Publ. Math. Debrecen 46 / 1-2 (1995), 149–159

On a family of set-valued functions

By JOLANTA PLEWNIA (Kraków)

Abstract. Let G be a linear continuous set-valued function defined on a closed convex cone C in a Banach space X. The aim of this paper is to show that for every $x \in C$ and $t \geq 0$ a series $B^t(x) = \sum_{i=0}^{\infty} \frac{t^i}{i!} G^i(x)$ is convergent in the space of non-empty compact convex subsets of X with the Hausdorff metric. Moreover the inclusion $(B^t \circ B^s)(x) \subset B^{t+s}(x)$ for $x \in C$ and $t, s \geq 0$ holds true.

1. Preliminaries

Throughout the paper vector spaces are always real. The symbols \mathbb{R} and \mathbb{N} denote the set of all real numbers and the set of positive integers, respectively.

Let X be a vector space and let A, B be subsets of X. The algebraic sum of A and B is the set defined as follows:

$$A + B = \{a + b : a \in A, b \in B\}.$$

For any $t \in \mathbb{R}$ the set tA contains all vectors of the form $ta, a \in A$ and only those. It is easily seen that the algebraic sum of convex sets is convex and if A, B are compact sets in a topological vector space X, then A + Bis compact as well.

It is clear that we have the following.

Lemma 1. If A, B are subsets of a vector space X and $s, t \in \mathbb{R}$, then

(i)
$$s(A+B) = sA + sB$$

(ii) $(s+t)A \subset sA + tA$.

Mathematics Subject Classification: 54C60, 40A30, 39B12.

Key words and phrases: set-valued functions, Hausdorff metric, iteration semigroups.

If A is a convex subset of X, then (s+t)A = sA + tA for all $s, t \ge 0$ or $s, t \le 0$.

The next lemma can be found in [4].

Lemma 2. Let A, B and C be subsets of a normed space such that

 $A + C \subset B + C.$

If B is closed and convex and C is non-empty and bounded, then $A \subset B$.

The above lemma allows us to get the following.

Corollary 1. If A and B are closed and convex subsets of a normed space X and C is non-empty and bounded, then the equality

$$A + C = B + C$$

implies A = B.

Let X be a normed space, and let in the sequel n(X) be the family of all non-empty subsets of X. The families bd(X), c(X), cc(X) consist of the bounded, closed, compact, and convex compact members of n(X), respectively. Define the norm of a set $A \in n(X)$ in the natural way as

$$||A|| := \sup\{||a|| : a \in A\}.$$

It is easy to check that

$$||A + B|| \le ||A|| + ||B||$$
 for $A, B \in n(X)$

and

$$||tA|| = |t| ||A||$$
 for $A \in n(X)$ and $t \in \mathbb{R}$.

Let A and B be members of bd(X). The excess of A over B is defined as

$$e(A,B) = \sup\{d(x,B) : x \in A\}$$

where $d(x, B) = \inf\{d(x, y) : y \in B\}$. The Hausdorff distance of A and B is

$$h(A,B) = \max\{e(A,B), e(B,A)\}.$$

This function is a metric in the space bd(X). If the normed space X is complete, then the space of all closed and bounded non-empty subsets with the Hausdorff metric is complete as well (see [1] and [2]).

It is not difficult to verify that

(1)
$$h(A,B) = \inf\{\varepsilon > 0 : A \subset B + \varepsilon S, B \subset A + \varepsilon S\},\$$

where S is the closed unit ball in X.

150

The following equalities will be useful:

(2)
$$h(A+C, B+C) = h(A, B) \text{ for all } A, B, C \in cc(X)$$

and

(3)
$$h(\lambda A, \lambda B) = |\lambda| h(A, B)$$
 for all $A, B \in cc(X), \lambda \in \mathbb{R}$,

(cf. for example [2], [5]).

The relation $A_n \longrightarrow A$ means that the sequence $\{A_n\}_{n \in \mathbb{N}}$ is convergent to A with respect to the Hausdorff metric in the space cc(X).

