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The influence of maximal subgroups
on Coleman automorphisms of finite groups

By ZHENGXING LI (Qingdao) and HONGWEI GAO (Qingdao)

Abstract. Coleman automorphisms of finite groups G occur naturally in the study

of the normalizer conjecture of integral group rings ZG. The purpose of this article is to

investigate the influence of maximal subgroups of G on Coleman automorphisms, and

then present a partial answer to a question raised by Hertweck and Kimmerle which asks

whether or not OutCol(G) = 1 provided that G has a unique minimal normal subgroup.

1. Introduction

All groups considered are assumed to be finite. An automorphism σ of

a group G is called a Coleman automorphism (named after D. B. Coleman,

whose observation in [4] shows that such automorphisms are crucial in the study

of the unit groups of integral group rings) of G if for any P ∈ Syl(G) there exists

an element x ∈ G such that σ|P = conj(x)|P . Denote by AutCol(G) the group of

all Coleman automorphisms of G, and set OutCol(G) := AutCol(G)/ Inn(G).

Coleman automorphisms play a crucial role in the study of the normalizer

conjecture (Problem 43 in [29]) of integral group rings asserting that NU(ZG)(G) =
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G ·CU(ZG)(G). Many positive results on this conjecture can be found in the liter-

ature [8]–[26]. It is known that the normalizer conjecture holds for ZG provided

that OutCol(G) = 1 (see [11, Introduction] for this). So providing a positive

answer to the normalizer conjecture can in some cases be reduced to the study of

Coleman automorphisms.

Next, we briefly review some well-known results regarding Coleman automor-

phisms. In [5], Dade proved that OutCol(G) is nilpotent for any group G. Later,

Hertweck and Kimmerle [11] improved it by proving the following result.

Theorem 1.1 ([11, Theorem 11]). Let G be an arbitrary group. Then

OutCol(G) is abelian.

Let p be a prime. Recall that an automorphism σ of a group G is said to be

a p-central automorphism if there exists some P ∈ Sylp(G) such that σ|P = id |P .

In [11], Hertweck and Kimmerle also proved the following two results.

Theorem 1.2 ([11, Theorem 14]). Let G be a simple group. Then there is

a prime p ∈ π(G) such that every p-central automorphism of G is inner. In par-

ticular, OutCol(G) = 1.

Recall that a group G is said to be quasi-nilpotent provided that it coincides

with its generalized Fitting subgroup, i.e., G = F∗(G).

Theorem 1.3 ([11, Corollary 16]). Let G be a quasi-nilpotent group. Then

OutCol(G) = 1. In particular, this is the case when G is nilpotent.

At the end of [11], Hertweck and Kimmerle raised the following unsolved

question.

Question 1.4. Let G be a group with a unique minimal normal subgroup. Is

it true that OutCol(G) = 1?

Note that maximal subgroups and minimal normal subgroups have intimate

relationships under certain conditions (see [1, Section 2], for instance). It is no

surprise that Question 1.4 has connections with maximal subgroups to some ex-

tent. The aim of this paper is to study the influence of maximal subgroups on

Coleman automorphisms and give a partial answer to Question 1.4.

The paper is organized as follows. In Section 2, we present some preliminary

results. In Section 3, we prove two main results regarding Coleman automor-

phisms. In Section 4, we investigate how the structures of maximal subgroups

can impose influence on Coleman automorphisms. In Section 5, we confirm that

Question 1.4 has a positive answer provided that the unique minimal normal

subgroup is nonabelian.
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2. Notation and preliminaries

In this section, we first fix some notation and then present some preliminary

results which will be used in the sequel. Let H ≤ G and σ ∈ Aut(G). Write

σ|H for the restriction of σ to H. If, further, H is normal in G and fixed by σ

(this is always the case when σ ∈ AutCol(G), see [8, Remark 4.3] for this), then

we write σ|G/H for the automorphism of G/H induced by σ in the natural way.

