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On the factors of Stern polynomials II.
Proof of a conjecture of M. Gawron

By ANDRZEJ SCHINZEL (Warszawa)

Abstract. Let B,p(z) be the n-th Stern polynomial in the sense of KLAVZAR
et al. [2]. GAWRON’s conjecture [1] about the natural density of indices n such that
B, (t) = 0, where t = —1/2,—1/3, is proved and generalized. Similar questions are
treated.

KLAVZAR, MILUTINOVIC and PETR [2] defined Stern polynomials B, (z)
by the conditions By(z) = 0, B1(z) = 1, Bap(z) = 2Bn(x), Bant1(z) = Bp(z) +
Bp+1(z). GAWRON [1] proved that the only rational zeros of By (z) are 0,—1,—1/2,
—1/3 and proved that for t = —1/2, t = —1/3,

{0 <k <m: By(t) = 0}

dpm (1) -

(1)
we have liminf,, ;o d;,, (t) = 0. He conjectured ([1, Conjecture 2.7]) that

n}gnoo dm(t) = 0. (2)

We shall consider a more general problem: how often an irreducible (over Q)

polynomial f with integral coefficients divides B,. Denoting a zero of f by ¢,

we introduce d,,,(t) by formula (1). Since Ba,+1(0) = 1, if t #0, t~! = 7 is an
algebraic integer and we set ' = Q(t). Np/q is the norm from F to Q.

Theorem 1. For every algebraic integer T = t~1, different from 0 and roots
of unity, (2) holds.
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Corollary 1. Fort = —%, —%, (2) holds.

Corollary 2. For every prime p > 2, the upper density of indices m such
that p| By, (1) does not exceed 2/p.

As to t being a root of unity, we have only partial results.
Theorem 2. The density of indices n such that (x + 1)?| B, (x) is zero.

Theorem 3. Ift is a primitive root of unity of order e > 2, then, for every
positive integer m,
1 |{m-1

in0) < ot o | 7| Q

where ®. is the cyclotomic polynomial of order e. Moreover, if e = 2% > 2, or

e =2-3% > 2, then, for every positive integer m,

dm(t) < % + % {g(;)J . (4)

As to the other conjecture in [1, Conjecture 4.3], we have only a much weaker
result.

Theorem 4. The density of indices n such that B,, is reciprocal is zero.

[1, Conjecture 4.3] asserts that the number of n < x such that B,, is reciprocal
is O((log 2)¥) for a certain k.

Notation. For a prime ideal p { 7 of F', let ¢ = Np/gp, and let W, (t) be
the set of all pairs (o, ) € ]Fi obtainable from (1,0) by repeated use of the
transformations Ty(«, 8) = (ta + 8, 8) and T1(«a, 8) = (o, t8 + «), where t is to
be interpreted as an element of F,. For an integer m # 0, P(m) is the greatest
prime factor of m. For an algebraic integer 7, M (1) is the Mahler measure of 7,

@ =TI 1L

|7 |>1

ie.,

where 7(9) are all conjugates of 7.

Lemma 1. There exist infinitely many prime ideals p of F' such that there
is (a0, B) € Wy (t) satisfying
To(a7ﬁ) = (a76) (5)
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PROOF. Let us consider the sequence u, = Np/g((27 —1)7" — 1), where u,
is a linear recurrence defined over Q. Let wq,...,ws be the characteristic roots
of the sequence u,, (the distinct zeros of the companion polynomial), and let ! be
the least common multiple of the finite orders of the ratios w; /w; in the multiplica-
tive group C*. No two characteristic roots of the sequence u,,, (m = 0,1, ...) have
the ratio of finite order. Hence, by the theorem of POLYA [4], lim sup P(uyy,) = oo,
unless uy, = A(m)a™, where A € Q[z] and a € Q*. Now, limsup P(A(m)) = oo,
unless A is constant and

Uim = Aa™. (6)