Properties of the above convergence may be collected in the following

Lemma 3. If
$$A_n \longrightarrow A$$
, $B_n \longrightarrow B$, then
(i) $A_n + B_n \longrightarrow A + B$
(ii) $\lambda A_n \longrightarrow \lambda A$, $\lambda \in \mathbb{R}$
(iii) The inclusions $A_n \subset B_n$ for $n \in \mathbb{N}$, imply $A \subset B$.

This lemma is known, e.g. (i) can be found in [3] in a general setting, but we will give its

PROOF. (i) follows in virtue of the triangle inequality and by (2)

$$h(A_n + B_n, A + B) \le h(A_n + B_n, A_n + B) + h(A_n + B, A + B) =$$

= $h(B_n, B) + h(A_n, A).$

(*ii*) is an obvious consequence of (3). Now we shall prove (*iii*). Let us fix an $\varepsilon > 0$. With respect to the convergence of $\{A_n\}_{n \in \mathbb{N}}, \{B_n\}_{n \in \mathbb{N}}$ one has

$$h(A_n, A) < \varepsilon$$
 and $h(B_n, B) < \varepsilon$

for large enough $n \in \mathbb{N}$, say $n \ge n_0$. Thus, (1) yields

$$A \subset A_n + \varepsilon S$$
 and $B_n \subset B + \varepsilon S$ for $n \ge n_0$

hence the inclusions $A_n \subset B_n$, $n \in \mathbb{N}$ imply

$$A \subset A_n + \varepsilon S \subset B_n + \varepsilon S \subset B + \varepsilon S + \varepsilon S = B + 2\varepsilon S,$$

because S is a convex set. The obtained inclusion $A \subset B + 2 \varepsilon S$ gives the inequality

$$e(A,B) \le 2\varepsilon.$$

Take an a belonging to A. Then

$$d(a, B) \le \sup\{d(a, B) : a \in A\} = e(A, B) \le 2\varepsilon.$$

Now d(a, B) = 0 in view of the unrestricted choice of $\varepsilon > 0$. Consequently $a \in B$ by the closedness of B. \Box

Jolanta Plewnia

Finally recall some definitions connected with set-valued functions (abbreviated to "s.v. functions" in the sequel).

Let X, Y, Z be vector spaces and let C be a convex cone in X. An s.v. function $A: C \to n(Y)$ is said to be additive (superadditive) iff it satisfies the condition

(4)
$$A(x+y) = A(x) + A(y) \quad (A(x+y) \supset A(x) + A(y)),$$

respectively, for all $x, y \in C$.

An s.v. function A is said to be linear iff it is additive and

(5)
$$A(tx) = tA(x)$$
 for all $X \in C$ and $t \in (0, +\infty)$.

An s.v. function is called \mathbb{Q}_+ -homogeneous iff (5) holds true for all $t \in \mathbb{Q} \cap (0, +\infty)$. For a given s.v. function $F : X \to Y$ and sets $A \subset X, B \subset Y$ we define the sets

$$F(A) = \bigcup \{F(x) : x \in A\}$$
$$F^{-}(B) = \{x \in X; F(x) \cap B \neq \emptyset\}$$
$$F^{+}(B) = \{x \in X; F(x) \subset B\}.$$

They are called, respectively, the image of A, the lower inverse image of B and the upper inverse image of B under the s.v. function F.

The superposition $G \circ F$ of s.v. functions $F : X \to n(Y)$ and $G : Y \to n(Z)$ is the s.v. function defined as follows

$$(G \circ F)(x) := G(F(x)) \text{ for } x \in X.$$

Assume that X and Y are two topological vector spaces. We say that an s.v. function $F : X \to n(Y)$ is lower-semicontinuous (l.s.c.) iff the set $F^{-}(U)$ is open in X for every open set U in Y. We say that an s.v. function F is upper-semicontinuous (u.s.c.) iff the set $F^{+}(U)$ is open in X for every open set U in Y. F is said to be continuous iff it is both l.s.c. and u.s.c.

