On weakly σ -quasinormal subgroups of finite groups

By BIN HU (Xuzhou), JIANHONG HUANG (Xuzhou) and ALEXANDER N. SKIBA (Gomel)

Abstract. Let $\sigma = \{\sigma_i | i \in I\}$ be a partition of the set of all primes \mathbb{P} , and G be a finite group. A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $i \in I$, and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$. A group is said to be σ -primary if it is a finite σ_i -group for some i.

A subgroup A of G is said to be: σ -quasinormal in G if G possesses a complete Hall σ -set $\mathcal H$ such that $AH^x=H^xA$ for all $H\in\mathcal H$ and all $x\in G$; σ -subnormal in G if there is a subgroup chain $A=A_0\leq A_1\leq \cdots \leq A_t=G$ such that either $A_{i-1}\leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i=1,\ldots,t;$ weakly σ -quasinormal in G if there are a σ -quasinormal subgroup S and a σ -subnormal subgroup T of G such that G=AT and $A\cap T\leq S\leq A$.

We study G assuming that some subgroups of G are weakly σ -quasinormal in G.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

 $Mathematics\ Subject\ Classification:\ 20{\rm D}10,\ 20{\rm D}15,\ 20{\rm D}20.$

Key words and phrases: finite group, σ -subnormal subgroup, σ -quasinormal subgroup, weakly σ -quasinormal subgroup, σ -soluble group.

This paper is supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).

The second author is the corresponding author.

We use σ to denote some partition of \mathbb{P} . Thus $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. G is said to be: σ -primary [23] if G is a σ_i -group for some $i \in I$; σ -decomposable [21] or σ -nilpotent [10] if $G = G_1 \times \cdots \times G_n$ for some σ -primary groups G_1, \ldots, G_n ; σ -soluble [23] if every chief factor of G is σ -primary.

The symbol $\sigma(n)$ denotes the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$ [24]; $\sigma(G) = \sigma(|G|)$.

Recall that a complete set of Sylow subgroups of G [2] is a set S of Sylow subgroups of G containing exactly one Sylow p-subgroup for each prime p dividing the order |G| of G. In general, a set \mathcal{H} of subgroups of G is said to be a complete $Hall \ \sigma$ -set of G (see [9], [25]) if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $i \in I$, and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$.

HUPPERT proved [16] that if G is soluble and it has a complete set \mathcal{S} of Sylow subgroups such that every maximal subgroup of every subgroup in \mathcal{S} permutes with all other members of \mathcal{S} , then G is supersoluble. This result was improved by many other authors (see, in particular, the recent papers [2], [10], [13]–[14], and Chapters 2 and 3 in [8]). Here we only note that in the paper [10] Huppert's result and the main results in [2] were generalized in the terms of complete Hall σ -sets.

A subgroup A of G is said to be: σ -permutable [23] or σ -quasinormal [9] in G if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^xA$ for all $H \in \mathcal{H}$ and all $x \in G$; σ -subnormal [23] in G if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_t = G$ such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, t$.

Note that in the classical case, when $\sigma = \{\{2\}, \{3\}, \ldots\}, \sigma$ -quasinormal subgroups are also called S-quasinormal or S-permutable ([4], [8]), and in this case, A is σ -subnormal in G if and only if it is subnormal in G.

The σ -quasinormal and σ -subnormal subgroups were studied in the papers [1], [6], [9], [11]–[12], [15], [23]–[24], [29]. In this paper, we consider some applications of the following generalization σ -quasinormality.

Definition 1.1. A subgroup A of G is said to be weakly σ -quasinormal in G if there are a σ -quasinormal subgroup S and a σ -subnormal subgroup T of G such that G = AT and $A \cap T \leq S \leq A$.

Before continuing, consider some examples.

Recall that G is said to be: a D_{π} -group if G possesses a Hall π -subgroup E and every π -subgroup of G is contained in some conjugate of E; a σ -full group of $Sylow\ type\ [23]$ if every subgroup E of G is a D_{σ_i} -group for each $\sigma_i \in \sigma(E)$.

Example 1.2. Let A be a subgroup of G, and $A_{\sigma G}$ the subgroup of A generated by all those subgroups of A which are σ -quasinormal in G.

- (i) If A is σ -quasinormal in G, then for T = G and S = A we have AT = G and $T \cap A = A$, so A is weakly σ -quasinormal in G.
- (ii) In general, a weakly σ -quasinormal subgroup is not σ -quasinormal. Indeed, let $\sigma = \{\{2,3\}, \{2,3\}'\}$ and $G = C_7 \rtimes \operatorname{Aut}(C_7)$, where C_7 is a group of order 7. Then $\operatorname{Aut}(C_7)$ is weakly σ -quasinormal in G and it is clearly not σ -quasinormal in G.
- (iii) A subgroup A of G is said to be weakly σ -permutable in G [29] if there is a σ -subnormal subgroup T such that G = AT and $A \cap T \leq A_{\sigma G}$. It is clear that every weakly σ -quasinormal subgroup is also weakly σ -permutable. On the other hand, if G is a σ -full group of Sylow type, then $A_{\sigma G}$ is σ -quasinormal in G by [7, A, 1.6], and so in this case every weakly σ -permutable subgroup of G is weakly σ -quasinormal in G.
- (iv) In view of (iii), in the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$, Definition 1.1 is equivalent to the definition of weakly S-permutable subgroups in [26].

Some characterizations of σ -nilpotent groups were given in [23]. In particular, from [23, Proposition 2.3], see Lemma 2.5 below, it follows that G is σ -nilpotent if and only if either G possesses a complete Hall σ -set $\mathcal H$ such that every member of $\mathcal H$ is σ -quasinormal in G or every maximal subgroup of G is σ -quasinormal in G.