Write HG for the core of H in G, i.e., the largest normal subgroup of G contained

in H. Denote by F(G) and F∗(G) the Fitting subgroup and the generalized Fitting

subgroup of G, respectively. Recall that F∗(G) is the central product of F(G) and

the layer E(G) of G. Φ(G) denotes the Frattini subgroup and Z(G) the center

of G. Let p be a prime. Write Op(G) and Op′(G) for the largest normal p and p′-

subgroups of G, respectively. Syl(G) is the set of all Sylow subgroups and Sylp(G)

that of all Sylow p-subgroups of G. Write NG(H) and CG(H) for the normalizer

and the centralizer of H in G. For a fixed element x ∈ G, conj(x) stands for the

inner automorphism of G induced by x via conjugation. In addition, |G| denotes

the order of G and π(G) the set of all prime divisors of |G|. Other notation and

terminology follow those in [28].

Schmidt described non-nilpotent groups all of whose maximal subgroups are

nilpotent. He proved the following result (see [27, Theorem 9.1.9]).

Lemma 2.1 (Schmidt). LetG be a non-nilpotent group all of whose maximal

subgroups are nilpotent. Then the following statements hold:

(1) G is solvable;

(2) |G| = psqt, where p, q are distinct primes and s, t are positive integers;

(3) G has a normal Sylow p-subgroup and cyclic Sylow q-subgroups.

Recall that a nonabelian simple group is said to be minimal simple if every

proper subgroup is solvable. Minimal simple groups were classified by Thompson

(see [30, Corollary 1]). Based on Thompson’s result, Chen [3] proved the following

result. As there is no English reference available for this, we include its proof for

the reader’s convenience.

Lemma 2.2. Let G be a nonsolvable group all of whose maximal subgroups

are solvable. Then G/Φ(G) is a minimal simple group.

Proof. If G itself is simple, then there is nothing to prove. It remains

to consider the case where G is nonsimple. First we show that Φ(G) must be

the largest proper normal subgroup of G. Let N be an arbitrary proper normal

subgroup, and M an arbitrary maximal subgroup of G. We have to show that
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N ≤ M . Assume, to the contrary, that N is not contained in M . Then, by the

maximality of M , G = NM . Since by hypothesis both N and M are solvable, it

follows that G is solvable, which is absurd. Therefore, N ≤M . As M is arbitrary

and Φ(G) is the intersection of all maximal subgroups of G, N ≤ Φ(G). As N

is arbitrary, Φ(G) is indeed the largest proper normal subgroup of G, as desired.

It follows that G/Φ(G) is a nonabelian simple group. Clearly, every maximal

subgroup of G/Φ(G) is solvable since it is the image of some maximal subgroup

of G under the quotient by Φ(G). This shows that G/Φ(G) is a minimal simple

group. We are done. �

Baer [1] investigated the influence of the cores of maximal subgroups on the

structure of groups and proved the following results, among others.

Lemma 2.3 ([1, Corollary 1]). Let G be a group having a maximal subgroup

with trivial core. Then the following statements hold:

(1) there exists at most one nontrivial abelian normal subgroup;

(2) there exist at most two different minimal normal subgroups of G.

Lemma 2.4 ([1, Corollary 2]). Let G be a group having a maximal sub-

group S with trivial core. If A and B are two different minimal normal subgroups

of G, then

(1) G = AS = BS, A ∩ S = B ∩ S = 1;

(2) A = CG(B) and B = CG(A);

(3) A, B and AB ∩ S are isomorphic nonabelian groups.

Lemma 2.5 ([2, Section 73, Theorem VII]). Let N E G and σ ∈ Aut(G).

Suppose that σ|N = id |N and σ|G/N = id |G/N . Then the order of σ divides |N |.

Lemma 2.6 ([11, Lemma 6]). Let σ ∈ Aut(G) and NEG such that Nσ = N .