In what follows we shall apply the following lemma (cf. [5], Theorem 4).

Lemma 4. Let X be a Banach space and let Y be a normed space. If C is a convex cone in X and $(F_i, i \in I)$ is a family of superadditive, l.s.c. in C and \mathbb{Q}_+ -homogeneous, s.v. functions $F_i : C \to n(Y)$, such that $\bigcup \{F_i(x) : i \in I\}$ is bounded for every $x \in C$, then there exists a constant $0 < M < +\infty$ such that

$$\sup\{\|F_i(x)\| : i \in I\} \le M \|x\|, \quad x \in C.$$

Assume that the family $(F_i, i \in I)$ contains exactly one element F. The least element of the set

$$\{M > 0 : \|F(x)\| \le M\|x\|, \ x \in C\}$$

will be denoted by ||F||.

2. Main result

The main objective of the paper is to prove the following

Theorem. Let X be a Banach space and let C be a closed and convex cone in X. Assume that $G : C \to cc(C)$ is a linear and continuous s.v. function. Then for every $x \in C$ and $t \ge 0$ the series

(6)
$$B^{t}(x) = \sum_{i=0}^{\infty} \frac{t^{i}}{i!} G^{i}(x)$$

is convergent in the metric space (cc(C), h). Moreover, the s.v. functions $B^t, t \geq 0$ are linear and

(7)
$$(B^t \circ B^s)(x) \subset B^{t+s}(x) \quad \text{for } x \in C, \ s, t, \ge 0.$$

PROOF. To prove the convergence of the series (6) define the functions B_n^t on $C, n \in \mathbb{N}, t \ge 0$ by the formula

$$B_n^t(x) = \sum_{i=0}^n \frac{t^i}{i!} G^i(x) \quad , x \in C.$$

It is clear that the sets $B_n^t(x)$ are convex and compact for each $t \ge 0$, $n \in \mathbb{N}, x \in C$. Fix an $\varepsilon > 0$. We can find $n_0 \in N$ such that

$$\sum_{i=m}^{n} \frac{t^{i}}{i!} \|G\|^{i} < \varepsilon$$

for all $n \ge m \ge n_0$, $n, m \in \mathbb{N}$. For such n and m we have

$$\begin{split} h(B_n^t(x), B_m^t(x)) &= h\left(B_m^t(x) + \sum_{i=m+1}^n \frac{t^i}{i!} G^i(x), B_m^t(x)\right) = \\ &= h\left(\sum_{i=m+1}^n \frac{t^i}{i!} G^i(x), \{0\}\right) = \|\sum_{i=m+1}^n \frac{t^i}{i!} G^i(x)\| \le \\ &\le \sum_{i=m+1}^n \frac{t^i}{i!} \|G\|^i \|x\| < \varepsilon \|x\| \ , x \in C, \ t \ge 0. \end{split}$$

Jolanta Plewnia

The above inequality shows that the sequence $\{B_n^t(x)\}_{n\in\mathbb{N}}, t\geq 0, x\in C$ of partial sums of series (6) satisfies the Cauchy condition. Since a closed subspace of a complete space X is complete, the sequence $\{B_n^t(x)\}_{n\in\mathbb{N}}, x\in C, t\geq 0$ is convergent in (cc(C), h). We write

$$B^{t}(x) := \lim_{n \to \infty} B^{t}_{n}(x) = \sum_{i=0}^{\infty} \frac{t^{i}}{i!} G^{i}(x).$$

Consequently the values of the function B^t belong to cc(C) for $t \ge 0$. Furthemore, the inequality

(8)
$$h(B_n^t(x), B_m^t(x)) < \varepsilon ||x||,$$

 $t \ge 0, x \in C$ says that the series (6) is almost uniformly convergent to B^t for $t \ge 0$; this means that for each compact set K contained in C the series (6) is uniformly convergent on K.

