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On a family of set-valued functions

By JOLANTA PLEWNIA (Krakéw)

Abstract. Let G be a linear continuous set-valued function defined on a closed

convex cone C' in a Banach space X. The aim of this paper is to show that for every
z € C and t > 0 a series Bt(z) = 372, 1E—TGZ(ac) is convergent in the space of non-
empty compact convex subsets of X with the Hausdorff metric. Moreover the inclusion
(Bt o B%)(x) C Btt3(z) for x € C and t,s > 0 holds true.

1. Preliminaries

Throughout the paper vector spaces are always real. The symbols R
and N denote the set of all real numbers and the set of positive integers,
respectively.

Let X be a vector space and let A, B be subsets of X. The algebraic
sum of A and B is the set defined as follows:

A+B={a+b:ac A, be B}.

For any ¢ € R the set tA contains all vectors of the form ta, a € A and
only those. It is easily seen that the algebraic sum of convex sets is convex
and if A, B are compact sets in a topological vector space X, then A + B
is compact as well.

It is clear that we have the following.

Lemma 1. If A, B are subsets of a vector space X and s,t € R, then

(i) s(A+B)=sA+sB
(i) (s+1t)A CsA+tA.
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If A is a convex subset of X, then (s +t)A = sA+tA for all s,t >0
ors,t <0.
The next lemma can be found in [4].
Lemma 2. Let A, B and C' be subsets of a normed space such that
A+CcCcB+C.
If B is closed and convex and C' is non-empty and bounded, then A C B.
The above lemma allows us to get the following.

Corollary 1. If A and B are closed and convex subsets of a normed
space X and C' is non-empty and bounded, then the equality

A+C=B+C
implies A = B.

Let X be a normed space, and let in the sequel n(X) be the family
of all non-empty subsets of X. The families bd(X), c(X), cc(X) consist
of the bounded, closed, compact, and convex compact members of n(X),
respectively. Define the norm of a set A € n(X) in the natural way as

|All := sup{llal| : a € A}.
It is easy to check that
A+ Bl < [|A[[ +[[B|| for A, B € n(X)

and
ItA|| =| t | ||A]| for A € n(X)andt e R.

Let A and B be members of bd(X). The excess of A over B is defined
as

e(A, B) = sup{d(z, B) : z € A},

where d(z, B) = inf{d(z,y) : y € B}. The Hausdorff distance of A and B
is

h(A, B) = max{e(A, B),e(B, A)}.

This function is a metric in the space bd(X). If the normed space X is
complete, then the space of all closed and bounded non-empty subsets with
the Hausdorff metric is complete as well (see [1] and [2]).

It is not difficult to verify that

(1) h(A,B) =inf{e >0: AC B+¢eS,BC A+¢eS},
where S is the closed unit ball in X.
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The following equalities will be useful:

(2) h(A+C,B+C)=h(A,B) forall A,B,C € cc(X)
and
(3) hOMA,AB) =| A | h(A, B)  forall A, B € c¢(X), A € R,

(cf. for example [2], [5]).
The relation A,, — A means that the sequence {A, },cn is conver-
gent to A with respect to the Hausdorff metric in the space cc(X).
Properties of the above convergence may be collected in the following

Lemma 3. If A, — A, B,, — B, then

(i) A,+B,— A+B
(i) M, — A, AeR
(iii) The inclusions A,, C B,, for n € N, imply A C B.

This lemma is known, e.g. (i) can be found in [3] in a general setting,
but we will give its

PRrOOF. (i) follows in virtue of the triangle inequality and by (2)
h(A, + B,,A+ B) < h(A, + B,, A, + B)+ h(A, + B,A+ B) =
= h(B,,B) + h(A,,A).

(i7) is an obvious consequence of (3). Now we shall prove (iii). Let us fix
an ¢ > 0. With respect to the convergence of {A;, },en, {Bn}nen one has

h(A,,A) < e and h(B,,B) <e¢
for large enough n € N, say n > ng. Thus, (1) yields
ACA,+eSand B, CB+eS forn>ng
hence the inclusions A,, C B,,, n € N imply
ACA,+eSCB,+eSCB+eS+eS=DB+2eS,

because S is a convex set. The obtained inclusion A C B + 2¢S gives the
inequality
e(A,B) < 2e.

Take an a belonging to A. Then
d(a,B) <sup{d(a,B) :a € A} =e(A,B) < 2e.

Now d(a, B) = 0 in view of the unrestricted choice of € > 0. Consequently
a € B by the closedness of B. O
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Finally recall some definitions connected with set-valued functions
(abbreviated to “s.v. functions” in the sequel).

Let X,Y, Z be vector spaces and let C' be a convex cone in X. An s.v.
function A : C' — n(Y) is said to be additive (superadditive) iff it satisfies
the condition

(4) Az +y) = A(z) + A(y)  (Alz +y) > A(z) + A(y) ),

respectively, for all x,y € C.
An s.v. function A is said to be linear iff it is additive and

(5) A(tx) =tA(z) for all X € C and t € (0, +00).