Our first result is the following fact.

Theorem A. G is meta- σ -nilpotent (that is, G is an extension of a σ -nilpotent group by a σ -nilpotent group) if and only if G possesses a complete Hall σ -set \mathcal{H} all of whose members are weakly σ -quasinormal in G.

In view of Example 1.2(iii), we get from Theorem A the following:

Corollary 1.3 (see [29, Theorem 1.4]). Let G be a σ -full group of Sylow type and every Hall σ_i -subgroup of G is weakly σ -permutable in G for all $\sigma_i \in \sigma(G)$. Then G is σ -soluble.

A subgroup A of G is said to be c-normal in G [27] if for some normal subgroup T of G we have AT = G and $A \cap T \leq A_G$.

In the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$, we get from Theorem A the following:

Corollary 1.4 (see [8, I, Theorem 3.49]). G is metanilpotent if and only if every Sylow subgroup of G is c-normal.

In view of Example 1.2(iv), we get from Theorem A the following as well:

Corollary 1.5. G is metanilpotent if and only if every Sylow subgroup of G is weakly S-permutable.

Theorem B. If every non-nilpotent maximal subgroup of G is weakly σ -quasinormal, then G is σ -soluble.

Corollary 1.6. G is soluble if and only if every maximal subgroup of G is weakly σ -quasinormal in G, and G possesses a complete Hall σ -set \mathcal{H} all of whose members are soluble groups.

It is clear that every c-normal subgroup of G is also weakly σ -quasinormal in G for each partition σ of \mathbb{P} . Hence in the case when $\sigma = \{\{2\}, \{3\}, \ldots\}$, we get from Corollary 1.6 the following known result.

Corollary 1.7 (see [27, Theorem 3.1]). G is soluble if and only if every maximal subgroup of G is c-normal in G.

Theorem C. Suppose that G possesses a complete Hall σ -set \mathcal{H} all of whose members are supersoluble. If the maximal subgroups of any non-cyclic subgroup $H \in \mathcal{H}$ are weakly σ -quasinormal in G, then G is supersoluble.

Corollary 1.8 (see [29, Theorem 1.5]). Let G be a σ -full group of Sylow type. Suppose that G possesses a complete Hall σ -set \mathcal{H} such that all members of \mathcal{H} are nilpotent. If the maximal subgroups of any non-cyclic subgroup $H \in \mathcal{H}$ are weakly σ -permutable in G, then G is supersoluble.

Recall that a normal subgroup E of G is called hypercyclically embedded in G (see [20, p. 217]) if every chief factor of G below E is cyclic. Hypercyclically embedded subgroups play an important role in the theory of soluble groups (see [4], [8], [28]), and the conditions under which a normal subgroup is hypercyclically embedded in G were found by many authors (see the books [4], [8], [28] and, for example, the recent papers [3], [19], [22]). On the base of Theorem C, we prove the following result in this line of research.

Theorem D. Let E be a normal subgroup of G. Suppose that G possesses a complete Hall σ -set $\{H_1, \ldots, H_t\}$ all of whose members are supersoluble. If the maximal subgroups of $H_i \cap E$ are weakly σ -quasinormal in G for all $i \in \{1, \ldots, t\}$ such that $H_i \cap E$ is non-cyclic, then every chief factor of G below E is cyclic.

Theorem D covers many known results. In particular, we get from this result the next two known facts.

Corollary 1.9 (see [29, Theorem 1.5]). Let G be a σ -full group of Sylow type, and E a normal subgroup of G. Suppose that G possesses a complete Hall

 σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that every subgroup $H \in \mathcal{H}$ is nilpotent. If the maximal subgroups of $H_i \cap E$ are weakly σ -permutable in G for all $i \in \{1, \ldots, t\}$, then every chief factor of G below E is cyclic.

The class $1 \in \mathfrak{F}$ of groups is said to be a formation provided every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} . The formation \mathfrak{F} is said to be saturated, provided $G \in \mathfrak{F}$ whenever $G^{\mathfrak{F}} \leq \Phi(G)$.

Corollary 1.10 (see [26, Theorem 1.4]). Let \mathfrak{F} be a saturated formation containing all supersoluble groups, and E a normal subgroup of G with $G/E \in \mathfrak{F}$. If every maximal subgroup of every non-cyclic Sylow subgroup of E is weakly S-permutable in G, then $G \in \mathfrak{F}$.

2. Preliminaries

We use \mathfrak{N}_{σ} to denote the class of all σ -nilpotent groups.

Lemma 2.1 (see [23, Corollary 2.4 and Lemma 2.5]).

- (i) The class \mathfrak{N}_{σ} is closed under taking products of normal subgroups, homomorphic images and subgroups.
- (ii) If G/N and G/R are σ -nilpotent, then $G/(N \cap R)$ is σ -nilpotent.
- (iii) If E is a normal subgroup of G and $E/(E \cap \Phi(G))$ is σ -nilpotent, then E is σ -nilpotent.

Recall that $G^{\mathfrak{N}_{\sigma}}$ denotes the σ -nilpotent residual of G, that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N. In view of in [5, Proposition 2.2.8], we get from Lemma 2.1 the following:

Lemma 2.2. If N is a normal subgroup of G, then $(G/N)^{\mathfrak{N}_{\sigma}} = G^{\mathfrak{N}_{\sigma}} N/N$.

Lemma 2.3.

