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Composite rational functions and arithmetic progressions

By SZABOLCS TENGELY (Debrecen)

Abstract. In this paper, we deal with composite rational functions having zeros

and poles forming consecutive elements of an arithmetic progression. We also correct

a result published in [12] related to composite rational functions having a fixed number

of zeros and poles.

1. Introduction

We consider a problem related to decompositions of polynomials and rational

functions. In this subject, a classical result obtained by Ritt [13] says that if

there is a polynomial f ∈ C[X] satisfying certain tameness properties and

f = g1 ◦ g2 ◦ · · · ◦ gr = h1 ◦ h2 ◦ · · · ◦ hs,

then r = s and {deg g1, . . . ,deg gr} = {deg h1, . . . ,deg hr}. Ritt’s fundamental

result has been investigated, extended and applied in various wide-ranging con-

texts (see, e.g., [4], [6]–[7], [9]–[11], [14]–[15]). The above mentioned result is not

valid for rational functions. Gutierrez and Sevilla [9] provided the following

example:

f =
x3(x+ 6)3(x2 − 6x+ 36)3

(x− 3)3(x2 + 3x+ 9)3
,

f = g1 ◦ g2 ◦ g3 = x3 ◦ x(x− 12)

x− 3
◦ x(x+ 6)

x− 3
,
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f = h1 ◦ h2 =
x3(x+ 24)

x− 3
◦ x(x2 − 6x+ 36)

x2 + 3x+ 9
.

To determine decompositions of a given rational function, there were developed al-

gorithms (see, e.g., [1]–[3]). In [2], Ayad and Fleischmann implemented

a MAGMA [5] code to find decompositions, they provided the following example:

f =
x4 − 8x

x3 + 1
,

and they obtained that f(x) = g(h(x)), where

g =
x2 + 4x

x+ 1
and h =

x2 − 2x

x+ 1
.

Fuchs and Pethő [8] proved the following theorem.

Theorem A. Let k be an algebraically closed field of characteristic zero.

Let n be a positive integer. Then there exists a positive integer J and, for every

i ∈ {1, . . . , J}, an affine algebraic variety Vi defined over Q and with Vi ⊂ An+ti ,
for some 2 ≤ ti ≤ n, such that:

(i) If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g,deg h ≥ 2, g not of the

shape (λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has at most n zeros and poles alto-

gether, then there exists, for some i ∈ {1, . . . , J}, a point P = (α1, . . . , αn, β1, . . . ,

βti) ∈ Vi(k), a vector (k1, . . . , kti) ∈ Zti with k1 + k2 + · · · + kti = 0 depending

only 1 on Vi , a partition of {1, . . . , n} in ti+1 disjoint sets S∞, Sβ1 , . . . , Sβti with

S∞ = ∅ if k1 + k2 + · · · + kti = 0, and a vector (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n,

also both depending only on Vi, such that

f(x) =

ti∏
j=1

(ωj/ω∞)kj , g(x) =

ti∏
j=1

(x− βj)kj ,

and

h(x) =

βj +
ωj
ω∞

(j = 1, . . . , ti), if k1 + k2 + . . .+ kti 6= 0,

βj1ωj2−βj2ωj1
ωj2−ωj1

(1 ≤ j1 < j2 ≤ ti), otherwise,

where

ωj =
∏

m∈Sβj

(x− αm)lm , j = 1, . . . , ti,

1in [8], it is written as “or not depending”, this typo is corrected here.
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and

ω∞ =
∏

m∈S∞

(x− αm)lm .

Moreover, we have deg h ≤ (n− 1)/max{ti − 2, 1} ≤ n− 1.

(ii) Conversely, for given data P ∈ Vi(k), (k1, . . . , kti), S∞, Sβ1
, . . . , Sβti ,

(l1, . . . , ln) as described in (i), one defines by the same equations rational functions

f, g, h with f having at most n zeros and poles altogether for which f(x) = g(h(x))

holds.

(iii) The integer J and equations defining the varieties Vi are effectively

computable only in terms of n.

Pethő and Tengely [12] provided some computational experiments that

they obtained by using a MAGMA [5] implementation of the algorithm of Fuchs

and Pethő [8].

If the zeros and poles of a composite rational function form an arithmetic

progression, then we have the following result.

Theorem 1. Let f, g, h be rational functions as in Theorem A. Assume that

the zeros and poles of f form an arithmetic progression, that is

αi = α0 + Tid,

for some α0, d ∈ k and Ti ∈ {0, 1, . . . , n− 1}. If k1 + k2 + · · ·+ kt 6= 0, then either

the difference d satisfies an equation of the form

dN = M

for some N ∈ Z,M ∈ Q or (l1, . . . , ln) ∈ {0, 1, . . . , n − 1}n satisfies a system of

linear equations ∑
r∈Sβi

lr =
∑
s∈Sβj

ls, i, j ∈ {1, . . . , t}, i 6= j.

