A note on trans-Sasakian manifolds

By SHARIEF DESHMUKH (Riyadh) and UDAY CHAND DE (Kolkata)

Abstract. In this paper, we obtain a necessary and sufficient condition for a 3-dimensional compact connected positively curved trans-Sasakian manifold of type (α, β) , to be homothetic to a Sasakian manifold. The necessary and sufficient condition is that the smooth function $\alpha \neq 0$ and satisfies the differential equation $H_{\alpha}(\xi, \xi) = 0$. Similarly, using the smooth function β , necessary and sufficient conditions are found for a trans-Sasakian manifold to be homothetic to a Sasakian manifold.

1. Introduction

Given a (2n+1)-dimensional almost contact metric manifold (M,φ,ξ,η,g) (cf. [1]), the product $\overline{M}=M\times R$ has natural almost complex structure J, which makes (\overline{M},G) an almost Hermitian manifold, where G is the product metric. There are sixteen different types of structures on the almost Hermitian manifold (\overline{M},J,G) (cf. [9]), and using the structure in the class \mathcal{W}_4 on (\overline{M},J,G) , a structure $(\varphi,\xi,\eta,g,\alpha,\beta)$ on M called trans-Sasakian structure is introduced (cf. [17]), which generalizes a Sasakian structure, a Kenmotsu structure on a contact metric manifold (cf. [2], [8]), where α , β are smooth functions defined on M. Trans-Sasakian manifolds have been studied by BLAIR and OUBIÑA [2], and MARRERO [10]. A trans-Sasakian manifold $(M,\varphi,\xi,\eta,g,\alpha,\beta)$ is called a trans-Sasakian manifold of type (α,β) , and trans-Sasakian manifolds of type (0,0), $(\alpha,0)$ and $(0,\beta)$ are called a cosymplectic, a α -Sasakian and a β -Kenmotsu manifold, respectively.

 $Mathematics\ Subject\ Classification:\ 53C15,\ 53D10.$

Key words and phrases: Sasakian manifold, trans-Sasakian manifold, trans-analytic vector fields.

This work is supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

A closely related subject, equidistant Sasakian manifolds and Kaehler manifolds, is found in [13], [14]. It is because of the work of MARRERO [12], where it is proved that proper trans-Sasakian manifolds (that is, $\alpha \neq 0$, $\beta \neq 0$) exist only in 3-dimension, that there is an emphasis on studying geometry of 3-dimensional trans-Sasakian manifolds. In ([3]-[6], [11], [12], [17]), authors have studied 3dimensional trans-Sasakian manifolds with some restrictions on the smooth functions α , β appearing in the definition of a trans-Sasakian manifold. There are several examples of trans-Sasakian manifolds constructed mostly on 3-dimensional Riemannian manifolds (cf. [2], [12], [17]). Moreover, as the geometry of Sasakian manifolds is rich and being derived from contact geometry, it is more important as compared to the geometry of trans-Sasakian manifolds. Therefore, the question of finding necessary and sufficient conditions for a 3-dimensional trans-Sasakian manifold to be homothetic to a Sasakian manifold is an important question. As a Sasakian manifold is characterized by α a constant and $\beta = 0$, and on such a manifold the Hessian $H_{\alpha}(\xi,\xi)=0$, the question arises: 'Is a compact 3-dimensional trans-Sasakian manifold satisfying $H_{\alpha}(\xi,\xi)=0$ necessarily homothetic to a Sasakian manifold?' In this paper, we address this question and other related ones (cf. Theorem 3.1). We also address the question raised in [5], namely, we study 3-dimensional trans-Sasakian manifolds satisfying the differential equation $\nabla \beta = \xi(\beta)\xi$. In dimension 3, the class of trans-Sasakian manifolds coincides with the class of normal almost contact metric manifolds. Indeed, it can be deduced from (cf. [16, Propositions 1 and 2]), one has only to exchange the role of the functions α and β .