However, since if an algebraic integer 7 # 0 is not a root of unity, by a theorem of
Kronecker, some of its conjugates 7(*) lies outside the unit circle. Hence M () > 1.
For a large n suitably chosen (see [7]), we have for all i, hence for infinitely

many m,
(r)" = (1 + o))",
| = (1 +0(1)) [ l2r® —1[pr(ry™ [ J2r® -2l
[7@1>1 |70 =1
|uzmi| = (1 +o(1)) H 127 — 1| M (r)?™ H 27 — 2],
[T(]>1 |7()|=1

and, since by (6), uzmiug = u2,,, we obtain
L+om) JI 127 —2i=@+0(1)) [] I2r® —17".
|7 (D) ]#£1 |7 (D]>1
Since the equality is independent of m, it follows that
IT 1279 =2/= [ l2r® 117"
|7 |#£1 [7(D|>1

Since the right hand side is non-divisible by 2, the product on the left is empty,

and we obtain
1= J] Pr9-1"<1

|7 |>1

The obtained contradiction proves that limsup P(u,) = oo, and we take p any
common prime ideal factor of P(u,) and % On the other hand,

tn+2 -1
(o, B) = TP Tp(1,0) = (t,tt_l> € Wy(1),

Tola, B) — (a, B) = (77" 72((27 — 1)1 — 1),0). |
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Lemma 2. Ifpt 7 is a prime ideal of F satisfying Lemma 1, and the system
of linear equations
1 1
3 TTo(a,8) T 5 2Ti(a,8) = A(a,p) (7)
holds for all (o, ) € W, (t) with « # 0 and |[A| > 1, then A = 1.

PROOF. Let

ZT(a = max T )|
[0y =, max 175

We infer from (7) that |A\| =1 and
LTy (ao,80) = TTi(a,8) = )‘x(aoﬁo%

hence, by induction on the number of steps needed to reach («, ) from («, fo),

TTy(,p) = TTi(a,8) = M(ap)  ad [(a,p)] = [T (a0, > 0,
for all (v, B) € Wy (t), thus, in particular, for («, 8) satisfying (5). But (5) implies
TTy(a,8) = T(ap)y A = 1. -

Lemma 3. Let e be the order of t = =% mod the prime ideal p { T of F in
the multiplicative group Fy. Then

< logg — [F: Q]logZ'

8
log M (7) )
ProoOF. It follows from ¢ = 1 (modp) that 7¢ = 1 (modp) and
q|]\fp/(@(7'e —-1).
However,
Neo(r =l < >[I0 <29y,
Sc{1,2,..,[F:Q]} i€S
thus (8) follows. O
Lemma 4. Let p {7 be a prime ideal of F satisfying Lemma 1, and
0< . B,,(t) = 0 (mod
0y~ MO n < m B = 0 modp)}|
m
Then the limit lim,,_, o don ,(t) exists and satisfies the inequality
log M
lim don (1) < og M(7) (9)

n—r00 ~logqg—[F:Q]log2’
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PROOF. The proof follows that of [1, Theorem 2.5], only instead of [3, Ex-
ample 8.3.2] we use [3, Theorem 7.10.33] and Lemma 2, together with [3, Exer-
cise 4.4.20 and Formula 8.3.13], and instead of the inequality % < @, we use
Lemma 3. (Il

PRrROOF OF THEOREM 1. Let

_ {0 <k <m:By(t) = 0}]

i (1)

Clearly, for every p 17,
din (t) < dim (1),

and by (9) and Lemma 1,

n—oo

To show (1), we choose n by the inequalities

2"l <m < 2 (11)
Thus

dm (t) < 2dgn (t),
and (1) follows from (10). O

PROOF OF COROLLARY 2. For every u € F}, all elements Tg(O,u) for 0 <

j < p are distinct. Since Ty(1,0) = (1,0), following the proof of Lemma 4, we
infer that lim,_, dan »(1) exists and satisfies the inequality

i n < .
Jim_dyn (1) < 1/p (12)
We choose n by the inequality (11), and Corollary 2 follows from (12). O

Definition 1. For n < 0, B, (z) = —B_,(z).
Definition 2. For n € 7Z,

fule) = 22208

Definition 3. en, = fn(—1).