Suppose that for some Sylow subgroup Q of N , there is an element h ∈ G such

that σ|Q = conj(h)|Q. Then σ|G/M = conj(h)|G/M , where M := NCG(Q).

Lemma 2.7 ([11, Proposition 1]). Let G be a group. Then π(AutCol(G)) ⊆
π(G), where π(G) denotes the set of all prime divisors of |G|.

Lemma 2.8 ([11, Corollary 3]). Let N be a normal subgroup of G, and

let p be a prime which does not divide the order of G/N . Then the following

statements hold:

(1) if σ is a Coleman automorphism of G of p-power order, then σ induces a Cole-

man automorphism of N ;

(2) if OutCol(N) is a p′-group, then so is OutCol(G).
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A group G is said to be p-constrained if CḠ(Op(Ḡ)) ≤ Op(Ḡ), where Ḡ :=

G/Op′(G). The following result is due to Gross (for a refined version of it, see

[11, Proposition 4]).

Lemma 2.9 ([6, Corollary 2.4]). Let p be a prime, and let G be a p-

constrained group with Op′(G) = 1. Let P ∈ Sylp(G), and let σ be an auto-

morphism of G such that σ|P = id |P . Then σ = conj(x), for some x ∈ Z(P ).

We will repeatedly use the following well-known lemma in this paper. For

its proof, the reader may refer to that of Lemma 2 in [8].

Lemma 2.10. Let N E G, and let σ ∈ Aut(G) be of p-power order with p

a prime. Suppose that σ|N = id |N and σ|G/N = id |G/N . Then σ|G/Op(Z(N)) =

id |G/Op(Z(N)). If further σ|P = id |P for some P ∈ Sylp(G), then σ ∈ Inn(G).

3. Proofs of the main results

In this section, we prove two general results regarding Coleman automor-

phisms which will be used in the next section.

Hertweck [7] constructed a group G of order 225·972 for which OutZ(G) 6= 1

(certainly, OutCol(G) 6= 1). It is interesting to note that OutZ(G) = 1 if |G| =

paqb with p 6= 2 and q 6= 2, for the normalizer property holds in this case. A

natural question is to determine which groups G of precisely two prime divisors

have the property OutCol(G) = 1. In this spirit, we would like to prove the

following result.

Theorem 3.1. Let G be a group of precisely two distinct prime divisors p

and q. Suppose that G has a normal Sylow p-group and an abelian Sylow q-

subgroup. Then OutCol(G) = 1.

Proof. If G is nilpotent, then the assertion follows immediately from The-

orem 1.3. In what follows, we assume that G is a non-nilpotent group with |G| =
psqt, where p, q are distinct primes and s, t are positive integers. Let P and Q be

the normal Sylow p-subgroup and a Sylow q-subgroup of G, respectively. Then

G = P oQ.

Let σ ∈ AutCol(G). We have to show that σ is inner. Note that G is an

extension of a p-group by a q-group. By Lemma 2.7, we may assume that σ is

of either p-power order or q-power order. In the first case, the assertion follows

from Lemma 2.8. It remains to consider the case where σ is of q-power order.



106 Zhengxing Li and Hongwei Gao

By the definition of Coleman automorphism, there is an element x ∈ G such that

σ|P = conj(x)|P . Replacing σ with σ conj(x−1), we may assume that

σ|P = id |P . (3.1)

Since σ ∈ AutCol(G), it follows that σ|G/P ∈ AutCol(G/P ). Note that G/P ∼= Q

and Q is abelian, so is G/P . Thus

σ|G/P = id |G/P . (3.2)

Applying Lemma 2.10, (3.1) and (3.2), we get that

σ|G/Oq(Z(P )) = id |G/Oq(Z(P )). (3.3)

Since p and q are distinct primes, Oq(Z(P )) = 1. So equality (3.3) implies that

σ = id. This completes the proof of Theorem 3.1. �

Theorem 3.2. Let G be an extension of a nilpotent group by a nonabelian

simple group. Then OutCol(G) = 1.

