x) ∩B 6= ∅}

F+(B) = {x ∈ X;F (x) ⊂ B}.
They are called, respectively, the image of A, the lower inverse image of
B and the upper inverse image of B under the s.v. function F .

The superposition G◦F of s.v. functions F : X → n(Y ) and G : Y →
n(Z) is the s.v. function defined as follows

(G ◦ F )(x) := G(F (x)) for x ∈ X.

Assume that X and Y are two topological vector spaces. We say that
an s.v. function F : X → n(Y ) is lower–semicontinuous (l.s.c.) iff the
set F−(U) is open in X for every open set U in Y . We say that an s.v.
function F is upper-semicontinuous (u.s.c.) iff the set F+(U) is open in
X for every open set U in Y . F is said to be continuous iff it is both l.s.c.
and u.s.c.

In what follows we shall apply the following lemma (cf. [5], Theo-
rem 4).

Lemma 4. Let X be a Banach space and let Y be a normed space.
If C is a convex cone in X and (Fi, i ∈ I) is a family of superadditive,
l.s.c. in C and Q+–homogeneous, s.v. functions Fi : C → n(Y ), such that⋃{Fi(x) : i ∈ I} is bounded for every x ∈ C, then there exists a constant
0 < M < +∞ such that

sup{‖Fi(x)‖ : i ∈ I} ≤ M‖x‖, x ∈ C.
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Assume that the family (Fi, i ∈ I) contains exactly one element F .
The least element of the set

{M > 0 : ‖F (x)‖ ≤ M‖x‖, x ∈ C}
will be denoted by ‖F‖.

2. Main result

The main objective of the paper is to prove the following

Theorem. Let X be a Banach space and let C be a closed and convex
cone in X. Assume that G : C → cc(C) is a linear and continuous s.v.
function. Then for every x ∈ C and t ≥ 0 the series

(6) Bt(x) =
∞∑

i=0

ti

i!
Gi(x)

is convergent in the metric space (cc(C), h). Moreover, the s.v. functions
Bt, t ≥ 0 are linear and

(7) (Bt ◦Bs)(x) ⊂ Bt+s(x) for x ∈ C, s, t,≥ 0.

Proof. To prove the convergence of the series (6) define the functions
Bt

n on C, n ∈ N, t ≥ 0 by the formula

Bt
n(x) =

n∑

i=0

ti

i!
Gi(x) , x ∈ C.

It is clear that the sets Bt
n(x) are convex and compact for each t ≥ 0,

n ∈ N, x ∈ C. Fix an ε > 0. We can find n0 ∈ N such that
n∑

i=m

ti

i!
‖G‖i < ε

for all n ≥ m ≥ n0, n,m ∈ N. For such n and m we have

h(Bt
n(x), Bt

m(x)) = h

(
Bt

m(x) +
n∑

i=m+1

ti

i!
Gi(x), Bt

m(x)

)
=

= h

(
n∑

i=m+1

ti

i!
Gi(x), {0}

)
= ‖

n∑

i=m+1

ti

i!
Gi(x)‖ ≤

≤
n∑

i=m+1

ti

i!
‖G‖i‖x‖ < ε‖x‖ , x ∈ C, t ≥ 0.
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The above inequality shows that the sequence {Bt
n(x)}n∈N, t ≥ 0, x ∈ C

of partial sums of series (6) satisfies the Cauchy condition. Since a closed
subspace of a complete space X is complete, the sequence {Bt

n(x)}n∈N,
x ∈ C, t ≥ 0 is convergent in (cc(C), h). We write

Bt(x) := lim
n→∞

Bt
n(x) =

∞∑

i=0

ti

i!
Gi(x).

Consequently the values of the function Bt belong to cc(C) for t ≥ 0.
Furthemore, the inequality

(8) h(Bt
n(x), Bt

m(x)) < ε‖x‖,
t ≥ 0, x ∈ C says that the series (6) is almost uniformly convergent to Bt

for t ≥ 0; this means that for each compact set K contained in C the series
(6) is uniformly convergent on K.

Next we shall prove that the functions Bt are linear. Take any x, y ∈ C
and t ≥ 0. By Lemma 3 we have

Bt
n(x) + Bt

n(y) −→ Bt(x) + Bt(y), as n →∞.