An s.v. function is called Q;—homogeneous iff (5) holds true for all ¢ €
QN(0,4+00). For a given s.v. function F': X — Y andsets AC X, BCY
we define the sets

F(A)=U{F(x):z € A}
F7(B)={z e X;F(z)n B # 0}
FT(B)={z € X;F(x) C B}.

They are called, respectively, the image of A, the lower inverse image of
B and the upper inverse image of B under the s.v. function F'.

The superposition Go F' of s.v. functions F : X - n(Y)and G: Y —
n(Z) is the s.v. function defined as follows

(Go F)(z) :==G(F(x)) forze X.

Assume that X and Y are two topological vector spaces. We say that
an s.v. function F' : X — n(Y) is lower—semicontinuous (l.s.c.) iff the
set F~(U) is open in X for every open set U in Y. We say that an s.v.
function F is upper-semicontinuous (u.s.c.) iff the set F*(U) is open in
X for every open set U in Y. F is said to be continuous iff it is both Ls.c.
and u.s.c.

In what follows we shall apply the following lemma (cf. [5], Theo-
rem 4).

Lemma 4. Let X be a Banach space and let Y be a normed space.
If C is a convex cone in X and (F;,i € I) is a family of superadditive,
Ls.c. in C and Q;—homogeneous, s.v. functions F; : C — n(Y), such that
U{Fi(x) : i € I} is bounded for every x € C, then there exists a constant
0 < M < 400 such that

sup{||Fi(x)|| :i € I} < M|z|, ze€C.
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Assume that the family (F;,i € I) contains exactly one element F'.
The least element of the set

{M>0:|F(z)| < Mllzl, z € C}
will be denoted by || F||.

2. Main result

The main objective of the paper is to prove the following

Theorem. Let X be a Banach space and let C' be a closed and convex
cone in X. Assume that G : C — cc(C) is a linear and continuous s.v.
function. Then for every x € C' and t > 0 the series

o0

(© Bla) =Y LC)

1=0

is convergent in the metric space (cc(C),h). Moreover, the s.v. functions
B!, t > 0 are linear and

(7) (B'o B®)(z) C B"™%(z) forxz € C, s,t,> 0.

PRrROOF. To prove the convergence of the series (6) define the functions
B! on C,n €N, t >0 by the formula

n

t
B,g(x)zzi—!@(x) ,xeC.

1=0

It is clear that the sets B! (x) are convex and compact for each t > 0,
n €N, x € C. Fix an ¢ > 0. We can find ng € N such that

n

t ,
> Slali<e

=m
for all n > m > ng, n,m € N. For such n and m we have

n

h(BZ(x),Bfn(wD:h(Bfn(wH > §Gi<w>,3;<w>> -

i=m+1
n i n ti ‘
- h( Zﬁw(m),m}) =1 Y GG
i=m-+ i=m-+

n

t :
< ) 5HG|I |z|| <ellz]| ,z € C, t>0.

i=m+1
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The above inequality shows that the sequence {B! (z)}nen,t > 0,2 € C
of partial sums of series (6) satisfies the Cauchy condition. Since a closed
subspace of a complete space X is complete, the sequence {B! (r)}en,
x € C,t >0 is convergent in (cc(C), h). We write

oo

B'(z) := lim B!(z) = Z—Z'G’(x)

n—oo ¢
=0

Consequently the values of the function B belong to cc(C) for ¢t > 0.
Furthemore, the inequality

(8) h(By,(z), By, (z)) < |z,

t > 0,z € C says that the series (6) is almost uniformly convergent to B?
for t > 0; this means that for each compact set K contained in C the series
(6) is uniformly convergent on K.

Next we shall prove that the functions B! are linear. Take any x,y € C
and t > 0. By Lemma 3 we have

B! (z)+ Bl (y) — B'(x) + B'(y), asn — oo.
The additivity of G yields

., =t —~t ;
Br(@) + Byy) =) 5G (@) + ) 5G(y) =) = (G(x) + G'(v) =
i=0 i=0 i=0
_Zng(ﬂf+y)=BZ(w+y)—>Bt(flf+y), as n — 0o,
i=0

Thus
B'(z +y) = B'(x) + B'(y).

