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Abstract. Warped product manifolds have been studied for a long period of time.

In contrast, the study of warped product submanifolds from extrinsic point of view was

initiated by the first author around the beginning of this century in [7], [8]. Since then,

the study of warped product submanifolds has been investigated by many geometers.

The notion of slant submanifolds of almost Hermitian manifolds was introduced

in [5]. Bi-slant submanifolds in almost contact metric manifolds were defined in [4] by

J. L. Cabrerizo et al. In [26], we studied bi-slant submanifolds and warped product bi-

slant submanifolds in Kaehler manifolds. In this article, we investigate warped product

pointwise bi-slant submanifolds of Kaehler manifolds. Our main results extend several

important results on warped product slant submanifolds obtained in [7], [21–23], [27].

1. Introduction

The notion of slant submanifolds was introduced by B.-Y. Chen in [5],

and the first results on slant submanifolds were collected in his book [6]. Since

then, this subject has been studied extensively by many geometers during the

last two and half decades. Many interesting results on slant submanifolds have

been obtained in [5], [6]. As an extension of slant submanifolds, F. Etayo [15]

defined the notion of pointwise slant submanifolds under the name of quasi-slant

submanifolds. In [15], he proved that a complete totally geodesic quasi-slant sub-

manifold of a Kaehler manifold is a slant submanifold. In [12], the first author
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and O. J. Garay studied pointwise slant submanifolds, and proved many inter-

esting new results on such submanifolds. In particular, they provided a method

to construct pointwise slant submanifolds of some Euclidean spaces.

Warped product manifolds have been studied for a long period of time

(cf. e.g., [3], [14]). In contrast, the study of warped product submanifolds from

extrinsic point of view was only initiated around the beginning of this century

in [7], [8]. Since then, the study of warped product submanifolds has been inves-

tigated by many geometers (see, e.g., [1], [9], [10], [13], [16], [18–27] among many

others, and for the most up-to-date overview of this subject, see [14]).

J. L. Cabrerizo et al. studied in [4] bi-slant submanifolds of almost con-

tact metric manifolds. In [26], the authors investigated bi-slant submanifolds in

Kaehler manifolds. The authors also studied in [26] warped product bi-slant sub-

manifolds. In particular, they proved that a warped product bi-slant submanifold

in a Kaehler manifold is either a Riemannian product of two slant submanifolds or

a warped product submanifold Mθ×fM⊥, such that Mθ is a θ-slant submanifold

and M⊥ is a totally real submanifold. The later one was known as a hemi-slant

warped product submanifold, which has been studied by B. Sahin in [22].

In this article, we study warped product pointwise bi-slant submanifolds of

a Kaehler manifold as a natural extension of bi-slant submanifolds. Our main

results extend several important results on warped product slant submanifolds

obtained in [7], [21–23], [27].

2. Preliminaries

Let (M̃, J, g) be an almost Hermitian manifold with almost complex struc-

ture J and a Riemannian metric g such that

J2 = −I, g(JX, JY ) = g(X,Y ), X, Y ∈ X(M̃), (2.1)

where I denotes the identity map, and X(M̃) is the space consisting of vector

fields tangent to M̃ . Let ∇̃ be the Levi–Civita connection on M̃ . If the almost

complex structure J satisfies

(∇̃XJ)Y = 0, X, Y ∈ X(M̃), (2.2)

then M̃ is called a Kaehler manifold.

Let M be a Riemannian manifold isometrically immersed in M̃ . Then M is

called a complex submanifold if J(TxM) ⊆ TxM holds for x ∈ M , where TxM



Warped product pointwise bi-slant submanifolds 185

is the tangent space of M at x. And M is called totally real if J(TxM) ⊆ T⊥x M

holds for x ∈M , where T⊥x M denotes the normal space of M at x.

Besides complex and totally real submanifolds, there are several important

classes of submanifolds defined by the behavior of the tangent bundle of the

submanifold under the action of the almost complex structure of the ambient

space. For example, a submanifold M is called a CR-submanifold if there is

a complex distribution D : p → Dp ⊂ TpM whose orthogonal complementary

distribution D⊥ : p→ D⊥p ⊂ TpM is totally real, i.e., J(D⊥p ) ⊂ T⊥p M (cf. [2]).