Lemma 5. Forn € Z,
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PRrROOF. For n > 0, the formula is known and due to Ulas [8, Theorem 5.1].
For n < 0, we have by Definition 1

n 1 3 n 1 3
Bn(—l)——Bn(—l)—?){—3+2}+2—3{3+2}—2. O
Lemma 6. For a € N, a,b € Z, |b| < 2F, we have

Baaats(x) = Baa_jp (2) Ba(2) + Bjp| (%) Batsgn v (). (13)

Proor. For a,b € N, (13) follows from [5, Lemma 1]. For a € N\ {0}, b <0,
we have
2% +b=2% a—1)+2% -1},

and (13) follows again from [5, Lemma 1] with ' =a — 1, b’ = 2% — |b|.
For a =0, b < 0, we have by Definition 1

Byagip(x) = —B_p(x) = By (z) B_1(x).
For a < 0, we have by the already proved cases
Baeass(&) = — Bz 1() = —Bae_py (2)Ba(x) — Bipy(2) Ba_sgn ()
= Bao_p|(2)Ba(x) + Bjp| (2) Batsgn (). O
Lemma 7. For k € N, a,b € Z, 3|b| < 4%, we have
€4kqih = €q + €p. (14)

PrOOF. By Definition 2 and Lemmas 5 and 6, we have

Fara(@) = P2 _ @) fo) + () Bsarsgno @)

Jararp(=1) = fa(=1) + fip)(=1)sgnd = fo(=1) + fp(—1), O
hence, by Definition 3 we obtain (14).

Lemma 8. Ifk € N\ {0},

k

k
n=>Y >0, | J{a}c{-11}, (15)
i=1

i=1

then
en={i:ci=1} - [{i:c; = -1} (16)
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PROOF. We proceed by induction on n. For n =1, (16) holds. Assume that

n > 1is given by (15), and that (16) holds for all integers in question less than n.
Then, applying Lemma 7 with k =1, a = Z;:ll c; 4"l < n, b = ¢, we obtain

€n = €q T €p = eq + Cp,

and (16) follows from the inductive assumption. O

Lemma 9. If k € N\ {0},

k k
n= Zciélk_i, U{CZ} c {1,2}, (17)
then
en={i:ci=1}—[{i:c; =2} (18)

PROOF. We proceed by induction on n. For n = 1, (18) holds. Assume that
n > 1is given by (17), and that (18) holds for all integers in question less than n.
Then, if ¢ = 1, applying Lemma 7 with k = 1,a = 25;11 APl < b =1, we
have

en =¢€q+ep=e,+1,

and (18) follows from the inductive assumption. If ¢, = 2, we have for a =
25;11 c;48==1 by Definition 2

_ Bisays(x)  wBeays()

(@) = faata(w) = — === = — 72— = 2faaa (),
hence, by Definition 3
€n = —€pn/2. (19)
If for a strictly increasing sequence of integers 0 < [y < Iy < -+ < Iy, = k,
ci =1 (0<i§l1), c;i =2 (ll <i§12)7 =1 (lgh,Q <i§12h,1), ci =2

(l2h_1 <1< lzh), we have
k
n_ k—i
5 =2 did",
i=1

where d; = 1, dz = —1 (1 < i <+ 1), ey di = -1 (lgh_g +1 <1<
lon—1+1),di =1 (lap—1+1 < i <lap), (18) follows from (19) and the inductive
assumption. 0
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Lemma 10. If k € N\ {0},

k k
n= Zci4k7ia U{Cz} C {71707 172}7 (20)
i=1 i=1
then
en:|{i:c,;:1}|f|{i:ci:71}|f’{i:ci:2}|
+3{i:3>0¢ =—1,¢i41=...=cCiy; = L cipje1 =2} (21)

PROOF. We proceed by induction on n. For n = 0, (21) holds. Assume that
n > 0 is given by (20), and that (21) holds for all non-negative integers less than n.
If {0,—1} N UL {e:} = 0, (21) holds by Lemma 9. If {0, -1} n U, {e:} # 0,
let j be the greatest index such that ¢; € {0,—1}. If ¢; = 0, we take a =
S eI b= Y"F 4" in Lemma 7. Since 3[b| <30 2457 =
2(4%=7 — 1) < 4*=J*1 we obtain