- (i) G is meta- σ -nilpotent if and only if $G^{\mathfrak{N}_{\sigma}}$ is σ -nilpotent.
- (ii) If G is meta- σ -nilpotent, then every quotient G/N of G is meta- σ -nilpotent.
- (iii) If G/N and G/R are meta- σ -nilpotent, then $G/(N \cap R)$ is meta- σ -nilpotent.
- (iv) If E is a normal subgroup of G and $E/(E \cap \Phi(G))$ is meta- σ -nilpotent, then E is meta- σ -nilpotent.

PROOF. Let $D=G^{\mathfrak{N}_{\sigma}}$. (i) First suppose that G is meta- σ -nilpotent. By definition, G has a normal σ -nilpotent subgroup N such that G/N is σ -nilpotent, and so $D \leq N$. But then D is σ -nilpotent by Lemma 2.1. On the other hand, if D is

 σ -nilpotent, then G is meta- σ -nilpotent, since $G/D = G/G^{\mathfrak{N}_{\sigma}}$ is σ -nilpotent by Lemma 2.1(ii).

- (ii) Part (i) and Lemmas 2.1 and 2.2 imply that $(G/N)^{\mathfrak{N}_{\sigma}} = DN/N \simeq D/D \cap N$ is σ -nilpotent, so G/N is meta- σ -nilpotent by Part (i).
- (iii) $(G/R)^{\mathfrak{N}_{\sigma}} = DR/R \simeq D/(D \cap R)$ and $(G/N)^{\mathfrak{N}_{\sigma}} = DN/N \simeq D/(D \cap N)$ are σ -nilpotent by Part (i), so

$$D/((D \cap R) \cap (D \cap N)) = D/(D \cap (R \cap N)) \simeq D(R \cap N)/(R \cap N) = (G/(R \cap N))^{\mathfrak{N}_{\sigma}}$$

is σ -nilpotent by Lemma 2.1, and hence $G/(R \cap N)$ is meta- σ -nilpotent by Part (i).

(iv) Let $V/(E\cap \Phi(G))$ be a normal σ -nilpotent subgroup of $E/(E\cap \Phi(G))$ such that

$$(E/(E \cap \Phi(G)))/(V/(E \cap \Phi(G))) \simeq E/V$$

is σ -nilpotent. Then V is σ -nilpotent by Lemma 2.1(iii), and so E is meta- σ -nilpotent. The lemma is proved.

Let $\Pi \subseteq \sigma$ and $\Pi' = \sigma \setminus \Pi$. A natural number n is said to be a Π -number if $\sigma(n) \subseteq \Pi$. A subgroup A of G is said to be: a $Hall\ \Pi$ -subgroup of G (see [23], [24]) if |A| is a Π -number and |G:A| is a Π' -number; a σ -Hall subgroup of G if A is a Hall Π -subgroup of G for some $\Pi \subseteq \sigma$.

Lemma 2.4. Let A, K and N be subgroups of G. Suppose that A is σ -subnormal in G and N is normal in G.

- (1) AN/N is σ -subnormal in G/N.
- (2) If A is a σ -Hall subgroup of G, then A is normal in G.
- (3) If A is a σ_i -group, then $A \leq O_{\sigma_i}(G)$.
- (4) $A \cap K$ is σ -subnormal in K.
- (5) If $H \neq 1$ is a Hall Π -subgroup of G and A is not a Π' -group, then $A \cap H \neq 1$ is a Hall Π -subgroup of A.
- (6) If $A = A^{\mathfrak{N}_{\sigma}}$, that is, $O^{\sigma_i}(A) = A$ for all $\sigma_i \in \sigma(A)$, then A is subnormal in G.

PROOF. (1)–(5) See Lemma 2.6 in [23].

(6) Assume that this assertion is false, and let G be a counterexample of minimal order. By hypothesis, there is a chain $A=A_0\leq A_1\leq \cdots \leq A_r=G$ such that either $A_{i-1} \subseteq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i=1,\ldots,r$. Let $M=A_{r-1}$. We can assume without loss of generality that $M\neq G$.

First we show that $A \leq M_G$. This is clear if M is normal in G. Now assume that G/M_G is a σ_i -group. Then from the isomorphism $AM_G/M_G \simeq A/A \cap M_G$ and $A = A^{\mathfrak{N}_{\sigma}}$, we get that $A = O^{\sigma_i}(A) \leq A \cap M_G$, so $A \leq M_G$.

The choice of G implies that A is subnormal in M, so A is subnormal in M_G by Assertion (4). Therefore, A is subnormal in G. The lemma is proved.

Lemma 2.5 (see [23, Proposition 2.3]). Any of the following conditions are equivalent:

- (i) G is σ -nilpotent.
- (ii) G has a complete Hall σ -set $\{H_1, \ldots, H_t\}$ such that $G = H_1 \times \cdots \times H_t$.
- (iii) G has a complete Hall σ -set \mathcal{H} such that every member of \mathcal{H} is σ -subnormal in G.
- (iv) Every subgroup of G is σ -subnormal in G.
- (v) Every maximal subgroup of G is σ -subnormal in G.

Lemma 2.6 (see [24, Theorems A and B]). If G is σ -soluble, then G is a σ -full group of Sylow type.

Suppose that G has a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$. For any subgroup H of G, we write $H \cap \mathcal{H}$ to denote the set $\{H \cap H_1, \ldots, H \cap H_t\}$. If $H \cap \mathcal{H}$ is a complete Hall σ -set of H, then we say that \mathcal{H} reduces into H.