For a unit vector X tangent to a submanifold M of M̃ , the angle θ(X)

between JX and TpM is called the Wirtinger angle of X. The submanifold M is

called a slant submanifold if the Wirtinger angle θ(X) is constant on M , i.e., the

Wirtinger angle is independent of the choice of X ∈ TpM and of p ∈ M (cf. [5],

[6], [11]). In this case, the constant angle θ is called the slant angle of the slant

submanifold. A slant submanifold is called proper if its slant angle θ satisfying

θ 6= 0 is equal to π
2 . Similar definitions apply to distributions.

A submanifold M is called semi-slant if there is a pair of orthogonal distri-

butions D and Dθ such that D is complex and Dθ is proper slant (cf. [20]).

A submanifold M of M̃ is called bi-slant if there exist two orthogonal distri-

bution D1 and D2 on M such that TM = D1 ⊕ D2, and D1 and D2 are proper

slant distributions satisfying JDi ⊥ Dj for 1 ≤ i 6= j ≤ 2 (cf. [26]).

For a submanifold M of a Riemannian manifold M̃ , the formulas of Gauss

and Weingarten are given respectively by

∇̃XY = ∇XY + h(X,Y ), (2.3)

∇̃XN = −ANX +∇⊥XN, (2.4)

for X,Y ∈ TM and for normal vector field N of M , where ∇ is the induced

Levi–Civita connection on M , h the second fundamental form, ∇⊥ the normal

connection, and A the shape operator. The shape operator and the second fun-

damental form of M are related by

g(ANX,Y ) = g(h(X,Y ), N), (2.5)

where g denotes the induced metric on M as well as the metric on M̃ .

For a tangent vector field X and a normal vector field N of M , we put

JX = TX + FX, JN = BN + CN, (2.6)

where TX and FX (respectively, BN and CN) are the tangential and the normal

components of JX (respectively, of JN).
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Definition 2.1. A submanifold M of an almost Hermitian manifold M̃ is

called pointwise slant if, at each point p ∈ M , the Wirtinger angle θ(X) is inde-

pendent of the choice of a nonzero vector X ∈ T ∗pM , where T ∗pM is the tangent

space of nonzero vectors. In this case, θ is called the slant function of M (cf.

[12]).

The following is a simple characterization of pointwise slant submanifolds.

Lemma 2.2 ([12]). Let M be a submanifold of an almost Hermitian mani-

fold M̃ . Then M is a pointwise slant submanifold if and only if

T 2 = −(cos2 θ)I, (2.7)

for some real valued function θ defined on the tangent bundle TM of M .

Similarly, we can prove the following in a similar way as in [12].

Proposition 2.3. Let D be a distribution on a submanifold M . Then D is

pointwise slant if and only if there is a constant λ ∈ [−1, 0] such that (PT )2X =

−λX, for any X ∈ Dp at p ∈M , where P is the projection onto D. Furthermore,

in this case λ = cos2 θD.

As easy consequences of relation (2.7), we find

g(TX, TY ) = (cos2 θ)g(X,Y ), g(FX,FY ) = (sin2 θ)g(X,Y ). (2.8)

Also, for a pointwise slant submanifold, (2.6) and (2.7) yield

BFX = −(sin2 θ)X and CFX = −FTX. (2.9)

3. Pointwise bi-slant submanifolds

Now, we define pointwise bi-slant submanifolds.

Definition 3.1. A submanifold M of an almost Hermitian manifold (M̃, J, g)

is called pointwise bi-slant if there exists a pair of orthogonal distributions D1 and

D2 of M , at the point p ∈M such that

(a) TM = D1 ⊕D2;

(b) JD1 ⊥ D2 and JD2 ⊥ D1;

(c) the distributions D1, D2 are pointwise slant with slant functions θ1, θ2, re-

spectively.
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The pair {θ1, θ2} of slant functions is called the bi-slant function. A pointwise bi-

slant submanifold M is called proper if its bi-slant function satisfies θ1, θ2 6= 0, π2 ,

and both θ1, θ2 are not constant on M .