2. Preliminaries

Let $(M, \varphi, \xi, \eta, g)$ be a 3-dimensional contact metric manifold, where φ is a (1,1)-tensor field, ξ a unit vector field, and η a smooth 1-form dual to ξ with respect to the Riemannian metric g satisfying

$$\varphi^{2} = -I + \eta \otimes \xi, \quad \varphi(\xi) = 0, \ \eta \circ \varphi = 0,$$
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \tag{2.1}$$

 $X,Y \in \mathfrak{X}(M)$, where $\mathfrak{X}(M)$ is the Lie algebra of smooth vector fields on M (cf. [1]). If there are smooth functions α,β on an almost contact metric manifold (M,φ,ξ,η,g) satisfying

$$(\nabla \varphi)(X,Y) = \alpha \left(g(X,Y)\xi - \eta(Y)X \right) + \beta \left(g(\varphi X,Y)\xi - \eta(Y)\varphi X \right), \tag{2.2}$$

then it is said to be a trans-Sasakian manifold, where $(\nabla \varphi)(X,Y) = \nabla_X \varphi Y - \varphi(\nabla_X Y)$, $X,Y \in \mathfrak{X}(M)$, and ∇ is the Levi–Civita connection with respect to the metric g (cf. [2]). We shall denote the trans-Sasakian manifold by $(M,\varphi,\xi,\eta,g,\alpha,\beta)$, and it is called a trans-Sasakian manifold of type (α,β) . The equations (2.1) and (2.2) imply

$$\nabla_X \xi = -\alpha \varphi(X) + \beta (X - \eta(X)\xi), \quad X \in \mathfrak{X}(M). \tag{2.3}$$

Also, it is known that (cf. [3]) on a trans-Sasakian manifold $(M,\,\varphi,\,\xi,\,\eta,\,g)$, we have

$$\xi(\alpha) = -2\alpha\beta. \tag{2.4}$$

We denote by 'Ric' the Ricci tensor of a Riemannian manifold (M, g), then the Ricci operator Q is a symmetric tensor field of type (1, 1), which satisfies

$$\operatorname{Ric}(X,Y) = g(QX,Y), X, Y \in \mathfrak{X}(M).$$

On a 3-dimensional trans-Sasakian manifold $(M, \varphi, \xi, \eta, g)$, the following is known (cf. [3]):

$$Q(\xi) = \varphi(\nabla \alpha) - \nabla \beta + 2(\alpha^2 - \beta^2)\xi - g(\nabla \beta, \xi)\xi, \tag{2.5}$$

where $\nabla \alpha$, $\nabla \beta$ are gradients of the smooth functions α , β . If $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is a compact 3-dimensional trans-Sasakian manifold, then using equation (2.3), we have

$$\operatorname{div} \xi = 2\beta \quad \text{and} \quad \int_{M} \beta = 0. \tag{2.6}$$

Also, we have (cf. [5])

$$\int_{M} \alpha^{k} \beta = 0 \quad \text{for } k \neq 1.$$
 (2.7)

Using a local orthonormal frame $\{e_1, e_2, e_3\}$ on M, equation (2.2) gives

$$\sum (\nabla \varphi)(e_i, e_i) = 2\alpha \xi. \tag{2.8}$$

On a Riemannian manifold (M,g), for a smooth function f on M, we denote by ∇f and A_f the gradient and Hessian operator, respectively, where $A_fX = \nabla_X \nabla f$, $X \in \mathfrak{X}(M)$. The Hessian H_f of the function f is defined by

$$H_f(X,Y) = g(A_f X, Y), \quad X, Y \in \mathfrak{X}(M), \tag{2.9}$$

and the Laplacian Δf of the function f has the relation with the Hessian

$$\Delta f = \sum H_f(e_i, e_i), \tag{2.10}$$

where $\{e_1, e_2, e_3\}$ is a local orthonormal frame on M. Moreover, on a Riemannian manifold (M, g), the Hessian operator A_f satisfies (cf. [7])

$$(\nabla A_f)(X,Y) - (\nabla A_f)(Y,X) = R(X,Y)\nabla f, \quad X,Y \in \mathfrak{X}(M), \tag{2.11}$$

where R is the curvature tensor field.