Proof. If F(G) = 1, then G is simple and thus the assertion follows from

Theorem 1.2. In view of this, we may assume that F(G) 6= 1. We divide the proof

into two cases according to the relationship between F∗(G) and F(G).

Case 1. F∗(G) > F(G).

In this case, G = F∗(G), since by hypothesis G/F(G) is simple. Now the

assertion follows from Theorem 1.3.

Case 2. F∗(G) = F(G).

Let σ ∈ AutCol(G). We proceed by induction on the number of prime divisors

of |F(G)| to show that σ ∈ Inn(G).

If |π(F(G))| = 1, i.e., F(G) is a p-group with p a prime, then so is F∗(G).

Note further that CG(F∗(G)) = F∗(G). From this we conclude that G is a p-

constrained group with Op′(G) = 1. So, by Lemma 2.9, σ ∈ Inn(G).

Next we assume |π(F(G))| > 1. By Lemma 2.7, we may assume that σ is of

q-power order with q ∈ π(G). Since |π(F(G))| > 1, it follows that there is a prime

r ∈ π(F(G)) distinct from q. Let R be the Sylow r-subgroup of F(G). Since R is

characteristic in F(G) and the latter is characteristic in G, so is R in G. Consider

the quotient group G/R. First we show that

F(G/R) = F(G)/R.
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Clearly, F(G/R) ≥ F(G)/R. Assume that F(G/R) > F(G)/R. Then there is

a normal subgroup H of G such that H/R = F(G/R) > F(G)/R. From this we

deduce that H/F(G) is a nontrivial solvable normal subgroup of G/F(G), con-

tradicting the assumption that G/F(G) is a nonabelian simple group. Therefore,

F(G/R) = F(G)/R, as desired. It follows that

|π(F(G/R))| = |π(F(G))| − 1 < |π(F(G))|.

In addition, note that

(G/R)/(F(G)/R) ∼= G/F(G).

This shows that G/R is an extension of a nilpotent group by a nonabelian

simple group. Thus, by induction hypothesis, OutCol(G/R) = 1. Note that

σ ∈ AutCol(G) implies that σ|G/R ∈ AutCol(G/R). So there exists an element

y ∈ G such that

σ|G/R = conj(y)|G/R.

We may assume without loss of generality that

σ|G/R = id |G/R. (3.4)

By the definition of Coleman automorphism, there is some element x ∈ G such

that

σ|R = conj(x)|R. (3.5)

Consider the quotient Ḡ := G/RCG(R). By Lemma 2.6,

σ|Ḡ = conj(x)|Ḡ. (3.6)

Note that R ≤ RCG(R). So, by (3.4),

σ|Ḡ = id |Ḡ. (3.7)

Combining (3.6) and (3.7), we obtain that x̄ ∈ Z(Ḡ). Note that F(G) ≤ RCG(R)

and G/F(G) is nonabelian simple. It follows that either Ḡ = 1 or Ḡ is isomorphic

to a nonabelian simple group. In either case, Z(Ḡ) = 1̄. So x̄ = 1̄, i.e., x ∈
RCG(R). Noticing this, without loss of generality we may rewrite (3.5) (while

retaining condition (3.4)) as

σ|R = id |R. (3.8)

Applying Lemma 2.10, (3.4) and (3.8), we get that

σ|G/Oq(Z(R)) = id |G/Oq(Z(R)). (3.9)

As r and q are distinct primes, equality (3.9) implies that σ = id. The proof of

Theorem 3.2 is finished. �
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4. Applications of the main results

In this section, we investigate, among others, the influence of maximal sub-

groups on Coleman automorphisms based on results obtained previously.

Proposition 4.1. Let G be a group all of whose maximal subgroups are

nilpotent. Then OutCol(G) = 1.