Notice that (2.6) and condition (b) in Definition 3.1 imply that

T (Di) ⊂ Di, i = 1, 2. (3.1)

Given a pointwise bi-slant submanifold, for any X ∈ TM we put

X = P1X + P2X, (3.2)

where Pi is the projection from TM onto Di. Clearly, PiX is the components

of X in Di, i = 1, 2. In particular, if X ∈ Di, we have X = PiX.

If we put Ti = Pi ◦ T , then we find from (3.2) that

JX = T1X + T2X + FX, (3.3)

for X ∈ TM . From Proposition 2.3, we get

T 2
i X = −

(
cos2 θi

)
X, X ∈ TM, i = 1, 2. (3.4)

From now on, we assume the ambient manifold M̃ is Kaehlerian and M is

pointwise bi-slant in M̃ .

We need the following lemma for later use.

Lemma 3.2. Let M be a pointwise bi-slant submanifold of a Kaehler mani-

fold M̃ with pointwise slant distributions D1 and D2, with distinct slant functions

θ1 and θ2, respectively. Then

(i) For any X,Y ∈ D1 and Z ∈ D2, we have

(
sin2 θ1 − sin2 θ2

)
g(∇XY,Z) = g(AFT2ZY −AFZT1Y,X)

+ g(AFT1Y Z −AFY T2Z,X). (3.5)

(ii) For Z,W ∈ D2 and X ∈ D1, we have

(
sin2 θ2 − sin2 θ1

)
g(∇ZW,X) = g(AFT2WX −AFWT1X,Z)

+ g(AFT1XW −AFXT2W,Z). (3.6)
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Proof. For X,Y ∈ D1 and Z ∈ D2, we have

g(∇XY, Z) = g(∇̃XY, Z) = g(∇̃XJY, JZ).

From (2.6) we derive

g(∇XY, Z) =g(∇̃XT1Y, JZ) + g(∇̃XFY, T2Z) + g(∇̃XFY, FZ)

=−g(∇̃XT 2
1 Y,Z)−g(∇̃XFT1Y, Z)−g(AFYX,T2Z)−g(∇̃XFZ,FY ).

Again, using (2.6) and (3.4), we arrive at

g(∇XY, Z) = cos2 θ1g(∇̃XY, Z)− sin 2θ1X(θ1)g(Y,Z) + g(AFT1YX,Z)

− g(AFYX,T2Z)− g(∇̃XFZ, JY ) + g(∇̃XFZ, T1Y ).

By the orthogonality of the two distributions and the symmetry of the shape

operator, the above equation takes the from

sin2 θ1g(∇XY,Z) = g(AFT1Y Z −AFY T2Z,X) + g(∇̃XBFZ, Y )

+ g(∇̃XCFZ, Y )− g(AFZX,T1Y ).

Then we find from (2.9) that

sin2 θ1g(∇XY, Z) = g(AFT1Y Z −AFY T2Z,X)− sin2 θ2g(∇̃XZ, Y )

− sin 2θ2X(θ2)g(Y,Z)− g(∇̃XFT2Z, Y )− g(AFZT1Y,X).

Using (2.4) and the orthogonality of vector fields, we get

sin2 θ1g(∇XY,Z) = g(AFT1Y Z −AFY T2Z,X) + sin2 θ2g(∇̃XY,Z)

+ g(AFT2ZX,Y )− g(AFZT1Y,X).

Now, part (i) of the lemma follows from the above relation by using the symmetry

of the shape operator. In a similar way, we can prove (ii). �

4. Warped product pointwise bi-slant submanifolds

Let B and F be two Riemannian manifolds with metrics gB and gF , respec-

tively, and f a smooth function on B. Consider the product manifold B × F
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with projections π1 : B × F → B and π2 : B × F → F . The warped product

M = B ×f F is the manifold equipped with the Riemannian metric given by

g(X,Y ) = gB(π1?X,π1?Y ) + (f ◦ π1)2gF (π2?X,π2?Y ),

for X,Y ∈ X(M), where ? denotes the tangential maps.