3. Trans-Sasakian manifolds homothetic to Sasakian manifolds

In this section, we study 3-dimensional trans-Sasakian manifolds and obtain necessary and sufficient conditions for trans-Sasakaian manifolds to be homothetic to Sasakian manifolds. Our first result uses a differential equation satisfied by the smooth functions α .

Theorem 3.1. A 3-dimensional compact connected positively curved trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ with $\alpha \neq 0$ (that is, α is nonzero at each point), satisfies the differential equation

$$H_{\alpha}(\xi,\xi) = 0,$$

if and only if M is homothetic to a positively curved Sasakian manifold.

PROOF. Suppose $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is a 3-dimensional compact connected trans-Sasakian manifold and $H_{\alpha}(\xi, \xi) = 0$ holds. Then equation (2.4) leads to

$$\alpha \left(\xi(\beta) - 2\beta^2 \right) = 0. \tag{3.1}$$

Since $\alpha \neq 0$, on connected M the above equation gives

$$\xi(\beta) = 2\beta^2.$$

Now, using equations (2.6) together with the above equation, we arrive at

$$\operatorname{div}(\beta\xi) = 4\beta^2,$$

which on using Stoke's theorem leads to $\beta = 0$, and consequently, by virtue of equation (2.4), $\xi(\alpha) = 0$. On using this information and equation (2.2), we get

$$\nabla_Y \varphi(\nabla \alpha) = \alpha Y(\alpha) \xi + \varphi A_\alpha Y, \quad Y \in \mathfrak{X}(M),$$

which, in view of equation (2.3), gives

$$\nabla_{X}\nabla_{Y}\varphi(\nabla\alpha) = X(\alpha)Y(\alpha)\xi + \alpha XY(\alpha)\xi - \alpha^{2}Y(\alpha)\varphi X + (\nabla\varphi)(X, A_{\alpha}Y) + \varphi((\nabla A_{\alpha})(X, Y)) + \varphi A_{\alpha}(\nabla_{X}Y).$$

Now, using the above two equations, and equations (2.2) and (2.11), we compute

$$R(X,Y)\varphi(\nabla\alpha) = \alpha^{2} (X(\alpha)\varphi Y - Y(\alpha)\varphi X) + \alpha (H_{\alpha}(X,\xi) Y - H_{\alpha}(Y,\xi)X) + \varphi (R(X,Y)\nabla\alpha).$$
(3.2)

We have $\xi(\alpha) = g(\nabla \alpha, \xi) = 0$, which, in view of equation (2.3), as $\beta = 0$, leads to

$$g(A_{\alpha}X,\xi) - g(\nabla\alpha,\alpha\varphi X) = 0$$
, that is, $A_{\alpha}\xi = -\alpha\varphi(\nabla\alpha)$. (3.3)

Thus, equation (3.2) takes the form

$$R(X,Y)\varphi(\nabla\alpha) = \alpha^{2} (X(\alpha)\varphi Y - Y(\alpha)\varphi X) + \alpha^{2} (g(\varphi(\nabla\alpha),Y) X)$$
$$-g(\varphi(\nabla\alpha),X)Y) + \varphi(R(X,Y)\nabla\alpha).$$

Replacing Y by $\nabla \alpha$ in the above equation, we arrive at

$$R(X, \nabla \alpha) \varphi (\nabla \alpha) = \alpha^{2} \left((X(\alpha) - g(\varphi(\nabla \alpha), X)) \nabla \alpha - \|\nabla \alpha\|^{2} X \right) + \varphi (R(X, \nabla \alpha) \nabla \alpha).$$
(3.4)

Note that the operator $R(X, \nabla \alpha) \nabla \alpha$, $X \in \mathfrak{X}(M)$ is a symmetric operator, and therefore, we can find a local orthonormal set $\{X_1, X_2\}$ on M such that $X_i \perp \nabla \alpha$ and $R(X_i, \nabla \alpha) \nabla \alpha = \lambda_i X_i$, i = 1, 2, where λ_i are smooth functions. Taking $X = X_i$ in equation (3.4) and using $X_i(\alpha) = 0$, we arrive at

$$R(X_i, \nabla \alpha)\varphi(\nabla \alpha) = \alpha^2 \left(-g(\varphi(\nabla \alpha), X_i)\nabla \alpha - \|\nabla \alpha\|^2 X_i\right) + \lambda_i \varphi(X_i).$$