Proof. If G is nilpotent, then the assertion follows directly from Theo-

rem 1.3. If G is non-nilpotent, then by Lemma 2.1 and Theorem 3.1 the assertion

holds as well. �

Proposition 4.2. Let G be a nonsolvable group all of whose maximal sub-

groups are solvable. Then OutCol(G) = 1.

Proof. This follows from Lemma 2.2 and Theorem 3.2. �

Theorem 4.3. Let G be an arbitrary group having a maximal subgroup

with trivial core. Then OutCol(G) = 1.

Proof. Let M be a maximal subgroup of G with MG = 1. By Lemma 2.3,

we divide the proof into two cases according to the number of minimal normal

subgroups of G.

Case 1. G has precisely one minimal normal subgroup N .

Subcase 1.1. N is abelian.

In this case, N is an elementary abelian p-group for some prime p. Since

MG = 1, it follows that N is not contained in M . Note that M is maximal in G.

So G = NM . From this we deduce that M ∩N = 1, and thus G = N oM .

Next we show that CG(N) = N . Since N is normal in G, so is CG(N).

Note that CG(N)∩M is normal in M and [CG(N)∩M,N ] = 1. So CG(N)∩M
is normal in G. Since G has only a unique minimal normal subgroup N , it

follows that CG(N)∩M = 1. Note that CG(N) ≥ N . So CG(N) = CG(N)∩G =

CG(N)∩(NM) = N(CG(N)∩M) = N (the third equality holds by the Dedekind

property).

Let σ ∈ AutCol(G). We have to show that σ ∈ Inn(G). Let P be a Sylow

p-subgroup of G. Then there is some element x ∈ G such that

σ|P = conj(x)|P .

Clearly, we may assume without loss of generality that

σ|P = id |P . (4.1)
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Since N ≤ P , from (4.1) we obtain that

σ|N = id |N . (4.2)

Let g ∈ G. Then, for any x ∈ N , xg lies in N since N EG. Thus, by (4.2),

xg = (xg)σ = (xσ)g
σ

= xg
σ

. (4.3)

As x is arbitrary and CG(N) = N , we obtain that gσg−1 ∈ N . It follows that

σ|G/N = id |G/N . (4.4)

By Lemma 2.5, (4.2) and (4.4), σ must be of p-power order. Applying Lemma 2.10,

we have σ ∈ Inn(G).

Subcase 1.2. N is nonabelian.

Since N is a minimal normal subgroup, it follows that N is the direct product

of finite copies of a nonabelian simple group S, say

N = S × S × · · · × S.

Let σ ∈ AutCol(G). By Theorem 1.2, there is a prime p ∈ π(S) such that

every p-central automorphism of S is inner. Let P be a chosen Sylow p-subgroup

of N . Then we may assume without loss of generality that

σ|P = id |P .

Let S be an arbitrary fixed direct factor of N . We claim that the restriction

σ|S of σ to S is actually an automorphism of S. In fact, since N is normal in G

and σ ∈ AutCol(G), it follows that σ|N is an automorphism of N . Thus the image

σ(S) of S under σ must be some simple direct factor of N . Note that σ|P = id |P
and P ∩ S ≤ S. So σ|P∩S = id |P∩S . It follows that σ(S)∩ S ≥ P ∩ S 6= 1. From

this we deduce that σ(S) = S, since both S and σ(S) are simple. This shows that

σ|S is indeed an automorphism of S, as claimed.

Now, by Theorem 1.2, σ|S is an inner automorphism of S for each direct

factor S of N . From this we conclude that σ|N ∈ Inn(N). Modifying σ with

a suitable inner automorphism of G, we may assume without loss of generality

that

σ|N = id |N . (4.5)

Since N is the unique nonabelian minimal normal subgroup of G, it follows that

CG(N) = 1. (4.6)

Now, by (4.5) and (4.6), we can deduce that σ = id.
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Case 2. G has precisely two minimal normal subgroups.