If k1 + k2 + · · ·+ kt = 0 and 1 ≤ j1 < j2 < j3 ≤ t, then

d

∑
m1∈Sβj1

lm1
, d

∑
m2∈Sβj2

lm2
, d

∑
m3∈Sβj3

lm3

satisfy a system of linear equations, and βj1 , βj2 , βj3 also satisfy a system of linear

equations.
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We will apply the above theorem to determine composite rational functions

having 4 zeros and poles. We define equivalence of rational functions. Two

rational functions f1(x) =
∏n
u=1(x−α(1)

u )f
(1)
u and f2(x) =

∏n
u=1(x−α(2)

u )f
(2)
u are

equivalent if there exist au,v ∈ Q, u ∈ {1, 2, . . . , n}, v ∈ {1, 2, . . . , n+ 1} such that

α(1)
u = au,1α

(2)
1 + au,2α

(2)
2 + · · ·+ au,nα

(2)
n + au,n+1,

for all u ∈ {1, 2, . . . , n}. We prove the following statement.

Proposition 1. Let k be an algebraically closed field of characteristic zero.

If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g,deg h ≥ 2, g not of the shape

(λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has 4 zeros and poles altogether forming an

arithmetic progression, then f is equivalent to the following rational function:

(x− α0)k1(x− α0 − d)k2(x− α0 − 2d)k2(x− α0 − 3d)k1 ,

for some α0, d ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0.

In this paper, we correct results obtained in [12], where the computations

related to the case k1 + k2 + · · · + kt 6= 0, S∞ = ∅ are missing. The following

theorem is the corrected version of Theorem 1 from [12], where part (c) was

missing.

Theorem 2. Let k be an algebraically closed field of characteristic zero.

If f, g, h ∈ k(x) with f(x) = g(h(x)) and with deg g,deg h ≥ 2, g not of the shape

(λ(x))m,m ∈ N, λ ∈ PGL2(k), and f has 3 zeros and poles altogether, then f is

equivalent to one of the following rational functions:

(a) (x−α1)
k1 (x+1/4−α1)

2k2

(x−1/4−α1)2k1+2k2
for some α1 ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0,

(b) (x−α1)
2k1 (x+α1−2α2)

2k2

(x−α2)2k1+2k2
for some α1, α2 ∈ k and k1, k2 ∈ Z, k1 + k2 6= 0,

(c)
(
x− α1+α2

2

)2k1
(x−α1)k2(x−α2)k2 for some α1, α2 ∈ k and k1, k2 ∈ Z, k1 +

k2 6= 0.

Remark. The MAGMA procedure CompRatFunc.m can be downloaded from

http://shrek.unideb.hu/∼tengely/CompRatFunc.m. All systems in cases of

n ∈ {3, 4, 5} can be downloaded from http://shrek.unideb.hu/∼tengely/
CFunc345.tar.gz.
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Remark. It is interesting to note that in the above formulas the zeros and

poles form an arithmetic progression

(a): α1 −
1

4
, α1, α1 +

1

4
difference:

1

4
,

(b): α1, α2,−α1 + 2α2 difference: α2 − α1,

(c): α1,
α1 + α2

2
, α2 difference:

α2 − α1

2
.

2. Auxiliary results

We repeat some parts of the proof of Theorem A from [8] that will be used

here later on. Without loss of generality, we may assume that f and g are monic.

Let

f(x) =

n∏
i=1

(x− αi)fi ,

with pairwise distinct αi ∈ k and fi ∈ Z for i = 1, . . . , n. Similarly, let

g(x) =

t∏
j=1

(x− βj)kj ,

with pairwise distinct βj ∈ k and kj ∈ Z for j = 1, . . . , t and t ∈ N. Hence we

have
n∏
i=1

(x− αi)fi = f(x) = g(h(x)) =

t∏
j=1

(h(x)− βj)kj .

We shall write h(x) = p(x)/q(x), with p, q ∈ k[x], p, q coprime. Fuchs and

Pethő [8] showed that if k1 + k2 + · · · + kt 6= 0, then there is a subset S∞
of the set {1, . . . , n} for which

q(x) =
∏

m∈S∞

(x− αm)lm ,

and there is a partition of the set {1, . . . , n} \ S∞ in t disjoint non-empty subsets

Sβ1
, . . . , Sβt such that

h(x) = βj +
1

q(x)

∏
m∈Sβj

(x− αm)lm , (1)
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where lm ∈ N satisfies lmkj = fm for m ∈ Sβj , and this holds true for every

j = 1, . . . , t. We get at least two different representations of h, since we assumed

that g is not of the special shape (λ(x))m. Therefore, we get at least one equation

of the form

βi +
1

q(x)

∏
r∈Sβi

(x− αr)lr = βj +
1

q(x)

∏
s∈Sβj

(x− αs)ls . (2)

If k1 + k2 + · · ·+ kt = 0, then we have

(p(x)− βjq(x))kj =
∏

m∈Sβj

(x− αm)fm .