The additivity of G yields

Bt
n(x) + Bt

n(y) =
n∑

i=0

ti

i!
Gi(x) +

n∑

i=0

ti

i!
Gi(y) =

n∑

i=0

ti

i!
(Gi(x) + Gi(y)) =

=
n∑

i=0

ti

i!
Gi(x + y) = Bt

n(x + y) −→ Bt(x + y), as n →∞.

Thus
Bt(x + y) = Bt(x) + Bt(y).

To prove the homogenity of Bt, t ≥ 0 fix x ∈ C and α ∈ (0,∞). Again
by Lemma 3 we have

(9) αBt
n(x) −→ αBt(x), as n →∞.

The linearity of G gives

Bt
n(αx) = αBt

n(x),

hence we conclude from (9) that

(10) αBt(x) = Bt(αx).
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Now we proceed to the proof of (7). Let us fix n ∈ N, x ∈ C and
s, t ≥ 0. We have

(Bt
n ◦Bs

n)(x) =




n∑

j=0

tj

j!
Gj


 (Bs

n(x)) ⊂
n∑

j=0

tj

j!
Gj

(
n∑

i=0

si

i!
Gi(x)

)
=

=
n∑

j=0

n∑

i=0

tjsi

j!i!
Gi+j(x) =

n∑

`=0

∑̀

k=0

t`−ksk

(`− k)!k!
G`(x) + Rn(t, s, x),

where

Rn(t, s, x); =
2n∑

`=n+1

n∑

k=`−n

t`−ksk

(`− k)!k!
G`(x).

Observe that

n∑

`=0

∑̀

k=0

t`−ksk

(`− k)!k!
G`(x) =

n∑

`=0

1
k!

(∑̀

k=0

(
`

k

)
skt`−k

)
G`(x) =

=
n∑

`=0

(s + t)`

`!
G`(x) = Bs+t

n (x).

Thus

(11) (Bt
n ◦Bs

n)(x) ⊂ Bs+t
n (x) + Rn(t, s, x).

for every x ∈ C, s, t ≥ 0 and n ∈ N. With respect to Lemma 3 it suffices
to prove that Rn(t, s, x) −→ {0} and (Bt

n ◦ Bs
n)(x) −→ (Bt ◦ Bs)(x) as

n →∞. By the definition of Rn we have

‖Rn(t, s, x)‖ ≤
2n∑

`=n+1

∑̀

k=`−n

t`−ksk

(`− k)!k!
‖G‖`‖x‖ ≤

≤
2n∑

`=n+1

∑̀

k=0

t`−ksk

(`− k)!k!
‖G‖`‖x‖ ≤

2n∑

`=n+1

(t + s)`

`!
‖G‖`‖x‖

whence, on letting n →∞, we obtain

Rn(t, s, x) −→ {0}.
Now, fix ε > 0, x ∈ C, t, s ≥ 0. By the almost uniform convergence

of the sequence {Bt
n}n∈N there exists n1 ∈ N such that

h(Bt
n(y), Bt(y)) <

ε

2
for n > n1, y ∈ Bs(x).
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Thus

Bt
n(y) ⊂ Bt(y) +

ε

2
S and Bt(y) ⊂ Bt

n(y) +
ε

2
S

for y ∈ Bs(x), hence

Bt
n(y) ⊂ Bt(y) +

ε

2
S ⊂ Bt(Bs(x)) +

ε

2
S

for y ∈ Bs(x) and

Bt
n(Bs(x)) ⊂ Bt(Bs(x)) +

ε

2
S for n > n1.

Similarly, one can show that

Bt(Bs(x)) ⊂ Bt
n(Bs(x)) +

ε

2
S for n > n1.

The two last inclusions yield

(12) h(Bt
n(Bs(x)), Bt(Bs(x))) ≤ ε

2
for n > n1.

Note that

(13) ‖Bt
n(x)‖ ≤

n∑

i=0

ti

i!
‖G‖i‖x‖ ≤ Mt‖x‖,

where Mt := et‖G‖ for every n ∈ N. Thus for every bounded set B ⊂ C

and n ∈ N we have the following relations:

‖Bt
n(B)‖ = sup{‖Bt

n(y)‖ : y ∈ B} ≤ sup{Mt‖y‖ : y ∈ B} ≤ Mt‖B‖.