Let A and B be the minimal normal subgroups of G. Then, by Lemma 2.4,

A and B are isomorphic nonabelian minimal normal subgroups. As in Subcase 1.2

above, we may assume that

σ|A×B = id |A×B . (4.7)

In addition, by Lemma 2.4,

CG(A×B) ≤ CG(A) ∩ CG(B) = A ∩B = 1. (4.8)

From (4.7) and (4.8), we deduce that σ = id. This completes the proof of the

result. �

Corollary 4.4. Let M be an arbitrary maximal subgroup of G. Then

OutCol(G/MG) = 1.

Proof. If MG = M , then M is a normal maximal subgroup of G, and

hence G/M is an cyclic group of order p, where p is a prime. The assertion holds

trivially in this case. If MG < M , then M/MG is a maximal subgroup of G/MG

with trivial core, and thus the assertion follows from Theorem 4.3. �

Recall that a subgroup H of a group G is said to be a TI-set provided that

either Hg = H or H ∩Hg = 1, for any g ∈ G \H. As far as groups all of whose

maximal subgroups are TI-sets are concerned, we have the following result.

Proposition 4.5. Let G be a group all of whose maximal subgroups are

TI-sets. Then OutCol(G) = 1.

Proof. If all maximal subgroups are normal in G, then G itself is nilpotent,

and thus the assertion follows from Theorem 1.3. In what follows, we assume that

G has a nonnormal maximal subgroup, say, M . Since M is a TI-set, it follows from

the definition that there exists some element g ∈ G \M such that M ∩Mg = 1.

Keep in mind that MG is precisely the intersection of all conjugates of M in G.

So the previous equality implies that MG = 1, and thus by Theorem 4.3 the

assertion holds. We are done. �

5. A partial answer to Question 1.4

In this section, based on Theorem 4.3, we give a partial answer to Question 1.4

raised by Hertweck and Kimmerle in [11].
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Theorem 5.1. Let G be a group with a unique minimal normal subgroup N .

Suppose that Φ(G) = 1. Then OutCol(G) = 1.

Proof. By Theorem 4.3, it will be sufficient to show that G has a maximal

subgroup with trivial core. Otherwise, N will be contained in the intersection

of all maximal subgroups of G, due to the uniqueness of the minimal normal

subgroup. That is, N ≤ Φ(G), contradicting the assumption that Φ(G) is trivial.

Therefore, G must have a maximal subgroup with trivial core, and thus, by

Theorem 4.3, OutCol(G) = 1. We are done. �

Note that if the unique minimal normal subgroup N in Theorem 5.1 is non-

abelian, then the condition that Φ(G) = 1 is needless. In view of this, we would

like to record the following corollary as a separate result.

Corollary 5.2. Let G be a group with a unique minimal normal subgroup N .

Then OutCol(G) = 1, whenever N is nonabelian.

Remark 5.3. By Corollary 5.2, it is sufficient to consider the case where the

unique minimal normal subgroup is abelian when tackling with Question 1.4.

Furthermore, the following result tells us that the whole group may be assumed

to be nonsolvable. It should be pointed out that Hertweck and Kimmerle had

already known the validity of this result (see [11, Section 5]). Nevertheless, we

would like to include its proof for the reader’s convenience.

Theorem 5.4. Let G be a solvable group with a unique minimal normal

subgroup. Then OutCol(G) = 1.

Proof. Let N be the unique minimal normal subgroup. Since G is solvable,

it follows that N is an elementary abelian p-subgroup with p a prime. Note that

the uniqueness of the minimal normal subgroup implies that F(G) must be a p-

group. Note further that CG(F(G)) ⊆ F(G). From these facts we deduce that

G must be a p-constrained group with Op′(G) = 1. Now the assertion follows

immediately from Lemma 2.9. We are done. �

Based on the above discussions, we may close this paper by reformulating

Question 1.4 as the following one.

Question 5.5. Let G be a nonsolvable group with a unique minimal normal

subgroup N . Is OutCol(G) = 1 provided N ≤ Φ(G)?
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