Now we have that t ≥ 3, otherwise g is in the special form we excluded. Siegel’s

identity provides the equations in this case. That is if 1 ≤ j1 < j2 < j3 ≤ t, then

we have

vj1,j2,j3 + vj3,j1,j2 + vj2,j3,j1 = 0, (3)

where

vj1,j2,j3 = (βj1 − βj2)
∏

m∈Sβj3

(x− αm)lm .

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. If k1+k2+· · ·+kt 6= 0 and there exist r1 ∈ Sβi , s1 ∈
Sβj for some i 6= j such that lr1 6= 0 and ls1 6= 0, then it follows from (2) that

βi − βj =

∏
s∈Sβj

(αr1 − αs)ls∏
m∈S∞

(αr1 − αm)lm
, (4)

βi − βj = −
∏
r∈Sβi

(αs1 − αr)lr∏
m∈S∞

(αs1 − αm)lm
, (5)

for any appropriate αr1 ∈ Sβi and αs1 ∈ Sβj . Hence we obtain that

C1(i, j, r1, s1) = d

∑
r∈Sβi

lr−
∑
s∈Sβj

ls
,

where C1(i, j, r1, s1) ∈ Q. If there exist Sβi and Sβj for which
∑
r∈Sβi

lr −∑
s∈Sβj

ls 6= 0, then the possible values of d satisfy equations of the form xN = M.

Otherwise we get that∑
r∈Sβi

lr =
∑
s∈Sβj

ls, i, j ∈ {1, . . . , t}, i 6= j.
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Let us consider the special case when lr = 0 for all r ∈ Sβi . If ls = 0 for all

s ∈ Sβj , then we get that

h(x) = βi +
1

q(x)
= βj +

1

q(x)
.

Hence βi = βj for some i 6= j, a contradiction. Thus we may assume that there

exists s1 ∈ Sβj for which ls1 6= 0. In a similar way as in the above case, it follows

that

βi − βj =

∏
s∈Sβj

(αr1 − αs)ls∏
m∈S∞

(αr1 − αm)lm
− 1∏

m∈S∞
(αr1 − αm)lm

, (6)

βi − βj = − 1∏
m∈S∞

(αs1 − αm)lm
. (7)

Therefore

d

∑
s∈Sβj

ls
= C2(i, j, r1, s1),

where C2(i, j, r1, s1) ∈ Q. Since s1 > 0, we have that
∑
s∈Sβj

ls 6= 0, that is d

satisfies an appropriate polynomial equation.

If k1 + k2 + · · · + kt = 0, then there are at least 3 partitions, and for any

appropriate r1 ∈ Sβj1 , r2 ∈ Sβj2 , r3 ∈ Sβj3 (that is lri 6= 0, i = 1, 2, 3) equation (3)

implies that

(βj3 − βj1)
∏

m2∈Sβj2

(αr3 − αm2)lm2 + (βj2 − βj3)
∏

m1∈Sβj1

(αr3 − αm1)lm1 = 0

(βj1 − βj2)
∏

m3∈Sβj3

(αr2 − αm3)lm3 + (βj2 − βj3)
∏

m1∈Sβj1

(αr2 − αm1)lm1 = 0

(βj1 − βj2)
∏

m3∈Sβj3

(αr1 − αm3)lm3 + (βj3 − βj1)
∏

m2∈Sβj2

(αr1 − αm2)lm2 = 0,

which is a system of linear equations in d1, d2, d3, where di = d

∑
mi∈Sβji

lmi
, i ∈

{1, 2, 3} and the statement follows. In a very similar way, we obtain a system of

equations if lr = 0 for all r ∈ Sβj3 , the last two equations are as before, while on

the left-hand side of the first one there is an additional term βj1 − βj2 . �

Proof of Theorem 2. In [12], all cases are given with k1+k2+· · ·+kt = 0

and also with k1 + k2 + · · · + kt 6= 0, S∞ 6= ∅. Therefore, it remains to deal with

those cases with k1 + k2 + · · · + kt 6= 0, S∞ = ∅. First let t = 2. There are 18
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systems of equations. Among these systems there are two types. The first one has

only a single equation, e.g., when Sβ1 = {1, 2}, Sβ2 = {3}, (l1, l2, l3) = (1, 0, 1),

this equation is as follows:

α1 − α3 − β1 + β2 = 0.