A warped product M1×fM2 is called trivial (or simply called a Riemannian

product) if the warping function f is constant. Let X be a vector field tangent

to M1, and Z a vector field tangent to M2, then [3, Lemma 7.3] gives

∇XZ = ∇ZX = X(ln f)Z, (4.1)

where ∇ is the Levi–Civita connection on M .

For a warped product M = M1 ×f M2, the base manifold M1 is totally

geodesic in M , and the fiber M2 is totally umbilical in M (see [3], [7]).

In this section, we study warped product pointwise bi-slant submanifolds in

a Kaehler manifold M̃ .

First, we give the following lemmas for later use.

Lemma 4.1. Let M1 ×f M2 be a warped product pointwise bi-slant sub-

manifold of a Kaehler manifold M̃ such that M1 and M2 are pointwise slant

submanifolds with slant functions θ1 and θ2, respectively, of M̃ . Then

g(h(X,W ), FT2Z)− g(h(X,T2Z), FW ) = (sin 2θ2)X(θ2)g(Z,W ), (4.2)

for any X ∈ TM1 and Z,W ∈ TM2.

Proof. For any X ∈ TM1 and Z,W ∈ TM2, we have

g(∇̃XZ,W ) = g(∇XZ,W ) = X(ln f)g(Z,W ). (4.3)

On the other hand, we also have

g(∇̃XZ,W ) = g(J∇̃XZ, JW ) = g(∇̃XJZ, JW ),

for any X ∈ TM1 and Z,W ∈ TM2. Using (2.6), we obtain

g(∇̃XZ,W ) = g(∇̃XT2Z, T2W ) + g(∇̃XT2Z,FW ) + g(∇̃XFZ, JW ).

Then from (2.1), (2.2), (2.3) and (4.1), we derive
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g(∇̃XZ,W )

= cos2 θ2X(ln f)g(Z,W )+g(h(X,T2Z), FW )−g(∇̃XJFZ,W )

= cos2 θ2X(ln f)g(Z,W )+g(h(X,T2Z), FW )−g(∇̃XBFZ,W )−g(∇̃XCFZ,W ).

Using (2.9), we find

g(∇̃XZ,W ) = cos2 θ2X(ln f)g(Z,W ) + g(h(X,T2Z), FW ) + sin2 θ2g(∇̃XZ,W )

+ sin 2θ2X(θ2)g(Z,W ) + g(∇̃XFT2Z,W ). (4.4)

Thus the lemma follows from (4.3) and (4.4) by using (2.4) and (4.1). �

Lemma 4.2. Let M1 ×f M2 be a warped product pointwise bi-slant sub-

manifold of a Kaehler manifold M̃ such that M1 and M2 are pointwise slant

submanifolds with slant functions θ1 and θ2, respectively, of M̃ . Then

g(h(X,Z), FW )− g(h(X,W ), FZ) = 2(tan θ2)X(θ2)g(T2Z,W ), (4.5)

for any X ∈ TM1 and Z,W ∈ TM2.

Proof. By interchanging Z by T2Z in (4.2) for any Z ∈ TM2 and by using

(3.4), we obtain the required result. �

Lemma 4.3. Let M1 ×f M2 be a warped product pointwise bi-slant sub-

manifold of a Kaehler manifold M̃ such that M1 and M2 are pointwise slant

submanifolds with slant functions θ1 and θ2, respectively, of M̃ . Then

g(h(X,W ), FT2Z)− g(h(X,T2Z), FW ) = (cos2 θ2)X(ln f)g(Z,W ), (4.6)

for any X ∈ TM1 and Z,W ∈ TM2.

Proof. For any X ∈ TM1 and Z,W ∈ TM2, we have

g(h(X,Z), FW ) = g(∇̃ZX,FW ) = g(∇̃ZX, JW )− g(∇̃ZX,T2W ).