Next we shall prove that the functions B^t are linear. Take any $x, y \in C$ and $t \ge 0$. By Lemma 3 we have

$$B_n^t(x) + B_n^t(y) \longrightarrow B^t(x) + B^t(y), \text{ as } n \to \infty.$$

The additivity of G yields

$$B_n^t(x) + B_n^t(y) = \sum_{i=0}^n \frac{t^i}{i!} G^i(x) + \sum_{i=0}^n \frac{t^i}{i!} G^i(y) = \sum_{i=0}^n \frac{t^i}{i!} (G^i(x) + G^i(y)) =$$
$$= \sum_{i=0}^n \frac{t^i}{i!} G^i(x+y) = B_n^t(x+y) \longrightarrow B^t(x+y), \quad \text{as } n \to \infty.$$

Thus

$$B^t(x+y) = B^t(x) + B^t(y).$$

To prove the homogeneity of $B^t, t \ge 0$ fix $x \in C$ and $\alpha \in (0, \infty)$. Again by Lemma 3 we have

(9)
$$\alpha B_n^t(x) \longrightarrow \alpha B^t(x), \quad \text{as } n \to \infty.$$

The linearity of G gives

$$B_n^t(\alpha x) = \alpha B_n^t(x),$$

hence we conclude from (9) that

(10)
$$\alpha B^t(x) = B^t(\alpha x).$$

Now we proceed to the proof of (7). Let us fix $n \in \mathbb{N}$, $x \in C$ and $s, t \geq 0$. We have

$$(B_n^t \circ B_n^s)(x) = \left(\sum_{j=0}^n \frac{t^j}{j!} G^j\right) (B_n^s(x)) \subset \sum_{j=0}^n \frac{t^j}{j!} G^j \left(\sum_{i=0}^n \frac{s^i}{i!} G^i(x)\right) = \sum_{j=0}^n \sum_{i=0}^n \frac{t^j s^i}{j! i!} G^{i+j}(x) = \sum_{\ell=0}^n \sum_{k=0}^\ell \frac{t^{\ell-k} s^k}{(\ell-k)! k!} G^\ell(x) + R_n(t,s,x),$$

where

$$R_n(t,s,x) := \sum_{\ell=n+1}^{2n} \sum_{k=\ell-n}^n \frac{t^{\ell-k} s^k}{(\ell-k)!k!} G^\ell(x).$$

Observe that

$$\begin{split} \sum_{\ell=0}^{n} \sum_{k=0}^{\ell} \frac{t^{\ell-k} s^{k}}{(\ell-k)!k!} G^{\ell}(x) &= \sum_{\ell=0}^{n} \frac{1}{k!} \left(\sum_{k=0}^{\ell} \binom{\ell}{k} s^{k} t^{\ell-k} \right) G^{\ell}(x) = \\ &= \sum_{\ell=0}^{n} \frac{(s+t)^{\ell}}{\ell!} G^{\ell}(x) = B_{n}^{s+t}(x). \end{split}$$

Thus

(11)
$$(B_n^t \circ B_n^s)(x) \subset B_n^{s+t}(x) + R_n(t,s,x).$$

for every $x \in C$, $s, t \geq 0$ and $n \in \mathbb{N}$. With respect to Lemma 3 it suffices to prove that $R_n(t, s, x) \longrightarrow \{0\}$ and $(B_n^t \circ B_n^s)(x) \longrightarrow (B^t \circ B^s)(x)$ as $n \to \infty$. By the definition of R_n we have

$$\|R_n(t,s,x)\| \le \sum_{\ell=n+1}^{2n} \sum_{k=\ell-n}^{\ell} \frac{t^{\ell-k} s^k}{(\ell-k)!k!} \|G\|^{\ell} \|x\| \le \sum_{\ell=n+1}^{2n} \sum_{k=0}^{\ell} \frac{t^{\ell-k} s^k}{(\ell-k)!k!} \|G\|^{\ell} \|x\| \le \sum_{\ell=n+1}^{2n} \frac{(t+s)^{\ell}}{\ell!} \|G\|^{\ell} \|x\|$$

whence, on letting $n \to \infty$, we obtain

$$R_n(t,s,x) \longrightarrow \{0\}.$$

Now, fix $\varepsilon > 0, x \in C, t, s \ge 0$. By the almost uniform convergence of the sequence $\{B_n^t\}_{n \in \mathbb{N}}$ there exists $n_1 \in \mathbb{N}$ such that

$$h(B_n^t(y), B^t(y)) < \frac{\varepsilon}{2}$$
 for $n > n_1, y \in B^s(x)$.