Hence

h(x) = β1 + (x− α1) = β2 + (x− α3)

is a linear function. A system from the second type is given by Sβ1
= {1, 2}, Sβ2

=

{3}, (l1, l2, l3) = (1, 1, 2) and the equations as follows:

α1 + α2 − 2α3 = 0, (α2 − α3)2 − β1 + β2 = 0.

That is we obtain that

h(x) = β2 +

(
x− α1 + α2

2

)2

, g(x) =

(
x− β2 −

(
α2 − α1

2

)2
)k1

(x− β2)k2 ,

f(x) =

(
x− α1 + α2

2

)2k1

(x− α1)k2(x− α2)k2 .

It is a decomposition of type (c) in the theorem. Let t = 3. There are 6 systems of

equations, all of the same type, e.g., Sβ1 = {1}, Sβ2 = {2}, Sβ3 = {3}, (l1, l2, l3) =

(1, 1, 1), and

α1 − α3 − β1 + β3 = 0, α2 − α3 − β2 + β3 = 0.

Hence the degree of h is 1, which yields a trivial decomposition. �

4. Proof of Proposition 1

Proof of Proposition 1. In this section, we apply Theorem 1 to deter-

mine composite rational functions having zeros and poles as consecutive elements

of certain arithmetic progressions. We need to handle the following cases:

(I) : n = 4 and t ∈ {2, 3, 4}, k1 + k2 + · · ·+ kt 6= 0, S∞ = ∅,
(II) : n = 4 and t ∈ {2, 3}, k1 + k2 + · · ·+ kt 6= 0, S∞ 6= ∅,

(III) : n = 4 and t ∈ {3, 4}, k1 + k2 + · · ·+ kt = 0, S∞ = ∅.
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In the proof, we use the notation of Theorem 1, that is we write

αi = α0 + Tid,

where α0, d ∈ k and {T1, T2, T3, T4} = {0, 1, 2, 3}. To make the presentation

shorter, we also make use of the code CompRatFunc.m.

(I) : t = 2, {|Sβ1
|, |Sβ2

|} = {1, 3}. We may assume that Sβ1
= {1}, Sβ2

=

{2, 3, 4}. We obtain that

h(x) = β1 + (x− α1)l1 , h(x) = β2 + (x− α2)l2(x− α3)l3(x− α4)l4 .

Substituting x = α2, α3, α4, yields (assuming l2l3l4 6= 0)

(α2 − α1)l1 = (α3 − α1)l1 = (α4 − α1)l1 .

Since the zeros and poles form an arithmetic progression, one gets that either

d = 0 or l1 = 0. In the former case, the zeros and poles are not distinct, which is

a contradiction. In the latter case, the degree of h is less than 2, a contradiction

again. If two out of l2, l3, l4 are equal to zero, then it follows that l1 = 1, hence

the degree of h is 1, a contradiction. If exactly one out of l2, l3, l4 is zero, then

l1 = 2, and the corresponding f has only 3 zeros and poles. As an example, we

consider the case l4 = 0. We obtain that

α1 =
α2 + α3

2
and β2 = β1 +

(
α2 − α3

2

)2

.

It follows that f(x) =
(
x− α2+α3

2

)2
f1(x), where deg f1 = 2.

(I) : t = 2, {|Sβ1
|, |Sβ2

|} = {2}. Here we may assume that Sβ1
= {1, 2}, Sβ2

=

{3, 4}. We get that

h(x) = β1 + (x− α1)l1(x− α2)l2 , h(x) = β2 + (x− α3)l3(x− α4)l4 .

It follows that (assuming that 0 /∈ {l1, l2, l3, l4})

(α1 − α3)l3(α1 − α4)l4 = (α2 − α3)l3(α2 − α4)l4

and

(α3 − α1)l1(α3 − α2)l2 = (α4 − α1)l1(α4 − α2)l2 .

Using the fact that the zeros and poles form an arithmetic progression, it turns

out that one has to deal with 80 cases.



124 Szabolcs Tengely

• There are 8 cases with (l1, l2, l3, l4) = (1, 1, 1, 1). We obtain equivalent solutions,

so we only consider one of these. Let α1 = α0, α2 = α0 + 3d. It follows that

β2 = β1 − 2d2. That is we have

g(x) = (x− β1)(x− β1 + 2d2), h(x) = β1 + (x− α0)(x− α0 − 3d),

f(x) = (x− α0)(x− α0 − d)(x− α0 − 2d)(x− α0 − 3d).