Using (2.1), (2.2), (2.6) and (4.1), we get

g(h(X,Z), FW ) = −g(∇̃ZT1X,W )− g(∇̃ZFX,W )−X(ln f)g(Z, T2W ).

Again from (2.1), (4.1) and (2.4)–(2.5), we arrive at

g(h(X,Z), FW ) = −T1X(ln f)g(Z,W ) + g(h(Z,W ), FX)

+X(ln f)g(T2Z,W ). (4.7)
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Then from polarization, we derive

g(h(X,W ), FZ) =− T1X(ln f)g(Z,W ) + g(h(Z,W ), FX)

−X(ln f)g(T2Z,W ). (4.8)

Subtracting (4.8) from (4.7), we obtain

g(h(X,Z), FW )− g(h(X,W ), FZ) = 2X(ln f)g(T2Z,W ). (4.9)

Interchanging Z by T2Z in (4.9) and using (3.4), we get (4.6), which proves the

lemma completely. �

A warped product submanifold M1×f M2 of a Kaehler manifold M̃ is called

mixed totally geodesic if h(X,Z) = 0 for any X ∈ TM1 and Z ∈ TM2.

Now, by applying Lemma 4.3, we obtain the following theorem.

Theorem 4.4. Let M = M1 ×f M2 be a warped product pointwise bi-slant

submanifold of a Kaehler manifold M̃ such that M1 and M2 are pointwise slant

submanifolds with slant functions θ1 and θ2, respectively, of M̃ . Then, if M

is a mixed totally geodesic warped product submanifold, then one of the two

following cases occurs:

(i) either M is a Riemannian product submanifold of M1 and M2,

(ii) or θ2 = π
2 , i.e., M is a warped product submanifold of the form M1 ×f M⊥,

where M⊥ is a totally real submanifold of M̃ .

Proof. From Lemma 4.3 and the mixed totally geodesic condition, we have

(cos2 θ2)X(ln f)g(Z,W ) = 0,

which shows that either f is constant on M or cos2 θ = 0. Hence either M is

a Riemannian product or θ2 = π
2 . This completes the proof of the theorem. �

Remark 4.5. In Theorem 4.4, if M is mixed totally geodesic and f is not

constant on M , then M is a warped product pointwise hemi-slant submanifold

of the form Mθ ×f M⊥, where Mθ is a pointwise slant submanifold, and M⊥ is

a totally real submanifold of M̃ . These kinds of warped product are special cases

of warped product hemi-slant submanifolds, which have been discussed in [22],

therefore we are not interested to study the mixed geodesic case.

Now, we have the following useful result.
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Theorem 4.6. Let M = M1 ×f M2 be a warped product pointwise bi-slant

submanifold of a Kaehler manifold M̃ such that M1 and M2 are proper pointwise

slant submanifolds with slant functions θ1 and θ2, respectively, of M̃ . Then

X(ln f) = (tan θ2)X(θ2), (4.10)

for any X ∈ TM1.

Proof. From Lemma 4.1 and Lemma 4.3, we have

cos2 θ2X(ln f)g(Z,W ) = sin 2θ2X(θ2)g(Z,W ),

for any X ∈ TM1 and any Z,W ∈ TM2. Using trigonometric identities, we find

{X(ln f)− tan θ2X(θ2)}g(Z,W ) = 0, which implies X(ln f) = tan θ2X(θ2). This

proves the theorem. �

We have the following immediate consequences of the above theorem:

1. If θ1 = 0 and θ2 = θ 6= π
2 is a constant, then the warped product is of the form

MT ×f Mθ, which is a semi-slant warped product submanifold. In this case, it

follows from Theorem 4.6 that X(ln f) = 0. Thus f is constant. Consequently,

[21, Theorem 3.2] is a special case of Theorem 4.6.

2. In a pointwise bi-slant submanifold M1 ×f M2, if θ2 = 0, then the warped

product is of the form Mθ ×f MT , where MT is a complex submanifold, and Mθ

is a pointwise slant submanifold with slant function θ. In this case, it also follows

from Theorem 4.6 that f is constant. Thus Theorem 4.6 is also a generalization

of [23, Theorem 4.1].