Lemma 2.7. Let H, K and R be subgroups of G. Suppose that H is σ -quasinormal in G and R is normal in G. Then:

- (1) H is σ -subnormal in G.
- (2) If G is a σ -full group of Sylow type and $H \leq E \leq G$, then H is σ -quasinormal in E.
- (3) The subgroup HR/R is σ -quasinormal in G/R.
- (4) If G is a σ -full group of Sylow type, $R \leq K$ and K/R is σ -quasinormal in G/R, then K is σ -quasinormal in G.
- (5) If H is a σ_i -group, then $O^{\sigma_i}(G) \leq N_G(H)$.
- (6) H/H_G is σ -nilpotent.
- (7) If K is a σ_i -group and $O^{\sigma_i}(G) \leq N_G(K)$, then K is σ -quasinormal in G.
- (8) If G is a σ -full group of Sylow type and K is σ -quasinormal in G, then $H \cap K$ is σ -quasinormal in G.
- (9) If H < E < G and E is normal in G, then H is σ -quasinormal in E.

PROOF. (1)–(8) See Lemmas 2.8, 3.1 and Theorems B and C in [23].

(9) By hypothesis, there is a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ of G such that $H_i^x H = H H_i^x$ for all $i = 1, \ldots, t$ and all $x \in G$. Then, since E is normal

in G, $\{H_1 \cap E, \ldots, H_t \cap E\}$ is a complete Hall σ -set of E by Lemma 2.4(5). Now let $x \in E$. Then

$$H_i^x H \cap E = (H_i^x \cap E)H = (H_i \cap E)^x H = H(H_i \cap E)^x.$$

Hence H is σ -quasinormal in E. The lemma is proved.

Lemma 2.8. Let A, K and N be subgroups of G. Suppose that A is weakly σ -quasinormal in G and N is normal in G.

- (1) If either $N \le A$ or (|N|, |A|) = 1, then AN/N is weakly σ -quasinormal in G/N.
- (2) If G is a σ -full group of Sylow type, $N \leq K$, and K/N is weakly σ -quasinormal in G/N, then K is weakly σ -quasinormal in G.
- (3) If G is a σ -full group of Sylow type and $A \leq E \leq G$, then A is weakly σ -quasinormal in E.
- (4) If $A \leq E \leq G$ and E is normal in G, then A is weakly σ -quasinormal in E.

PROOF. By hypothesis, there are a σ -quasinormal subgroup S and a σ -subnormal subgroup T of G such that G = AT and $A \cap T \leq S \leq A$.

(1) TN/N is a σ -subnormal subgroup of G/N by Lemma 2.4(1), and also we have

$$(AN/N)(TN/N) = ATN/N = G/N.$$

Suppose that $N \leq A$. Then

$$(A/N) \cap (TN/N) = (A \cap TN)/N = N(A \cap T)/N \le SN/N,$$

where SN/N is σ -quasinormal in G/N by Lemma 2.7(3). Also we have $SN/N \leq A/N$. Hence A/N is weakly σ -quasinormal in G/N.

Now suppose that (|N|,|A|)=1. Since $G=AT,\,|G:T|$ divides |A|. Hence |NT:T| divides |A|. But $|NT:T|=|N:N\cap T|$ divides |N|. Therefore, $N\leq T$, so

$$(AN/N) \cap (T/N) = (AN \cap T)/N = N(A \cap T)/N \le SN/N.$$

Hence AN/N is weakly σ -quasinormal in G/N.

- (2), (3) In view of Example 1.2(iii), these two statements follow from [29, Lemma 2.5(1)(2)].
- (4) First note that $E = E \cap AT = A(E \cap T)$ and $A \cap (E \cap T) = A \cap T \leq S \leq A$. Moreover, Lemma 2.4(4) implies that $E \cap T$ is σ -subnormal in E, and Lemma 2.7(9) implies that S is σ -quasinormal in E. Hence A is weakly σ -quasinormal in E. The lemma is proved.

The following lemma is a corollary of [7, IV, (6.7)].

Lemma 2.9. Let $N \leq E$ be normal subgroups of G such that $N \leq \Phi(E)$, and every chief factor of G between E and N is cyclic. Then every chief factor of G below E is cyclic.

Lemma 2.10 (see [18, KNYAGINA and MONAKHOV]). Let H, K and N be pairwise permutable subgroups of G, and let H be a Hall subgroup of G. Then $N \cap HK = (N \cap H)(N \cap K)$.

3. Proofs of the results

PROOF OF THEOREM A. Let $D = G^{\mathfrak{N}_{\sigma}}$ be the σ -nilpotent residual of G.

Necessity. The subgroup D is σ -nilpotent by Lemma 2.3(i). Moreover, G is σ -soluble, and so G is a σ -full group of Sylow type by Lemma 2.6. Hence G possesses a complete Hall σ -set $\mathcal{L} = \{L_1, \ldots, L_t\}$. Let $H = L_i$. We show that H is weakly σ -quasinormal in G. Suppose that $H_G \neq 1$. Then H/H_G is weakly σ -quasinormal in G by induction, since the hypothesis holds for G/H_G by Lemma 2.3(ii). Hence H is weakly σ -quasinormal in G by Lemma 2.8(2).

Now assume that $H_G=1$. Then, since D is σ -nilpotent, it follows that $D\cap H=1$. On the other hand, G/D is σ -nilpotent by Lemma 2.1. Thus $H\simeq HD/D$ is a Hall σ_i -subgroup of G/D, and so HD/D has a normal complement T/D in G/D by Lemma 2.5. Then T is a normal subgroup of G such that HT=G and $T\cap H\leq T\cap HD\cap H\leq D\cap H=1$. Hence H is weakly σ -quasinormal in G.