• There are 16 equivalent cases with (l1, l2, l3, l4) ∈ {(1, 1, 2, 2), (2, 2, 1, 1)}. One

obtains that d2 = ± 1
2 and β2 = β1± 1. One example from this family is given by

g(x) = (x− β1)(x− β1 − 1), h(x) = β1 + (x− α0 −
√

2/2)2(x− α0 −
√

2)2,

f(x) = (x− α0)

(
x− α0 −

√
2

2

)2

(x− α0 −
√

2)2

(
x− α0 −

3
√

2

2

)
f2(x),

where f2(x) is a quadratic polynomial such that f has more than 4 zeros and

poles. We remark that if we use the equations related to β2, we have

g(x) = (x− β2)(x− β2 + 1), h(x) = β2 + (x− α0)(x− α0 − 3
√

2),

f(x) = (x− α0)

(
x− α0 −

√
2

2

)
(x− α0 −

√
2)

(
x− α0 −

3
√

2

2

)
,

that is we obtain a “solution” covered by the family given by the case (l1, l2, l3, l4)

= (1, 1, 1, 1).

• There are 8 equivalent cases with (l1, l2, l3, l4) = (2, 2, 2, 2). All of these cases can

be eliminated in the same way. From the equation

(α1 − α3)l3(α1 − α4)l4 = −(α3 − α1)l1(α3 − α2)l2 , (8)

it follows that

dl1+l2−l3−l4 =
(T1 − T3)l3(T1 − T4)l4

−(T3 − T1)l1(T3 − T2)l2
,

where {T1, T2, T3, T4} = {0, 1, 2, 3}. The left-hand side is d0 = 1 and the right-

hand side is -1, a contradiction.

• There are 16 equivalent cases with (l1, l2, l3, l4) ∈ {(1, 1, 3, 3), (3, 3, 1, 1)}. As an

example, we handle the one with (l1, l2, l3, l4) = (3, 3, 1, 1) and

α1 = α0, α2 = α0 + 3d, α3 = α0 + 2d, α4 = α0 + d.
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Equation (8) implies that either d = 0 or d4 = 1
4 . If d2 = 1

2 , then we get

g(x) = (x− β1)(x− β1 + 1), h(x) = β1 + (x− α0)3(x− α0 − 3
√

2/2)3,

f(x) = (x− α0)3

(
x− α0 −

√
2

2

)
(x− α0 −

√
2)

(
x− α0 −

3
√

2

2

)3

f3(x),

where f3(x) is a quartic polynomial resulting an f having more than 4 zeros and

poles. If d2 = − 1
2 , then we get

g(x) = (x− β1)(x− β1 − 1), h(x) = β1 + (x− α0)3(x− α0 − 3
√
−2/2)3,

f(x) = (x− α0)3
(
x− α0 −

√
−2

2

)
(x− α0 −

√
−2)

(
x− α0 −

3
√
−2

2

)3

f4(x),

where f4 is a quartic polynomial and we get a contradiction in the same way as

before.

• There are 16 equivalent cases with (l1, l2, l3, l4) ∈ {(2, 2, 3, 3), (3, 3, 2, 2)}. We

handle the case with (l1, l2, l3, l4) = (3, 3, 2, 2) and

α1 = α0 + 3d, α2 = α0, α3 = α0 + 2d, α4 = α0 + d.

It follows from equation (8) that d = 0 or d2 = 1
2 . Also we have that β2 = β1−1.

In a similar way as in the above cases, we obtain a composite function f having

4 zeros and poles forming an arithmetic progression, but an additional quartic

factor appears, a contradiction.

• There are 8 equivalent cases with (l1, l2, l3, l4) = (3, 3, 3, 3). Here we consider the

case with

α1 = α0, α2 = α0 + 3d, α3 = α0 + d, α4 = α0 + 2d.

It follows that β2 = β1 − 8d6. As in the previous cases, g(h(x)) has 4 zeros and

poles coming from an arithmetic progression, but there is an additional quartic

factor yielding a contradiction.

If 0 ∈ {l1, l2, l3, l4}, then we have three possibilities. Either {l1, l2} =

{l3, l4} = {0, 1} or {l1, l2} = {1}, {l3, l4} = {0, 2} or {l1, l2} = {0, 2}, {l3, l4} =

{1}. In the first case, the degree of h is 1, a contradiction. The last two

cases can be handled in the same way, therefore, we only deal with the case

{l1, l2} = {1}, {l3, l4} = {0, 2}. Without loss of generality, we may assume that

l3 =2, l4 =0. It follows that α1 = 2α3 − α2 and β2 = β1 − (α2 − α3)2. Thus

h(x) = β1 + (x− 2α3 + α2)(x− α2), g(x) = (x− β1)(x− β1 + (α2 − α3)2),
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f(x) = (x− α2)(x− α3)2(x− 2α3 + α2).

We conclude that f(x) has only 3 zeros and poles, a contradiction.