3. If θ1 = π
2 and θ2 is a constant θ, then the warped product pointwise bi-slant

manifold is of the form M⊥ ×f Mθ, which is a hemi-slant warped product. Such

submanifolds were discussed in [22]. In this case, Theorem 4.6 also implies that

f is constant. Thus [22, Theorem 4.2] is a special case of Theorem 4.6 as well.

4. Again, if θ1 = π
2 and θ2 = 0, then the warped product pointwise bi-slant

submanifold becomes a warped product CR-submanifold M⊥×f MT , and in this

case we know from Theorem 4.6 that f is constant. Thus Theorem 4.6 is also

a generalization of [7, Theorem 3.1].

5. If θ1 and θ2 are constant, then the warped product M = M1×fM2 is a warped

product bi-slant submanifold, and in this case Theorem 4.6 also implies that f is

constant. Thus [26, Theorem 5.1] is also a special case of Theorem 4.6.
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Remark 4.7. It is clear from Theorem 4.6 that there exist no warped product

pointwise bi-slant submanifolds of the forms M1 ×f MT or M1 ×f Mθ, where M1

is a pointwise slant submanifold, and MT and Mθ are complex and proper slant

submanifolds of M̃ , respectively.

We also need the next lemma.

Lemma 4.8. Let M = M1 ×f M2 be a warped product pointwise bi-slant

submanifold of a Kaehler manifold M̃ such that M1 and M2 are proper pointwise

slant submanifolds with distinct slant functions θ1 and θ2, respectively, of M̃ .

Then, we have

(i) g(h(X,Y ), FZ) = g(h(X,Z), FY ),

(ii) g(AFT1XW −AFXT2W,Z) + g(AFT2WX −AFWT1X,Z)

=
(

sin2 θ1 − sin2 θ2
)
X(ln f)g(Z,W ),

for any X,Y ∈ TM1 and Z,W ∈ TM2.

Proof. Part (i) is trivial and it can be obtained by using Gauss–Weingarten

formulas, relation (4.1) and orthogonality of vector fields. For (ii), we have

g(∇̃ZX,W ) = g(∇ZX,W ) = X(ln f)g(Z,W ), (4.11)

for any X,Y ∈ TM1 and Z,W ∈ TM2. On the other hand, we have

g(∇̃ZX,W ) = g(J∇̃ZX, JW ) = g(∇̃ZJX, JW ).

Then from (2.6), we get

g(∇̃ZX,W ) = g(∇̃ZT1X, JW ) + g(∇̃ZFX, T2W ) + g(∇̃ZFX,FW ).

Using (2.1), (2.2), (2.4) and the covariant derivative property of the metric con-

nection, we get

g(∇̃ZX,W ) = −g(∇̃ZJT1X,W )− g(AFXZ, T2W )− g(∇̃ZFW,FX).

From (2.6) and the symmetry of the shape operator, we derive

g(∇̃ZX,W ) =−g(∇̃ZT 2
1X,W )− g(∇̃ZFT1X,W )− g(AFXT2W,Z)

+ g(J∇̃ZFW,X) + g(∇̃ZFW,T1X)

= cos2 θ1g(∇̃ZX,W )− sin 2θ1Z(θ1)g(X,W ) + g(AFT1XZ,W )

− g(AFXT2W,Z) + g(∇̃ZJFW,X)− g(AFWZ, T1X).
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Using (2.3), (2.6), (4.1), (4.11), the orthogonality of vector fields and the symme-

try of the shape operator, we obtain

sin2 θ1X(ln f)g(Z,W ) = g(AFT1XW −AFXT2W,Z)

+ g(∇̃ZBFW,X) + g(∇̃ZCFW,X)− g(AFWT1X,Z).