Sufficiency. Assume that this is false, and let G be a counterexample of minimal order. Then D is not σ -nilpotent by Lemma 2.3(i). Let $\mathcal{H} = \{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_i is a σ_i -group for all $i = 1, \ldots, t$. Let S_i be a σ -quasinormal and T_i a σ -subnormal subgroup of G such that $S_i \leq H_i$, $H_iT_i = G$ and $H_i \cap T_i \leq S_i$, for all $i = 1, \ldots, t$.

(1) If R is a σ -soluble minimal normal subgroup of G, then G/R is meta- σ -nilpotent, and so G is σ -soluble. Moreover, R is the unique σ -soluble minimal normal subgroup of G.

First we show that G/R is meta- σ -nilpotent. In view of the choice of G, it is enough to show that the hypothesis holds for G/R. First note that R is σ -primary. Indeed, since R is σ -soluble, for some i we have $O_{\sigma_i}(R) \neq 1$. But $O_{\sigma_i}(R)$ is characteristic in R and hence it is normal in G, so the minimality of R implies that $R = O_{\sigma_i}(R)$ is a σ_i -group. Hence $R \leq H_i$ and $(|R|, |H_j|) = 1$ for all $j \neq i$. Therefore, $\{H_1R/R, \ldots, H_tR/R\}$ is a complete Hall σ -set of G/R all

of whose members are weakly σ -quasinormal in G/R by Lemma 2.8(1). Hence the hypothesis holds for G/R, so G/R is meta- σ -nilpotent and G is σ -soluble. Finally, Lemma 2.3(iii) implies that R is the unique σ -soluble minimal normal subgroup of G.

(2) For some i, i = 1 say, we have $S_i = S_1 \neq 1$. Moreover, if for some k we have $S_k = 1$, then T_k is a normal complement to H_k in G.

Assume that $S_i=1$. Then $H_i\cap T_i=1$, so T_i is a σ -subnormal Hall σ_i' -subgroup of G. Hence T_i is a normal complement to H_i in G by Lemma 2.4(2). Moreover, $G/T_i\simeq H_i$ is σ -nilpotent. Suppose that $S_i=1$ for all $i=1,\ldots,t$. Then $T_1\cap\cdots\cap T_t=1$ by $[7,\ A,\ 1.6(b)]$, so

$$G \simeq G/1 = G/(T_1 \cap \cdots \cap T_t)$$

is σ -nilpotent by Lemma 2.1(ii), a contradiction. Hence for some i we have $S_i \neq 1$.

(3) If $S_i \neq 1$, then $(H_i)_G \neq 1$.

Indeed, S_i is σ -subnormal in G by Lemma 2.7(1), so $1 < S_i \le O_{\sigma_i}(G) \le H_i$ by Lemma 2.4(3).

(4) G possesses a σ -soluble minimal normal subgroup, R say.

Claims (2) and (3) imply that $(H_1)_G \neq 1$. Therefore, if R is a minimal normal subgroup of G contained in $(H_1)_G$, then R is σ -soluble.

The final contradiction for the sufficiency. Claims (1) and (4) imply that G is σ -soluble, so R is the unique minimal normal subgroup of G. Hence Claims (2) and (3) imply that T_2, \ldots, T_t are normal subgroups of G and $G/T_k \simeq H_k$ for all $k = 2, \ldots, t$. Hence $G/(T_2 \cap \cdots \cap T_t)$ is σ -nilpotent by Lemma 2.1(ii). On the other hand, $T_2 \cap \cdots \cap T_t = H_1$ by [7, A, 1.6(b)], and so G is meta- σ -nilpotent, contrary to the choice of G. The theorem is proved.

PROOF OF THEOREM B. Assume that this theorem is false, and let G be a counterexample of minimal order. Let R be a minimal normal subgroup of G.

(1) G/R is σ -soluble. Hence R is not σ -primary and it is the unique minimal normal subgroup of G.

Note that if M/R is a non-nilpotent maximal subgroup of G/R, then M is a non-nilpotent maximal subgroup of G, and so it is weakly σ -quasinormal in G by hypothesis. Hence M/R is weakly σ -quasinormal in G/R by Lemma 2.8(1). Therefore, the hypothesis holds for G/R. Hence G/R is σ -soluble, and so R is not σ -primary by the choice of G. Now assume that G has a minimal normal subgroup $N \neq R$. Then G/N is σ -soluble and N is not σ -primary. But, in view of the G-isomorphism $RN/R \simeq N$, the σ -solubility of G/R implies that N is σ -primary. Hence we have (1).

In view of Claim (1), R is not abelian. Hence $|\pi(R)| > 1$. Let p be any odd prime dividing |R|, and R_p a Sylow p-subgroup of R.

(2) If G_p is a Sylow p-subgroup of G with $R_p = G_p \cap R$, then there is a maximal subgroup M of G such that RM = G and $G_p \leq N_G(R_p) \leq M$.

It is clear that $G_p \leq N_G(R_p)$. The Frattini argument implies that $G = RN_G(R_p)$. On the other hand, Claim (1) implies that $N_G(R_p) \neq G$, so for some maximal subgroup M of G, we have RM = G and $G_p \leq N_G(R_p) \leq M$.

- (3) M is not nilpotent and $M_G = 1$. Hence M is weakly σ -quasinormal in G. Assume that M is nilpotent, and let $D = M \cap R$. Then D is a normal subgroup of M, and R_p is a Sylow p-subgroup of D. Hence R_p is characteristic in D, and so it is normal in M. Therefore, $Z(J(R_p))$ is normal in M. Claims1(1) and (2) imply that $M_G = 1$. Hence $N_G(Z(J(R_p))) = M$, and so $N_R(Z(J(R_p))) = D$ is nilpotent. This implies that R is p-nilpotent by Glauberman–Thompson's theorem on the normal p-complements. But then R is a p-group, a contradiction. Hence we have (3).
- (4) There is a σ -subnormal subgroup T of G such that MT = G, $M \cap T = 1$, and p does not divide |T|.