(I) : t = 3, |Sβ1
| = |Sβ2

| = 1, |Sβ3
| = 2. Here we may assume that Sβ1

= {1},
Sβ2

= {2}, Sβ3
= {3, 4}, that is one has

h(x)=β1+(x−α1)l1 , h(x)=β2+(x−α2)l2 , h(x)=β3+(x−α3)l3(x−α4)l4 ,

where l1, l2 ∈ {2, 3}. Let us consider the case l3 6= 0, l4 6= 0. Substitute α3, α4

into the above system of equations to get

β3 = β1 + (α3 − α1)l1 , β3 = β2 + (α3 − α2)l2 ,

β3 = β1 + (α4 − α1)l1 , β3 = β2 + (α4 − α2)l2 .

These equations imply that αi = αj for some i 6= j, a contradiction. Now assume

that l4 = 0, hence l3 = 2 or 3. We can reduce the system as follows

(α1 − α2)l2 + (α2 − α1)l1 = 0, (α1 − α3)l3 + (α3 − α1)l1 = 0,

(α2 − α3)l3 + (α3 − α2)l2 = 0,

where l1, l2, l3 ∈ {2, 3}. We get a contradiction in all these cases.

(I) : t = 4, Sβ1
= {1}, Sβ2

= {2}, Sβ3
= {3}, Sβ4

= {4}. We obtain the system of

equations

h(x) = β1 + (x− α1)l1 , h(x) = β2 + (x− α2)l2 ,

h(x) = β3 + (x− α3)l3 , h(x) = β4 + (x− α4)l4 ,

where li ≥ 2 (since deg h ≥ 2.) Here we prove that this type of composite rational

function cannot exist. One has that for any different i, j,

(αi − αj)lj−li = (−1)li+1.

If li = lj = 2, then we have a contradiction. Assume that li = 2. There exist

lj = lk = 3. Hence αi = αj − 1 and αi = αk − 1, a contradiction. Let us deal

with the case (l1, l2, l3, l4) = (3, 3, 3, 3). Substituting α1 + α2 into the system of

equations yields β1 = β2 + α3
1 − α3

2. We also have that β1 = β2 + (α1 − α2)3. By

combining these equations, we get that

−3α1α2(α1 − α2) = 0.
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In a similar way, we obtain

−3α3α4(α3 − α4) = 0.

It follows that for some different i, j, one has αi = αj , a contradiction.

(II) : t = 2, |S∞| = 2, |Sβ1 | = |Sβ2 | = 1. We may assume that S∞ = {1, 2}, Sβ1 =

{3}, Sβ2 = {4}. The system of equations in this case is as follows:

h(x) = β1 +
(x− α3)l3

(x− α1)l1(x− α2)l2
, h(x) = β2 +

(x− α4)l4

(x− α1)l1(x− α2)l2
.

If l3 = l4 = 0, then it follows that β1 = β2, a contradiction. Let us deal with the

case l3= 0, l4 6= 0 (in a similar way, one can handle the case l3 6= 0, l4= 0). There

are only three systems to consider. If (l1, l2, l3, l4) = (0, 1, 0, 1) or (1, 0, 0, 1),

then β1 − 1 = β2, and the composite function f has only 2 zeros and poles,

a contradiction. If (l1, l2, l3, l4)=(1, 1, 0, 2), then β1−1=β2 and α4 =α2±1, α1 =

α2 ± 2. In all these cases, we obtain a composite function f having only 3 zeros

and poles, a contradiction. Let us consider the cases with l3 6= 0, l4 6= 0. There

are 18 systems to deal with. It turns out that d satisfies the equation

dl4−l3 = − (T4 − T3)l3(T3 − T1)l1(T3 − T2)l2

(T4 − T1)l1(T4 − T2)l2(T3 − T4)l4
,

where αi = α0 + Tid, for some Ti ∈ {0, 1, 2, 3}. If (l1, l2, l3, l4) = (1, 0, 2, 2), then

(T1, T2, T3, T4) ∈ {(1, 3, 0, 2), (1, 3, 2, 0), (2, 0, 1, 3), (2, 0, 3, 1)}.

In all these cases, we obtain a composite function f having only 3 zeros and poles,

a contradiction. As an example, we compute f when (T1, T2, T3, T4) = (1, 3, 0, 2).

We get that β2 = β1 + 4d, and

h(x) = β1 +
(x− α0)2

(x− α0 − d)
, g(x) = (x− β1)(x− β1 − 4d),

f(x) =
(x− α0 − 2d)

2
(x− α0)

2

(x− α0 − d)
2 .

We exclude the tuple (l1, l2, l3, l4) = (0, 1, 2, 2) following the same lines. If

(l1, l2, l3, l4) = (1, 1, 1, 2), then we also have that d = 1
T1+T2−2T4

and d = T2−T3

(T2−T4)2
,

it is easy to check that such tuple (T1, T2, T3, T4) does not exist. In a very similar

way, if (l1, l2, l3, l4) = (1, 1, 2, 1), we obtain that

d =
1

T1 + T2 − 2T3
=

T2 − T4
(T2 − T3)2

,
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and such tuple (T1, T2, T3, T4) does not exist. If (l1, l2, l3, l4) = (2, 1, 2, 3), then

(T3 − T4)3

(T3 − T1)2(T3 − T2)
= 1, − (T4 − T3)2

(T4 − T1)2(T4 − T2)
=

4

27(T3 − T4)
.