Taking the inner product in the above equation by $\varphi(\nabla \alpha)$ leads to

$$-\alpha^{2} \|\nabla \alpha\|^{2} g(X_{i}, \varphi(\nabla \alpha)) = 0, \tag{3.5}$$

where, we have used $g(\varphi(X_i), \varphi(\nabla \alpha)) = g(X_i, \nabla \alpha) = 0, i = 1, 2.$

Suppose that in equation (3.5) $g(X_i, \varphi(\nabla \alpha)) = 0$ holds, which will imply $\lambda_i g(X_i, \varphi(\nabla \alpha)) = 0$, that is,

$$R(X_i, \nabla \alpha; \nabla \alpha, \varphi(\nabla \alpha)) = 0.$$

This gives $g(R(\nabla \alpha, \varphi(\nabla \alpha))\nabla \alpha, X_i) = 0$, i = 1, 2, that is,

$$R(\nabla \alpha, \varphi(\nabla \alpha))\nabla \alpha = \mu \nabla \alpha,$$

for a smooth function μ , as $\{X_1, X_2\}$ is a local orthonormal set orthogonal to $\nabla \alpha$. Thus, we have

$$R(\nabla \alpha, \varphi(\nabla \alpha); \nabla \alpha, \varphi(\nabla \alpha)) = \mu g(\nabla \alpha, \varphi(\nabla \alpha)) = 0,$$

which, together with the hypothesis that M is positively curved, implies one of the following possibilities: (i) $\nabla \alpha = 0$, (ii) $\varphi(\nabla \alpha) = 0$. The second possibility also gives $\nabla \alpha = \xi(\alpha)\xi = 0$. Thus, α is a nonzero constant. Using equations (2.2) and (2.3), we conclude

$$\alpha^{-2} \left(\nabla_X \nabla_Y \xi - \nabla_{\nabla_X Y} \xi \right) = g(Y, \xi) X - g(X, Y) \xi, \quad X, Y \in \mathfrak{X}(M).$$

Hence M is homothetic to a Sasakian manifold (cf. [15, Theorem 1.1, p. 272], for English version).

The converse is trivial, as on a Sasakian manifold α is a nonzero constant, and therefore $H_{\alpha}(\xi,\xi)=0$.

The requirement that $\alpha \neq 0$ in the hypothesis of Theorem 3.1 can be relaxed by enriching the topology of the trans-Sasakian manifold. For instance, if we assume that the de Rham cohomology group $H^1(M,R)=0$, then, as equation (3.1) implies either $\alpha=0$ or $\xi(\beta)=2\beta^2$, this additional topological requirement rules out the possibility $\alpha=0$ as follows: If $\alpha=0$, then equation (2.3) implies that η is closed, and therefore has to be exact. Hence there exists a smooth function f such that $\eta=df$ or, equivalently, $\xi=\nabla f$, and on compact M there exists a point $p\in M$ (critical point of f) such that $\xi_p=0$, which is a contradiction, as ξ is a unit vector field. Hence we have the following result:

Theorem 3.2. A 3-dimensional compact connected positively curved trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$, with cohomology group $H^1(M, R) = 0$, satisfies the differential equation

$$H_{\alpha}(\xi,\xi)=0,$$

if and only if M is homothetic to a positively curved Sasakian manifold.

In both these theorems, we seek to find whether the condition on curvature can be relaxed. The answer is yes, provided we make the condition $H_{\alpha}(\xi,\xi) = 0$ stronger, namely, replace it by demanding that the vector field ξ annihilates the Hessian operator A_{α} . Indeed, we prove the following result:

Theorem 3.3. A 3-dimensional compact connected trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$, with $\alpha \neq 0$, is such that the vector field ξ annihilates the Hessian operator A_{α} if and only if M is homothetic to a Sasakian manifold.