By Claim (3), there are a σ -quasinormal subgroup S and a σ -subnormal subgroup T of G such that G = MT and $M \cap T \leq S \leq M$. Claim (3) and Lemma 2.7(6) imply that S is σ -nilpotent. Suppose that $S \neq 1$. Then for every $\sigma_i \in \sigma(S)$, we have $O_{\sigma_i}(S) \neq 1$. It is clear that $O_{\sigma_i}(S)$ is σ -subnormal in G, and hence $O_{\sigma_i}(S) \leq O_{\sigma_i}(G)$ by Lemma 2.4(3), which implies that $O_{\sigma_i}(G) \neq 1$. But then $R \leq O_{\sigma_i}(G)$ by Claim (1), and so R is σ -primary, which contradicts to Claim (1). Therefore S = 1, so $T \cap M = 1$. Hence |T| = |G : M|, so p does not divide |T|, since $G_p \leq M$ by Claim (2).

The final contradiction. Let L be a minimal σ -subnormal subgroup of G contained in T. Then L is a simple group. Lemma 2.4(3) and Claim (1) imply that L is not σ -primary. Hence L is non-abelian, so it is subnormal in G by Lemma 2.4(6). Suppose that $L \nleq R$. Then $L \cap R = 1$. On the other hand, $R \leq N_G(L)$ by [7, A, 14.3]. Hence $LR = L \times R$, so $L \leq C_G(R)$. But Claim (1) implies that $R \nleq C_G(R)$, and so $C_G(R) = 1$, a contradiction. Hence L is a minimal normal subgroup of R. It follows that p divides |L|, and hence p divides |T|, contrary to Claim (4). The theorem is proved.

PROOF OF COROLLARY 1.6. In view of Theorem B, it is enough to show that if G is soluble, then every maximal subgroup M of G is weakly σ -quasinormal in G. If $M_G \neq 1$, then M/M_G is weakly σ -quasinormal in G/M_G by induction, so M is weakly σ -quasinormal in G by Lemma 2.8(2). On the other hand, if $M_G = 1$

and R is a minimal normal subgroup of G, then R is abelian, and so $G = R \times M$. Hence M is weakly σ -quasinormal in G. The corollary is proved.

PROOF OF THEOREM C. Assume that this theorem is false, and let G be a counterexample of minimal order. Then $|\sigma(G)| > 1$.

Let p be the smallest prime dividing |G| and $\mathcal{H} = \{H_1, \ldots, H_t\}$. We can assume without loss of generality that H_i is a σ_i -group for all $i = 1, \ldots, t$, and that $p \in \sigma_1$. Let R be a minimal normal subgroup of G.

(1) If R is σ -soluble, then G is soluble and G/R is supersoluble.

We show that the hypothesis holds for G/R. First, $\{H_1R/R, \ldots, H_tR/R\}$ is a complete Hall σ -set of G/R, where $H_iR/R \simeq H_i/H_i \cap R$ is supersoluble, since H_i is supersoluble by hypothesis.

Now let V/R be a maximal subgroup of H_iR/R , so $|(H_iR/R):(V/R)|=p$ is a prime. Then $V=R(V\cap H_i)$. Hence

$$p = |(H_i R/R) : (V/R)| = |(H_i R/R) : (R(V \cap H_i)/R)| = |H_i R : R(V \cap H_i)|$$
$$= |H_i||R||R \cap (V \cap H_i)| : |V \cap H_i||R||H_i \cap R| = |H_i| : |V \cap H_i| = |H_i : (V \cap H_i)|,$$

so $V \cap H_i$ is a maximal subgroup of H_i . Assume that H_iR/R is not cyclic. Then H_i is not cyclic, so $V \cap H_i$ is weakly σ -quasinormal in G by hypothesis. Moreover, since R is σ -soluble, it is a σ_k -group for some k, and hence $R \leq V \cap H_i$ in the case when i = k, and $(|R|, |V \cap H_i|) = 1$ in the case when $i \neq k$, since $R \leq H_k$. Then $V/R = R(V \cap H_i)/R$ is weakly σ -quasinormal in G/R by Lemma 2.8(1). Hence the hypothesis holds for G/R, so the choice of G implies that G/R is supersoluble and G is σ -soluble. Finally, since $R \leq H_k$, R is soluble, and so G is soluble.

(2) G is σ -soluble. Hence G is soluble.

Suppose that this is false. Then $(H_1)_G = 1$ and $O_{\sigma_k}(G) = 1$ for all $\sigma_k \in \sigma(G)$ by Claim (1). Moreover, H_1 is not cyclic. Indeed, if H_1 is cyclic, then G is p-nilpotent by [17, IV, 2.8], and so G is soluble by the Feit–Thompson theorem, since p is the smallest prime dividing |G|.