There is no solution in Ti ∈ {0, 1, 2, 3}, Ti 6= Tj , i 6= j. We obtain a very similar

system of equations in case of (l1, l2, l3, l4) = (1, 2, 3, 2), (1, 2, 2, 3), (2, 1, 3, 2). If

(l1, l2, l3, l4) = (1, 1, 3, 3), then we get

T1 + T2 = T3 + T4, (T4 − T1)(T4 − T2) = (T3 − T1)(T3 − T2),

27(T2 − T4)4(T4 − T1)2 = 9(T4 − T3)3(T2 − T4)2(T4 − T1)− (T4 − T3)6.

The above system has no solution in (T1, T2, T3, T4). If (l1, l2, l3, l4) = (1, 2, 3, 1),

then

T1 − 4T3 + 3T4 =0, 2T2 + T3 − 3T4 =0, (T4 − T3)3 =(T4 − T1)(T4 − T2)2.

The system has no solution. The same argument works in case of (l1, l2, l3, l4) =

(1, 2, 1, 3), (2, 1, 1, 3), (2, 1, 3, 1). If (l1, l2, l3, l4) = (0, 2, 2, 1), then we have

α2 = α4 +
1

4
, α3 = α4 −

1

4
,

hence

h(x) = β1 +
(x− α4 + 1

4 )2

(x− α4 − 1
4 )2

, g(x) = (x− β1)(x− β1 − 1),

f(x) =
(x− α4)(x− α4 + 1

4 )2

(x− α4 − 1
4 )4

.

That is f has only 3 zeros and poles, a contradiction. We handle in the same

way the tuples (l1, l2, l3, l4) = (2, 0, 2, 1), (2, 0, 1, 2), (0, 2, 1, 2). If (l1, l2, l3, l4) =

(0, 0, 1, 1), then deg h(x) = 1, a contradiction.

(II) : t = 3, |S∞| = |Sβ1
| = |Sβ2

| = |Sβ3
| = 1. We may assume that S∞ = {1},

Sβ1
= {2}, Sβ2

= {3}, Sβ3
= {4}. In this case, h(x) can be written as follows:

h(x) = β1 +
(x− α2)l2

(x− α1)l1
, h(x) = β2 +

(x− α3)l3

(x− α1)l1
, h(x) = β3 +

(x− α4)l4

(x− α1)l1
.

The only possible exponent tuple (l1, l2, l3, l4) is (0, 1, 1, 1). Thus deg h(x) = 1,

a contradiction.
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(III) : t = 3, |Sβ1 | = 2, |Sβ2 | = |Sβ3 | = 1. We may assume that Sβ1 = {1, 2},
Sβ2 = {3}, Sβ3 = {4}. The only exponent tuple for which deg h(x) > 1 is given by

(l1, l2, l3, l4) is (1, 1, 2, 2). We obtain the following system of equations if d 6= 0:

(β3 − β1)(T4 − T3)2 + (β2 − β3)(T4 − T1)(T4 − T2) = 0

(β1 − β2)(T3 − T4)2 + (β2 − β3)(T3 − T1)(T3 − T2) = 0

(β1 − β2)(T1 − T4)2 + (β3 − β1)(T1 − T3)2 = 0

(β1 − β2)(T2 − T4)2 + (β3 − β1)(T2 − T3)2 = 0,

where {T1, T2, T3, T4} = {0, 1, 2, 3}. Solving the above system of equations for all

possible tuples (T1, T2, T3, T4), one gets that βi = βj for some i 6= j, a contradic-

tion.

(III) : t = 3, |Sβ1
| = |Sβ2

| = |Sβ3
| = |Sβ4

| = 1. We may assume that Sβ1
= {1},

Sβ2
= {2}, Sβ3

= {3}, Sβ4
= {4}. The only possible exponent tuple is (l1, l2, l3, l4)

= (1, 1, 1, 1). Thus the corresponding h(x) has degree 1, a contradiction. As an

example, we consider the case

α1 = α0 + d, α2 = α0, α3 = α0 + 3d, α4 = α0 + 2d.

We use equation (3) here with (j1, j2, j3) = (1, 2, 3) and (j1, j2, j3) = (1, 2, 4). If

d 6= 0, then we have

β3 = 3β1 − 2β2, β4 = 2β1 − β2.