To prove the homogenity of B*,t > 0 fix x € C and a € (0,00). Again
by Lemma 3 we have

9) aB!(z) — aB'(x), asn — oo.
The linearity of G gives

B, (az) = aB,(z),
hence we conclude from (9) that

(10) aB'(x) = B'(ax).
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Now we proceed to the proof of (7). Let us fix n € N, x € C and
s,t > 0. We have

n 4 n 4 n 5
t s _ s 7 —
7=0 7=0 =0
LI I . n ot pkgh ,
:Z i i( >:ZZ(£—]§)']§'G () + R, (t, s, ),
§=0 i=0 (=0 k=0

n ¢ tg_ksk . B n 1 ¢ kte,k Gg B
g;(é—k)'k' (x)_gﬂ ;(16)8 () =
o (S +t ¢ s+t
= - Gla) =B (@)
=0
Thus
(11) (Bl o BS)(x) C B3 (x) + Ry, (t, s, ).

for every x € C, s,t > 0 and n € N. With respect to Lemma 3 it suffices
to prove that R, (t,s,z) — {0} and (B! o B)(z) — (B' o B%)(z) as
n — oo. By the definition of R,, we have

[Bn(t, 5, 2)]| < Z Z ,k,HGH ]| <

En—|—1k£n

2n J4 2n
ttks (t+s)*
< > Z Bl [ NEEY 7 [religiEdl
l=n+1k= 0 l=n+1

whence, on letting n — 0o, we obtain
R, (t,s,x) — {0}.

Now, fix ¢ > 0,2 € C, t,s > 0. By the almost uniform convergence
of the sequence { B! },en there exists n; € N such that

h(BfL(y),Bt(y)) < % forn > ny, y € B*(x).
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Thus
B! (y) C B'(y) + %S and B'(y) C B! (y) + 25

for y € B*(z), hence
Bi(y) € B'(y) + 55 C BA(B*(@)) + 58
for y € B(z) and
B! (B*(z)) C BY(B*(x)) + gs for n > nj.
Similarly, one can show that
BY(B*(z)) C BL(B*(z)) + gS for n > n;.

The two last inclusions yield

(12) h(BL(B*(z)), B (B*(z))) < g for n > nj.
Note that
n tz .
(13) IBL(z)| <> FIGIFllzll = Mellll,
=0

where M, := e!l¢ll for every n € N. Thus for every bounded set B ¢ C
and n € N we have the following relations:

1B,,(B)|| = sup{|| B, ()| : y € B} < sup{M, ||yl : y € B} < M,|| B].

Since for every n € N the set

is bounded, we get

> Si ; > Si
B! ( > Z,—G’(x)) <M | ) SG(x)
z:n—|—l : ’L:n—‘,—l :
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Thus
h(By,(B*(z)), By,(By(x))
2 G

):
= h(B! (B:(z)) + B! ( > ) , B},(By(2))) =

i=n+1
B;g(z =G (33)) <M D, SG(@)|,
1=n+1 1=n-+1

whence it follows that there exists no € N such that

(14) h(B,(B*(x)), BL(B3(2))) < 5 .n=na.

Combining (12) with (14) we obtain
h(B,,(B,(x)), B'(B*(x))) <
< h(B,(B,(x)), B,,(B*(x))) + h(B,,(B*(x)), B'(B*(x))) < ¢
for n > max{ny,n2}. Consequently
BL(B:(x)) — BY(B*(x)) asn — oo
and the proof is complete. O

Remark 1. If C is a closed cone in R, then the family of functions
satisfying all assumptions of the Theorem is a semigroup of linear func-
tions.

PROOF. Let C'=[0,00). If G : C' — cc(C) is a linear map, then there
exist 0 < a < b such that

G(x) = [ax,bx] for x € [0, 00).

In this case

o0 . ST
B (z) := ZZ-T @) =) =[a'z, b'a] =
i=0 1=0
o0 ; oo ;
t’L 3 t’Lb’L
N [Z_; ; f”’; 7T| = ez el

and
(Bt o B*)(z) = BY([e*x, e¥*x]) = [e*H) gz, b+ g] = BT (x)
forall x € C, t,s > 0. O
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Remark 2. If the function G : C' — cc(C) fulfils the conditions of the
above Theorem and simultaneously the condition

(15) G*(z) = G(z) forx € C,

then the family of s.v. functions appearing in the assertion of Theorem is
a semigroup of linear s.v. functions.

PROOF. Since G satisfies (15), the s.v. function

oo [e.9]

Z,—ZGZ‘(:C) _ Z,—jG(;U) — G

i=0 i=0

Bi(z) =

for t > 0 defines a semigroup.

Example 1. The s.v. function G : [0,00)? — [0, 00)? of the form
G(z,y) = [0,2] x [0,4]
is linear and fulfils equality (15).

Corollary 2. Under the hypotheses of Theorem the functions B' :
C — cc(C),t > 0 are continuous on the set int C'.

PrOOF. The set int C' is an open convex cone. On account of (8), for
any t > 0,2 € C' and n € N large enough one has

h(B,(z), B'(x)) < ell].
This, jointly with (13), shows that the inequalities
1B ()] < h(B' (), B},(x)) + | By, (2)]| < (¢ + €l¥I") ||
hold true. With respect to the unrestricted choice of € > 0 the inequality
1B ()] < el |||

is satisfied for all x € C,t > 0. Consequently

(16) Bi(x) C F'(z) fort>0, x€C,
where
(17) Ft(z) = elClIt)z||S.

The s.v. functions F* : C' — cc(C) are continuous and the B! : C' —
cc(C), t > 0 are additive. The inclusion (16) and Theorem 5.2 from [3]
together complete the proof. O
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