Since for every n ∈ N the set

∞∑

i=n+1

si

i!
Gi(x)

is bounded, we get
∥∥∥∥∥Bt

n

( ∞∑

i=n+1

si

i!
Gi(x)

)∥∥∥∥∥ ≤ Mt

∥∥∥∥∥
∞∑

i=n+1

si

i!
Gi(x)

∥∥∥∥∥ .
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Thus

h(Bt
n(Bs(x)), Bt

n(Bs
n(x))) =

= h(Bt
n(Bs

n(x)) + Bt
n

( ∞∑

i=n+1

si

i!
Gi(x)

)
, Bt

n(Bs
n(x))) =

=

∥∥∥∥∥Bt
n

( ∞∑

i=n+1

si

i!
Gi(x)

)∥∥∥∥∥ ≤ Mt

∥∥∥∥∥
∞∑

i=n+1

si

i!
Gi(x)

∥∥∥∥∥ ,

whence it follows that there exists n2 ∈ N such that

(14) h(Bt
n(Bs(x)), Bt

n(Bs
n(x))) <

ε

2
, n ≥ n2.

Combining (12) with (14) we obtain

h(Bt
n(Bs

n(x)), Bt(Bs(x))) ≤
≤ h(Bt

n(Bs
n(x)), Bt

n(Bs(x))) + h(Bt
n(Bs(x)), Bt(Bs(x))) < ε

for n ≥ max{n1, n2}. Consequently

Bt
n(Bs

n(x)) → Bt(Bs(x)) as n →∞
and the proof is complete.

Remark 1. If C is a closed cone in R, then the family of functions
satisfying all assumptions of the Theorem is a semigroup of linear func-
tions.

Proof. Let C = [0,∞). If G : C → cc(C) is a linear map, then there
exist 0 ≤ a ≤ b such that

G(x) = [ax, bx] for x ∈ [0,∞).

In this case

Bt(x) :=
∞∑

i=0

ti

i!
Gi(x) =

∞∑

i=0

ti

i!
[aix, bix] =

=

[ ∞∑

i=0

tiai

i!
x,

∞∑

i=0

tibi

i!
x

]
= [eatx, ebtx]

and

(Bt ◦Bs)(x) = Bt([easx, ebsx]) = [ea(s+t)x, eb(s+t)x] = Bs+t(x)

for all x ∈ C, t, s ≥ 0.
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Remark 2. If the function G : C → cc(C) fulfils the conditions of the
above Theorem and simultaneously the condition

(15) G2(x) = G(x) for x ∈ C,

then the family of s.v. functions appearing in the assertion of Theorem is
a semigroup of linear s.v. functions.

Proof. Since G satisfies (15), the s.v. function

Bt(x) =
∞∑

i=0

ti

i!
Gi(x) =

∞∑

i=0

ti

i!
G(x) = etG(x)

for t ≥ 0 defines a semigroup.

Example 1. The s.v. function G : [0,∞)2 → [0,∞)2 of the form

G(x, y) = [0, x]× [0, y]

is linear and fulfils equality (15).

Corollary 2. Under the hypotheses of Theorem the functions Bt :
C → cc(C), t ≥ 0 are continuous on the set int C.

Proof. The set int C is an open convex cone. On account of (8), for
any t ≥ 0, x ∈ C and n ∈ N large enough one has

h(Bt
n(x), Bt(x)) ≤ ε‖x‖.

This, jointly with (13), shows that the inequalities

‖Bt(x)‖ ≤ h(Bt(x), Bt
n(x)) + ‖Bt

n(x)‖ ≤ (ε + e‖G‖t)‖x‖
hold true. With respect to the unrestricted choice of ε > 0 the inequality

‖Bt(x)‖ ≤ e‖G‖t‖x‖
is satisfied for all x ∈ C, t ≥ 0. Consequently

(16) Bt(x) ⊂ F t(x) for t ≥ 0, x ∈ C,

where

(17) F t(x) = e‖G‖t‖x‖S.

The s.v. functions F t : C → cc(C) are continuous and the Bt : C →
cc(C), t ≥ 0 are additive. The inclusion (16) and Theorem 5.2 from [3]
together complete the proof.
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