PROOF. Suppose $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is a 3-dimensional compact connected trans-Sasakian manifold satisfying $\alpha \neq 0$, and $A_{\alpha}(\xi)=0$. Then we have $H_{\alpha}(\xi, \xi)=0$, and as in the proof of Theorem 3.1, we have equation (3.1), and the conclusion that $\beta = 0$. Then equation (2.4) becomes $\xi(\alpha) = 0$, and equation (2.3) leads to

$$\pounds_{\xi}g = 0,$$

where \pounds_{ξ} is the Lie derivative with respect to ξ . Hence the vector field ξ is Killing, and consequently, the Ricci operator Q is invariant under the flow of ξ (being isometries of M), that is, we have

$$(\pounds_{\varepsilon}Q)(X) = 0, \quad X \in \mathfrak{X}(M).$$

Thus, the above equation, in view of equation (2.3), gives

$$(\nabla Q)(\xi, X) = \alpha (Q\varphi(X) - \varphi Q(X)), \quad X \in \mathfrak{X}(M),$$

that is.

$$(\nabla Q)(\xi, \xi) = -\alpha \varphi Q(\xi). \tag{3.6}$$

Now, equation (2.5), together with $\beta = 0$, reads

$$Q(\xi) = \varphi(\nabla \alpha) + 2\alpha^2 \xi.$$

Using this equation and equations $\nabla_{\xi} \xi = 0$ (an outcome of equation (2.3)) and $\xi(\alpha) = 0$, in equation (3.6), we arrive at

$$\nabla_{\xi} \left(\varphi(\nabla \alpha) + 2\alpha^2 \xi \right) = \alpha \nabla \alpha,$$

that is,

$$(\nabla \varphi)(\xi, \nabla \alpha) + \varphi(A_{\alpha}\xi) = \alpha \nabla \alpha.$$

The above equation, in view of equation (2.2) and the hypothesis, leads to $\alpha \nabla \alpha = 0$, that is, α is a nonzero constant. Hence, as in the proof of Theorem 3.1, we get that M is homothetic to a Sasakian manifold.

The converse is trivial, as on a Sasakian manifold we have $A_{\alpha}=0$ and α is a nonzero constant.

Next, we use the smooth function β to find necessary and sufficient condition for a compact and connected 3-dimensional trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ to be homothetic to a Sasakian manifold.

Theorem 3.4. A 3-dimensional compact connected positively curved trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$, with $\alpha \neq 0$, satisfies

$$H_{\beta}(\xi,\xi) = 0$$
 and $\xi(\beta) \le -2\beta^2$,

if and only if M is homothetic to a positively curved Sasakian manifold.

PROOF. Suppose $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is a 3-dimensional compact connected positively curved trans-Sasakian manifold satisfying $\alpha \neq 0$ and the conditions in the hypothesis. We have

$$\operatorname{div}\left(\xi(\beta)^{2}\xi\right) = 2\beta\xi(\beta)H_{\beta}(\xi,\xi) + \xi(\beta)^{2}\operatorname{div}\left(\beta\xi\right)$$
$$= \xi(\beta)^{3} + 2\beta^{2}\xi(\beta)^{2} = \xi(\beta)^{2}\left(\xi(\beta) + 2\beta^{2}\right),$$

which on integrating and using the inequality $\xi(\beta) \leq -2\beta^2$ implies

$$\xi(\beta)^2 \left(\xi(\beta) + 2\beta^2\right) = 0.$$

Hence, on connected M, we have either $\xi(\beta) = 0$ or $\xi(\beta) = -2\beta^2$. If $\xi(\beta) = 0$, then we have $\operatorname{div}(\beta\xi) = 2\beta^2$, and integrating the last equation gives $\beta = 0$. Now, if $\xi(\beta) = -2\beta^2$ holds, then we have $\operatorname{div}(\beta^3\xi) = -4\beta^4$, which on integration gives $\beta = 0$. Thus, we have $\beta = 0$, which, in view of equation (2.4) gives $\xi(\alpha) = 0$, and then the proof follows from the proof of Theorem 3.1.