€n = €q F €p,

and (21) follows from the inductive assumption. If ¢; = —1, we take a =
ST et = Zf:j c;4*=% in Lemma 7. Since 3|b| < 32?:;‘ 4h=i =

gk=i+l _ 1 < 4*=7+1 we obtain
€n =€g+€p =€q — €lp|- (22)

If j =k, then e = 1, and (21) follows from the inductive assumption.

If j < k, and for an increasing sequence of integers j = lp <3 <ls < -+ <
lgh_lSlghzk(h>0),Ci=2(j<Z'§l1),C¢:1(ll<i§lz),...,ci:2
(lzh,Q <1< lghfl), ¢ =1 (lgh,1 <1< k), then, for h = 1, l; = 7, it holds that
|b| = 4%=3 — 3% 4k=i otherwise

i=j+1
k
bl =Y diab,
i=j+1
where, for h = 1, I3 > j, it holds that d; = 1 (j < i < 1), dj, = 2, d; = -1
(ll <1< k'), otherwise, d;, =1 (] <1< 11)7 d; = 2 (ll <1< lg), ey d;, =1

(lgh,Q <1< lgh,1)7 dl2h_1 =2,d; =—-1 (lghfl <1 < k‘) Hence, by the inductive
assumption, if h =1, Iy = j, then e = —k + j + 1, otherwise

h
e =2 loy1—lop+k—j—2,
p=1

and (21) follows from (22) and the inductive assumption. O
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PROOF OF THEOREM 2. If (x 4+ 1)?| B, (), then by Definition 2 and 3
en = 0. (23)
Consider n satisfying the inequality
4k —1 4k —1
— <n<2 ,
3 - = 3
then every expansion n = Zle cid*=i ¢, € {~1,0,1,2} is equally probable.
By the Bernoulli law of large numbers, for every ¢ € (0,1/6) and sufficiently

(24)

large k, the number of n’s in the interval (24) such that

> ek

‘{i:cz-:l}}—i‘>5k, or "{i:ci=—1}|—i

or ’|{i:ci:2}’—i‘ > ek

is less than €4*. If, on the other hand,

‘{i:cizl}}—i‘<5k and ‘|{i:ci:—1}}—i‘<5k

k
and ’Hz tep =2} — 4‘ <cek
and e, = 0, then, by Lemma 10,

= |{’L : 3] 2 0 C; = —1,Ci+1 = =Cipy = 17Ci+j+1 = 2}‘
€ (k/12 — ek, k/12 + ck),

and the number of n’s in the interval (24) satisfying (23) does not exceed

Z k4k—2l(|_k§2j><<2€k+ 1)k .4k—k/6+2sk . ( k Iik;/zj k )ZL
k/12—ek<i<k/12+ek [k/12 + ek

Since L /4% tends to 0, when ¢ is small enough and k tends to infinity, the theorem
follows. (]

PROOF OF THEOREM 3. Bj(t)=0 implies @y (z) | Br(x). Thus ®4(2) | Bx(2)
= k and (3) follows. Moreover, if ¢ = 2%, then 0 = By(t) = Bi(1) (mod1 — ¢t),
and since Np/g(1 —t) = 2, Bi(t) = 0(mod2), thus by Lemma 5, & = 0 (mod 3).
Since for a > 1, (2%(2),2) = 1, (4) follows. If e = 2 -3 and Bg(t) = 0, then
k = 0(mod3), thus z + 1| Bi(z), and since for a > 0, (z + 1, ®.(z)) = 1, we
obtain (x + 1)®.(x) | Bx(z), thus 3®.(2) | k and (4) follows. O

PROOF OF THEOREM 4. Since B, (0) = 0 for n even, B, (1) = 1 for n odd,
if B, is reciprocal, it is monic, but by [6, Corollary 2] for almost all n, in the
sense of density, B, is not monic. |
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