Since H_1 is supersoluble by hypothesis and $p \in \pi(H_1)$, H_1 has a maximal subgroup V such that $|H_1:V|=p$. Then V is weakly σ -quasinormal in G by hypothesis, so there are a σ -quasinormal subgroup S and a σ -subnormal subgroup T of G such that G=VT and $V\cap T\leq S\leq V$. Then $S_G\leq (H_1)_G=1$, so S is σ -nilpotent by Lemma 2.7(6). Suppose that $S\neq 1$. Then for every $\sigma_i\in\sigma(S)$, we have $1< O_{\sigma_i}(S)\leq O_{\sigma_i}(G)$ by Lemmas 2.4(3) and 2.7(1), a contradiction. Therefore S=1, which implies that $T\cap V=1$, and so for a Sylow p-subgroup T_p of T, we have $|T_p|=p$. Since p is the smallest prime dividing |T|, T is p-nilpotent by [17, IV, 2.8]. Let E be the p-complement of T. Then E is σ -subnormal in G, and

E is a Hall σ'_1 -subgroup of G. Hence E is normal in G by Lemma 2.4(2), and E is soluble by the Feit–Thompson theorem. Therefore, E=1 by Claim (1), since, by our assumption on G, it is not soluble. Therefore $G=H_1$ is supersoluble. This contradiction shows that we have (2).

(3) R is the unique minimal normal subgroup of G, $R = O_q(G) \nleq \Phi(G)$ for some prime q and |R| > q.

By Claim (2), G is soluble, and so R is a q-group for some prime q. Hence the choice of G and Claim (1) imply that R is the unique minimal normal subgroup of G and |R| > q. Moreover, $R \nleq \Phi(G)$ by [17, VI, 8.6], so $R = C_G(R) = O_q(G)$ by [7, A, 15.2].

The final contradiction. Let $q \in \sigma_i$. Then $R \leq H_i$, and for some maximal subgroup M of G, we have $G = R \rtimes M$ by Claim (3). Hence $H_i = R \rtimes (H_i \cap M)$. Since H_i is supersoluble, some maximal subgroup W of R is normal in H_i . Then $V = W(H_i \cap M)$ is a maximal subgroup of H_i . Hence there are a σ -quasinormal subgroup S, and a σ -subnormal subgroup T of G such that G = VT and $V \cap T \leq S \leq V$. Then $V \cap T = S \cap T$. Since G is soluble by Claim (2), G has a complement G in G. Since G is a complement G in G. Since G is a G-number. Therefore,

$$W = W(R \cap H_i \cap M) = R \cap W(H_i \cap M) = R \cap V = R \cap V \cap T = R \cap S \cap T = R \cap S$$

is σ -quasinormal in G by Lemmas 2.6 and 2.7(8), since G is soluble by Claim (2). Hence for each $j \neq i$, we have $WH_j = H_jW$, which implies that $H_j \leq N_G(W)$, since $R \cap WH_j = W(R \cap H_j) = W$. Therefore, W is normal in G, so the minimality of R implies that W = 1, and hence |R| = q, which is impossible by Claim (3). This contradiction completes the proof of the result.

PROOF OF THEOREM D. Assume that this theorem is false, and let G be a counterexample with |G| + |E| minimal. Then $|\sigma(G)| > 1$. Let R be a minimal normal subgroup of G contained in E.

(1) E is supersoluble. Hence R is a p-group for some prime p, so for some i, we have $R \leq H_i$.

It is clear that $\{H_1 \cap E, \dots, H_t \cap E\}$ is a complete Hall σ -set of E. Hence the hypothesis of Theorem C holds for E by Lemma 2.8(4), so E is supersoluble.

(2) The hypothesis holds for (G/R, E/R). Hence every chief factor of G between E and R is cyclic. Therefore R is not cyclic, R is the unique minimal normal subgroup of G contained in E, and $R \nleq \Phi(E)$.

We show that the hypothesis holds for (G/R, E/R). First, it is easy to see that $\{H_1R/R, \ldots, H_tR/R\}$ is a complete Hall σ -set of G/R all of whose members

 $H_jR/R \simeq H_j/(H_j \cap R)$ are supersoluble. Now assume that

$$(H_iR/R)\cap (E/R)=R(H_i\cap E)/R\simeq (H_i\cap E)/((H_i\cap E)\cap R)=(H_i\cap E)/(H_i\cap R)$$

is not cyclic. Then $H_j \cap E$ is not cyclic. If V/R is a maximal subgroup of $(H_jR/R)\cap(E/R)$, then $V/R=(V\cap H_j)R/R$, where $V\cap H_j$ is a maximal subgroup of $H_j\cap E$ (see Claim (1) in the proof of Theorem C). Moreover, $R\leq V\cap H_j$ in the case when j=i, and $(|R|,|V\cap H_j|)=1$ in the case when $j\neq i$, since $R\leq H_i$. Then $V/R=R(V\cap H_j)/R$ is weakly σ -quasinormal in G/R by hypothesis and Lemma 2.8(1). Therefore, the hypothesis holds for (G/R,E/R), so the choice of G implies that every chief factor of G/R below E/R is cyclic. Hence every chief factor of G between E and E is cyclic. Suppose that E has a minimal normal subgroup E contained in E. Then every chief factor of E between E and E is cyclic. On the other hand, from the E-isomorphism E-isomorph

- (3) If T is a σ -subnormal subgroup of G such that $H_iT = G$, then $R \leq T$. Suppose that $R \nleq T$. Then $E \cap T_G = 1$ by Claim (2), so $T_G \leq C_G(E)$. Let $j \neq i$. Then Lemma 2.4(5) implies that $H_j^x \leq T$ for all $x \in G$, so $H_j \leq T_G$. On the other hand, some maximal subgroup W of R is normal in H_i , since H_i is supersoluble. Hence W is normal in G, so W = 1, and hence |R| = p, contrary to Claim (2).
- (4) A Sylow p-subgroup P of E is normal in G. Moreover, P is elementary. Since E is supersoluble by Claim (1), for some $q \in \pi(E)$, a Sylow q-subgroup Q of E is normal, and so it is characteristic in E. Hence Q is normal in G, so q = p and P = Q by Claim (2). Moreover, $\Phi(P)$ is normal in G, and $\Phi(P) \leq \Phi(E)$, so $\Phi(P) = 1$ by Claim (2). Hence P is elementary.