The converse is trivial, as on a positively curved Sasakian manifold we have $\beta = 0$, and consequently, all the requirements of the hypothesis are met.

Finally, we partially answer the question raised in [5], namely, whether the differential equation $\nabla \beta = \xi(\beta)\xi$ on a compact and connected 3-dimensional trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ renders it to be homothetic to a Sasakian manifold. We prove the following:

Theorem 3.5. A 3-dimensional compact connected positively curved trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$, with $\alpha \neq 0$ and sectional curvatures bounded below by α^2 , satisfies

$$\nabla \beta = \xi(\beta)\xi$$
 and $\xi(\beta) \ge -\beta^2$,

if and only if M is homothetic to a positively curved Sasakian manifold.

PROOF. Suppose $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ is a 3-dimensional compact connected positively curved trans-Sasakian manifold satisfying $\alpha \neq 0$ and the conditions in the hypothesis. Using $\nabla \beta = \xi(\beta)\xi$ and the equation (2.5), we get

$$\operatorname{Ric}(\nabla \beta, \xi) = \xi(\beta) \operatorname{Ric}(\xi, \xi) = 2\xi(\beta) (\alpha^2 - \beta^2 - \xi(\beta)),$$

and

$$\operatorname{Ric}(\nabla \beta, \nabla \beta) = 2\xi(\beta)^2 (\alpha^2 - \beta^2 - \xi(\beta)).$$

Thus, for a constant c, we find

$$\operatorname{Ric}\left(\nabla\beta + c\xi, \nabla\beta + c\xi\right) = 2\left(\alpha^2 - \beta^2 - \xi(\beta)\right)\left(\xi(\beta) + c\right)^2. \tag{3.7}$$

Also, we have

$$\|\nabla \beta + c\xi\|^2 = (\|\nabla \beta\|^2 + c^2 + 2c\xi(\beta)),$$

which, on using $\nabla \beta = \xi(\beta)\xi$, leads to

$$\|\nabla \beta + c\xi\|^2 = (\xi(\beta) + c)^2.$$
 (3.8)

Thus, equations (3.7) and (3.8) imply

$$\int_{M} \left(\operatorname{Ric} \left(\nabla \beta + c \xi, \nabla \beta + c \xi \right) - 2\alpha^{2} \left\| \nabla \beta + c \xi \right\|^{2} \right) = -\int_{M} \left(\beta^{2} + \xi(\beta) \right) \left(\xi(\beta) + c \right)^{2}.$$

Since, the sectional curvatures are bounded below by α^2 , the Ricci curvature is bounded below by $2\alpha^2$, using this in the above equation, together with the inequality $\xi(\beta) \ge -\beta^2$, we conclude that

$$\operatorname{Ric}(\nabla \beta + c\xi, \nabla \beta + c\xi) = 2\alpha^2 \|\nabla \beta + c\xi\|^2,$$

and

$$(\beta^2 + \xi(\beta))(\xi(\beta) + c)^2 = 0.$$
 (3.9)

If $\xi(\beta) = -\beta^2$, then we get div $(\beta^3 \xi) = -\beta^4$, which by Stoke's theorem implies $\beta = 0$. Now, suppose $\xi(\beta) + c = 0$, then equation (3.8) implies $\nabla \beta = -c\xi$, which, in view of equation (2.3), gives

$$A_{\beta}X = c\alpha\varphi X - c\beta X + c\beta\eta(X)\xi, \quad X \in \mathfrak{X}(M),$$

that is,

$$H_{\beta}(X,Y) = c\alpha g(\varphi X,Y) - c\beta g(X,Y) + c\beta \eta(X)\eta(Y), \quad X,Y \in \mathfrak{X}(M).$$

Using the symmetry of the Hessian H_{β} in the above equation, we conclude that $2c\alpha g(\varphi X,Y)=0,\ X,Y\in\mathfrak{X}(M)$, which, in view of $\alpha\neq 0$, gives c=0, that is, $\nabla\beta=0$, and we conclude that β is a constant. This constant β by virtue of equation (2.6) is zero. Hence on connected M, equation (3.9) implies that $\beta=0$, and consequently $\xi(\alpha)=0$. The rest of the proof follows on the similar lines as in Theorem 3.1.