Let k1, k2, k3, k4 ∈ Z such that k1 + k2 + k3 + k4 = 0. Theorem A implies that

g(x) = (x− β1)k1(x− β2)k2(x− 3β1 + 2β2)k3(x− 2β1 + β2)k4 ,

h(x) =
1

d
(β1(x− α0)− β2(x− α0 − d)),

f(x) = (x− α0 − d)k1(x− α0)k2(x− α0 − 3d)k3(x− α0 − 2d)k4 . �

5. Cases with n = 4

In this section, we provide some details of the computation corresponding to

cases with n = 4, t ∈ {2, 3, 4}, k1 + k2 + · · ·+ kt 6= 0, S∞ = ∅. These are the cases

which are not mentioned in [12, Section 5].

The case n = 4, t = 2 and S∞ = ∅. There are 134 systems to deal with. We treat

only a few representative examples.
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If Sβ1 = {1, 2}, Sβ2 = {3, 4} and (l1, l2, l3, l4) = (2, 1, 2, 1), then we have

α1 + 1/2α2 − α3 − 1/2α4 = 0

α2 − 4/3α3 + 1/3α4 = 0

α2α
2
3 − 2α2α3α4 + α2α

2
4 − α2

3α4 + 2α3α
2
4 − α3

4 − 9β1 + 9β2 = 0

α2 − 4/3α3 + 1/3α4 = 0

α3
3 − 3α2

3α4 + 3α3α
2
4 − α3

4 − 27/4β1 + 27/4β2 = 0.

The corresponding rational functions are as follows:

f(x) = (x− α1)2k1(x− α2)k1(x− 1

3
α1 −

2

3
α2)2k2(x− 4

3
α1 +

1

3
α2)k2 ,

g(x) = (x− β1)k1(x− β1 −
4

27
(α1 − α2)3)k2 , h(x) = β1 + (x− α1)2(x− α2),

where k1+k2 6= 0. We note that the zeros and poles of f do not form an arithmetic

progression for all values of the parameters as the choice α1 = 0, α2 = 3 shows.

If Sβ1
= {1, 2}, Sβ2

= {3, 4} and (l1, l2, l3, l4) = (1, 1, 0, 2), then we get the

system of equations

α1 + α2 − 2α4 = 0, (α2 − α4)2 − β1 + β2 = 0.

It yields a decomposable rational function f having only 3 zeros and poles alto-

gether.

If Sβ1 = {1, 2}, Sβ2 = {3, 4} and (l1, l2, l3, l4) = (1, 1, 1, 1), then we obtain

α1 + α2 − α3 − α4 = 0, α2
2 − α2α3 − α2α4 + α3α4 − β1 + β2 = 0.

It yields the following solution:

f(x) = (x+ α2 − α3 − α4)k1(x− α2)k1(x− α3)k2(x− α4)k2 ,

g(x) = (x− β1)k1(x− β1 + α2
2 − α2α3 − α2α4 + α3α4)k2 ,

h(x) = β1 + (x− α3 − α4 + α2)(x− α2),

where k1 + k2 6= 0.

If Sβ1
= {1, 2, 3}, Sβ2

= {4} and (l1, l2, l3, l4) = (1, 1, 1, 3), then we have

α1 + α2 + α3 − 3α4 = 0, α2
2 + α2α3 − 3α2α4 + α2

3 − 3α3α4 + 3α2
4 = 0,

α3
3 − 3α2

3α4 + 3α3α
2
4 − α3

4 − β1 + β2 = 0.
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We obtain the following rational functions:

f(x) = (x− α1)k1(x− α2)k1(x− α3)k1(x− α4)3k2 ,

g(x) = (x− β2 − (α3 − α4)3)k1(x− β2)k2 , h(x) = β2 + (x− α4)3,

where k1 + k2 6= 0 and

α1 =
1

2
α4

(
−i
√

3+3
)
−1

2
α3

(
−i
√

3+1
)
, α2 =

1

2
α4

(
i
√

3+3
)

+
1

2
α3

(
−i
√

3−1
)
.

The case n = 4, t = 3 and S∞ = ∅. There are 48 systems to handle in this case.

We consider one of these. Let Sβ1
= {1}, Sβ2

= {2, 3}, Sβ3
= {4} and (l1, l2, l3, l4)

= (1, 1, 0, 1). We obtain the system of equations

α1 − α4 − β1 + β3 = 0, α2 − α4 − β2 + β3 = 0.

It follows that h is a linear function, which only provides trivial decomposition.

In the remaining cases, we have the same conclusion.

The case n = 4, t = 4 and S∞ = ∅. Here we get 24 systems to consider. In all

cases, we have that

{Sβ1 , Sβ2 , Sβ3 , Sβ4} = {{1}, {2}, {3}, {4}},

and (l1, l2, l3, l4) = (1, 1, 1, 1). Therefore h is linear, a contradiction.
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