Using (2.9), we arrive at

sin2 θ1X(ln f)g(Z,W ) = g(AFT1XW −AFXT2W,Z)− sin2 θ2g(∇̃ZW,X)

− sin 2θ2Z(θ2)g(X,W )− g(∇̃ZFT2W,X)− g(AFWT1X,Z).

From the orthogonality of vector fields and the relations (2.3), (2.4) and (4.1), we

find that

sin2 θ1X(ln f)g(Z,W ) = g(AFT1XW −AFXT2W,Z)

+ sin2 θ2X(ln f)g(Z,W ) + g(AFT2WZ,X)− g(AFWT1X,Z).

Again, using the symmetry of the shape operator, we get (ii) from the above

relation. Hence the lemma is proved completely. �

A foliation L on a Riemannian manifold M is called totally umbilical if every

leaf of L is totally umbilical in M . If, in addition, the mean curvature vector

of every leaf is parallel in the normal bundle, then L is called a spheric foliation.

If every leaf of L is totally geodesic, then L is called a totally geodesic foliation

(cf. [11], [14], [17]).

We need the following well-known result of S. Hiepko [17].

Hiepko’s Theorem. Let D1 and D2 be two orthogonal distributions on

a Riemannian manifold M . Suppose that D1 and D2 are both involutive such

that D1 is a totally geodesic foliation and D2 is a spherical foliation. Then M is

locally isometric to a non-trivial warped product M1 ×f M2, where M1 and M2

are integral manifolds of D1 and D2, respectively.

The following result provides a characterization of warped product pointwise

bi-slant submanifolds of a Kaehler manifold.

Theorem 4.9. Let M be a proper pointwise bi-slant submanifold of

a Kaehler manifold M̃ with pointwise slant distributions D1 and D2. Then M is

locally a warped product submanifold of the form M1 ×f M2, where M1 and M2
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are pointwise slant submanifolds with distinct slant functions θ1 and θ2, respec-

tively, of M̃ if and only if the shape operator of M satisfies

AFT1XZ −AFXT2Z +AFT2ZX −AFZT1X =
(
sin2 θ1 − sin2 θ2

)
X(µ)Z, (4.12)

for X ∈ D1, Z ∈ D2, and for a function µ on M satisfying Wµ = 0 for any

W ∈ D2.

Proof. Let M = M1×fM2 be a pointwise bi-slant submanifold of a Kaehler

manifold M̃ . Then from Lemma 4.8(i), we have

g(AFY Z −AFZY,X) = 0, (4.13)

for any X,Y ∈ TM1 and Z ∈ TM2. Interchanging Y by T1Y in (4.13), we get

g(AFT1Y Z −AFZT1Y,X) = 0. (4.14)

Again, interchanging Z by T2Z in (4.13), we obtain

g(AFY T2Z −AFT2ZY,X) = 0. (4.15)

Subtracting (4.15) from (4.14), we derive

g(AFT1Y Z −AFZT1Y +AFT2ZY −AFY T2Z,X) = 0. (4.16)

Then (4.12) follows from Lemma 4.8(ii) by using the above fact.

Conversely, if M is a pointwise bi-slant submanifold with pointwise slant

distributions D2 and D2 such that (4.12) holds, then from Lemma 3.2(i), we have

(sin2 θ1 − sin2 θ2)g(∇XY, Z) = g(AFT1Y Z −AFY T2Z +AFT2ZY −AFZT1Y,X),

for any X,Y ∈ D1 and Z ∈ D2. Using the given condition (4.12), we get

g(∇XY,Z) = X(µ)g(X,Z) = 0,

which shows that the leaves of the distributions are totally geodesic in M . On

the other hand, from Lemma 3.2(ii) we have

(sin2 θ2−sin2 θ1)g(∇ZW,X)=g(AFT2WX−AFWT1X+AFT1XW−AFXT2W,Z).