Jolanta Plewnia

Thus

$$B_n^t(y) \subset B^t(y) + \frac{\varepsilon}{2}S$$
 and $B^t(y) \subset B_n^t(y) + \frac{\varepsilon}{2}S$

for $y \in B^s(x)$, hence

$$B_n^t(y) \subset B^t(y) + \frac{\varepsilon}{2}S \subset B^t(B^s(x)) + \frac{\varepsilon}{2}S$$

for $y \in B^s(x)$ and

$$B_n^t(B^s(x)) \subset B^t(B^s(x)) + \frac{\varepsilon}{2}S \quad \text{for } n > n_1.$$

Similarly, one can show that

$$B^t(B^s(x)) \subset B^t_n(B^s(x)) + \frac{\varepsilon}{2}S \quad \text{for } n > n_1.$$

The two last inclusions yield

(12)
$$h(B_n^t(B^s(x)), B^t(B^s(x))) \le \frac{\varepsilon}{2} \quad \text{for } n > n_1.$$

Note that

(13)
$$||B_n^t(x)|| \le \sum_{i=0}^n \frac{t^i}{i!} ||G||^i ||x|| \le M_t ||x||,$$

where $M_t := e^{t ||G||}$ for every $n \in \mathbb{N}$. Thus for every bounded set $B \subset C$ and $n \in \mathbb{N}$ we have the following relations:

$$||B_n^t(B)|| = \sup\{||B_n^t(y)|| : y \in B\} \le \sup\{M_t ||y|| : y \in B\} \le M_t ||B||.$$

Since for every $n \in \mathbb{N}$ the set

$$\sum_{i=n+1}^{\infty} \frac{s^i}{i!} G^i(x)$$

is bounded, we get

$$\left\| B_n^t \left(\sum_{i=n+1}^{\infty} \frac{s^i}{i!} G^i(x) \right) \right\| \le M_t \left\| \sum_{i=n+1}^{\infty} \frac{s^i}{i!} G^i(x) \right\|.$$

156

Thus

$$h(B_n^t(B^s(x)), B_n^t(B_n^s(x))) =$$

= $h(B_n^t(B_n^s(x)) + B_n^t\left(\sum_{i=n+1}^{\infty} \frac{s^i}{i!}G^i(x)\right), B_n^t(B_n^s(x))) =$
= $\left\|B_n^t\left(\sum_{i=n+1}^{\infty} \frac{s^i}{i!}G^i(x)\right)\right\| \le M_t\left\|\sum_{i=n+1}^{\infty} \frac{s^i}{i!}G^i(x)\right\|,$

whence it follows that there exists $n_2 \in \mathbb{N}$ such that

(14)
$$h(B_n^t(B^s(x)), B_n^t(B_n^s(x))) < \frac{\varepsilon}{2} , n \ge n_2.$$

Combining (12) with (14) we obtain

$$h(B_n^t(B_n^s(x)), B^t(B^s(x))) \le \le h(B_n^t(B_n^s(x)), B_n^t(B^s(x))) + h(B_n^t(B^s(x)), B^t(B^s(x))) < \varepsilon$$

for $n \ge max\{n_1, n_2\}$. Consequently

$$B_n^t(B_n^s(x)) \to B^t(B^s(x)) \quad \text{as } n \to \infty$$

and the proof is complete. $\hfill \Box$

Remark 1. If C is a closed cone in \mathbb{R} , then the family of functions satisfying all assumptions of the Theorem is a semigroup of linear functions.