Remark. Suppose $(M, \varphi, \xi, \eta, g)$ is a 3-dimensional Sasakian manifold, and f is a positive function on M, then the deformation of the metric g to define a new metric g' by

$$g^{'} = fg + (1 - f)\eta \otimes \eta,$$

on M transforms it to a 3-dimensional trans-Sasakian manifold $(M,\,\varphi,\,\xi,\,\eta,\,g^{'},\,\alpha,\,\beta),$ where

$$\alpha = \frac{1}{f}, \quad \beta = \frac{1}{2}\xi(\ln f),$$

(cf. [2]), which we denote by $M_{\alpha^{-1}}$. It is worth finding conditions on a compact and connected 3-dimensional trans-Sasakian manifold $(M, \varphi, \xi, \eta, g, \alpha, \beta)$ to be either isometric to a trans-Sasakian manifold $M_{\alpha^{-1}}$ or homothetic to a Sasakian manifold.

ACKNOWLEDGEMENTS. The authors are thankful to the referees for their valuable suggestions in the improvement of this paper.

References

- D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin - New York, 1976.
- [2] D. E. Blair and J. A. Oubiña, Conformal and related changes of metric on the product of two almost contact metric manifolds, *Publ. Mat.* 34 (1990), 199–207.
- [3] S. DESHMUKH and F. AL-SOLAMY, A note on compact trans-Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2099–2104.
- [4] S. DESHMUKH, U. C. DE and F. AL-SOLAMY, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Publ. Math. Debrecen 88 (2016), 439–448.
- [5] S. Deshmukh, Trans-Sasakian manifolds homothetic to Sasakian manifolds, Mediterr. J. Math. 13 (2016), 2951–2958, DOI:10.1007/s00009-015-0666-4.
- [6] S. DESHMUKH, Geometry of 3-dimensional trans-Sasakian manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 62 (2016), 183-192.
- [7] S. DESHMUKH and A. AL-Eid, Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature, J. Geom. Anal. 15 (2005), 589–606.
- [8] A. FUJIMOTO and H. MUTŌ, On cosymplectic manifolds, Tensor (N.S.) 28 (1974), 43-52.

- [9] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58.
- [10] K. A. KENMOTSU, A class of almost contact Riemannian manifolds, Tôhoku Math. J. (2) 24 (1972), 93–103.
- [11] V. F. KIRICHENKO, On the geometry of nearly trans-Sasakian manifolds, *Dokl. Akad. Nauk* **397** (2004), 733–736 (in *Russian*).
- [12] J. C. MARRERO, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77–86.
- [13] J. Mikes, Equidistant Kähler spaces, Math. Notes 38 (1985), 855–858.
- [14] J. Mikes, On Sasakian and equidistant Kähler spaces, Soviet Math. Dokl. 34 (1987), 428–431.
- [15] M. OKUMURA, Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvatures, *Tôhoku Math. J.* (2) 16 (1964), 270–284.
- [16] Z. OLSZAK, Normal almost contact metric manifolds of dimension three, Ann. Math. Pol. 47 (1986), 41–50.
- [17] J. A. Oubiña, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187–193.

SHARIEF DESHMUKH
DEPARTMENT OF MATHEMATICS
COLLEGE OF SCIENCE
KING SAUD UNIVERSITY
P. O. BOX-2455
RIYADH-11451
SAUDI ARABIA

E-mail: shariefd@ksu.edu.sa

UDAY CHAND DE
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF CALCUTTA
35, BALLYGUNGE CIRCULAR ROAD
KOL-700019, W. B.
INDIA

E-mail: uc_de@yahoo.com

(Received October 8, 2016; revised April 11, 2017)