From the hypothesis of the theorem, i.e., (4.12), we arrive at

g(∇ZW,X) = −X(µ)g(Z,W ). (4.17)
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By polarization, we obtain

g(∇WZ,X) = −X(µ)g(Z,W ). (4.18)

Subtracting (4.18) from (4.17) and using the definition of the Lie bracket, we

derive g([Z,W ], X) = 0, which shows that the distribution D2 is integrable. If we

consider a leaf M2 of D2 and the second fundamental form h2 of M2 in M , then

from (4.17), we have

g(h2(Z,W ), X) = g(∇ZW,X) = −X(µ)g(Z,W ).

Using the definition of the gradient, we get h2(Z,W ) = −~∇µg(Z,W ), where
~∇µ is the gradient of µ. The above relation shows that the leaf M2 is totally

umbilical in M with mean curvature vector H2 = −~∇µ. Since W (µ) = 0 for any

W ∈ D2, it is easy to see that the mean curvature is parallel. Hence the spherical

condition is satisfied. Then, by Hiepko’s Theorem, M is locally a warped product

submanifold. Hence the proof is complete. �

We have the following consequences of the above theorem:

1. In Theorem 4.9, if θ1 = 0 and θ2 = π
2 , then all terms in the left hand side of

(4.12) vanish identically, except the last term, thus relation (4.12) is valid for a

CR-warped product, and it will be

AJZJX = −X(µ)Z, ∀X ∈ D, Z ∈ D⊥,

where D and D⊥ are complex and totally real distributions of M , respectively.

Interchanging X by JX, we get the relation (4.4) of [7, Theorem 4.2].

2. Also, if θ1 = 0 and θ2 = θ, a slant function, then the submanifold M becomes

pointwise semi-slant, which has been studied in [23]. In this case, the first two

terms in the left hand side of (4.12) vanish identically. Thus, relation (4.12) is

true for a pointwise semi-slant warped product, and it will be

AFTZX −AFZJX = −
(
sin2 θ

)
X(µ)Z, X ∈ D, Z ∈ Dθ,

where D and Dθ are complex and proper pointwise slant distributions of M .

Hence, [23, Theorem 5.1] is a special case of Theorem 4.9. In fact, in the relation

(5.4) of [23, Theorem 5.1], the term (1 + cos2 θ) should be (1− cos2 θ), i.e., there

is a missing term.

3. If we consider θ1 = θ, a constant slant angle and θ2 = π
2 , then it is a case

of hemi-slant warped products, which have been discussed in [22]. In this case,
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the second and third terms in the left hand side of (4.12) vanish identically.

Hence, (4.12) is valid for hemi-slant warped products. Thus, Theorem 4.9 is also

a generalization of [22, Theorem 5.1]. In this case, relation (4.12) will be

AFTXZ −AJZTX = −(cos2 θ)X(µ)Z, X ∈ Dθ, Z ∈ D⊥,

where Dθ and D⊥ are proper slant and totally real distributions. Hence

[22, Theorem 5.1] can be proved without using the mixed totally geodesic condi-

tion.

4. In Theorem 4.9, if we assume θ1 = π
2 , and θ2 = θ a pointwise slant function,

then this is the case of pointwise hemi-slant warped products studied in [27].

In this case, (4.12) reduces to the form

AFTZX −AJXTZ = (cos2 θ)X(µ)Z, X ∈ D⊥, Z ∈ Dθ,

where D⊥ and Dθ are totally real and proper pointwise slant distributions of

a pointwise hemi-slant submanifold M in a Kaehler manifold M̃ , which is a con-

dition of [27, Theorem 4.2]. Therefore, Theorem 4.9 is also a generalized version

of [27, Theorem 4.2].

Remark 4.10. The inequality for the squared norm of the second fundamental

form of a warped product pointwise bi-slant submanifold can be evaluated by

using only the mixed totally geodesic condition. And, if the warped product is

mixed totally geodesic, then by Theorem 4.4, either it is a Riemannian product or

a warped product pointwise hemi-slant submanifold of the form Mθ×fM⊥, where

Mθ is a proper pointwise slant submanifold, and M⊥ is a totally real submanifold

of a Kaehler manifold M̃ . These kinds of warped products are special cases of

hemi-slant warped products which have been considered in [22], and the inequality

is obtained by using the mixed totally geodesic condition.
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