PROOF. Let $C = [0, \infty)$. If $G : C \to cc(C)$ is a linear map, then there exist $0 \le a \le b$ such that

$$G(x) = [ax, bx] \text{ for } x \in [0, \infty).$$

In this case

$$B^{t}(x) := \sum_{i=0}^{\infty} \frac{t^{i}}{i!} G^{i}(x) = \sum_{i=0}^{\infty} \frac{t^{i}}{i!} [a^{i}x, b^{i}x] = \\ = \left[\sum_{i=0}^{\infty} \frac{t^{i}a^{i}}{i!} x, \sum_{i=0}^{\infty} \frac{t^{i}b^{i}}{i!} x\right] = [e^{at}x, e^{bt}x]$$

and

$$(B^{t} \circ B^{s})(x) = B^{t}([e^{as}x, e^{bs}x]) = [e^{a(s+t)}x, e^{b(s+t)}x] = B^{s+t}(x)$$
for all $x \in C, t, s \ge 0$. \Box

Remark 2. If the function $G: C \to cc(C)$ fulfils the conditions of the above Theorem and simultaneously the condition

(15)
$$G^2(x) = G(x) \quad \text{for } x \in C,$$

then the family of s.v. functions appearing in the assertion of Theorem is a semigroup of linear s.v. functions.

PROOF. Since G satisfies (15), the s.v. function

$$B^{t}(x) = \sum_{i=0}^{\infty} \frac{t^{i}}{i!} G^{i}(x) = \sum_{i=0}^{\infty} \frac{t^{i}}{i!} G(x) = e^{t} G(x)$$

for $t \ge 0$ defines a semigroup.

Example 1. The s.v. function $G: [0,\infty)^2 \to [0,\infty)^2$ of the form

$$G(x,y) = [0,x] \times [0,y]$$

is linear and fulfils equality (15).

Corollary 2. Under the hypotheses of Theorem the functions B^t : $C \to cc(C), t \ge 0$ are continuous on the set int C.

PROOF. The set *int* C is an open convex cone. On account of (8), for any $t \ge 0, x \in C$ and $n \in \mathbb{N}$ large enough one has

$$h(B_n^t(x), B^t(x)) \le \varepsilon \|x\|.$$

This, jointly with (13), shows that the inequalities

$$||B^{t}(x)|| \le h(B^{t}(x), B^{t}_{n}(x)) + ||B^{t}_{n}(x)|| \le (\varepsilon + e^{||G||t})||x|$$

hold true. With respect to the unrestricted choice of $\varepsilon > 0$ the inequality

$$||B^{t}(x)|| \le e^{||G||t} ||x||$$

is satisfied for all $x \in C, t \geq 0$. Consequently

(16)
$$B^{t}(x) \subset F^{t}(x) \quad \text{for } t \ge 0, \ x \in C,$$

(17)
$$F^{t}(x) = e^{\|G\|t} \|x\| S.$$

The s.v. functions $F^t : C \to cc(C)$ are continuous and the $B^t : C \to cc(C)$, $t \ge 0$ are additive. The inclusion (16) and Theorem 5.2 from [3] together complete the proof. \Box

References

- C. CASTAING and M. VALADIER, Convex analysis and measurable multifunctions, Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [2] M. KISIELEWICZ, Differential Inclusions and Optimal Control, PWN Polish Scientific Publishers, Warszawa, Kluwer Academic Publishers, Dordrecht-Boston-London, 1991.
- K. NIKODEM, K-convex and K-concave set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, vol. 559, Lódź, 1989.
- [4] H. RADSTRÖM, An embedding theorem for span of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- [5] W. SMAJDOR, Superadditive set-valued functions and Banach-Steinhaus theorem, Radovi Matematički 3 (1987), 203–214.

JOLANTA PLEWNIA INSTITUTE OF MATHEMATICS PEDAGOGICAL UNIVERSITY PODCHORĄŻYCH 2 30–084 KRAKÓW, POLAND

(Received March 9, 1994)