The final contradiction. Since H_i is supersoluble by hypothesis, some maximal subgroup W of R is normal in H_i , and P has a complement U in $E \cap H_i$. Maschke's theorem and Claim (4) imply that R has a complement K in P such that K is normal in $E \cap H_i$. Then V = UKW is a maximal subgroup of $E \cap H_i$. Since R is not cyclic by Claim (2), V is weakly σ -quasinormal in G. Hence there are a σ -quasinormal subgroup S and a σ -subnormal subgroup T of G such that G = VT and $V \cap T \leq S \leq V$. Claim (3) implies that $R \leq T$, so

$$R \cap S = R \cap V = R \cap UKW = W(R \cap UK) = W(R \cap U)(R \cap K) = W$$

by Lemma 2.10. Now let $j \neq i$. Then $H_j \leq O^{\sigma_i}(G) \leq N_G(S)$ by Lemma 2.7(5), so $H_j \leq N_G(R \cap S) = N_G(W)$. Thus W is normal in G, so W = 1, and hence |R| = p. But this contradicts to Claim (2). The theorem is proved.

ACKNOWLEDGEMENTS. The authors are grateful for the helpful suggestions of the referees.

References

- K. A. Al-Sharo and A. N. Skiba, On finite groups with σ-subnormal Schmidt subgroups, Comm. Algebra 45 (2017), 4158–4165.
- [2] M. ASAAD and A. A. HELIEL, On permutable subgroups of finite groups, Arch. Math. (Basel) 80 (2003), 113–118.
- [3] M. ASAAD, Finite groups with certain subgroups of Sylow subgroups complemented, J. Algebra 323 (2010), 1958–1965.
- [4] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, 2010.
- [5] A. BALLESTER-BOLINCHES and L. M. EZQUERRO, Classes of Finite Groups, Springer, Dordrecht, 2006.
- [6] J. C. Beidleman and A. N. Skiba, On τ_{σ} -quasinormal subgroups of finite groups, *J. Group Theory* **20** (2017), 955–969.
- [7] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
- [8] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, 2015.
- [9] W. Guo and A. N. SKIBA, On Π-quasinormal subgroups of finite groups, Monatsh. Math. (2016), DOI:10.1007/s00605-016-1007-9.
- [10] W. Guo and A. N. Skiba, Finite groups with permutable complete Wielandt sets of sub-groups, J. Group Theory 18 (2015), 191–200.
- [11] W. Guo and A. N. Skiba, On the lattice of $\Pi_{\mathfrak{I}}$ -subnormal subgroups of a finite group, Bull. Aust. Math. Soc. **96** (2017), 233–244.
- [12] W. Guo, C. Zhang, A. N. Skiba and D. A. Sinitsa, On H_{σ} -permutably embedded subgroups of finite groups, *Rend. Sem. Mat. Univ. Padova* (to appear), http://rendiconti.math.unipd.it/forthcoming.php?lan=english#GuoZhangSkibaSinitsa.
- [13] A. A. Heliel and T. M. Al-Gafri, On conjugate-Z-permutable subgroups of finite groups, J. Algebra Appl. 12 (2013), 1350060, 14 pp.
- [14] A. A. HELIEL, A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO and M. O. ALMESTADY, Z-permutable subgroups of finite groups, Monatsh. Math. 179 (2016), 523–534.
- [15] J. Huang, B. Hu and X. Wu, Finite groups all of whose subgroups are σ -subnormal or σ -abnormal, *Comm. Algebra* **45** (2017), 4542–4549.
- [16] B. HUPPERT, Zur Sylowstruktur Auflösbarer Gruppen, Arch. Math. (Basel) 12 (1961), 161–169.
- [17] B. HUPPERT, Endliche Gruppen. I, Springer-Verlag, Berlin New York, 1967.
- [18] B. N. KNYAGINA and V. S. MONAKHOV, On the π'-properties of a finite group possessing a Hall π-subgroup, Sib. Math. J. 52 (2011), 234–243.

- [19] B. Li, On Π -property and Π -normality of subgroups of finite groups, J. Algebra **334** (2011), 321–337.
- [20] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994.
- [21] L. A. Shemetkov, Formations of Finite Groups, "Nauka", Moscow, 1978 (in Russian).
- [22] L. A. Shemetkov and A. N. Skiba, On the $\mathfrak{X}\Phi$ -hypercentre of finite groups, J. Algebra **322** (2009), 2106–2117.
- [23] A.N. SKIBA, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra 436 (2015), 1–16.
- [24] A. N. SKIBA, A generalization of a Hall theorem, J. Algebra Appl. 15 (2016), 1650085, 13 pp.
- [25] A. N. SKIBA, On some results in the theory of finite partially soluble groups, Commun. Math. Stat. 4 (2016), 281–309.
- [26] A. N. SKIBA, On weakly s-permutable subgroups of finite groups, J. Algebra 315 (2007), 192–209.
- [27] Y. Wang, c-normality of groups and its properties, J. Algebra 180 (1996), 954–965.
- [28] M. WEINSTEIN (ED.), Between Nilpotent and Solvable, Polygonal Publishing House, Washington, NJ, 1982.
- [29] C. ZHANG, Z. Wu and W. Guo, On weakly σ-permutable subgroups of finite groups, Publ. Math. Debrecen 91 (2017), 489–502.

BIN HU

SCHOOL OF MATHEMATICS AND STATISTICS JIANGSU NORMAL UNIVERSITY XUZHOU, 221116 P. R. CHINA

E-mail: hubin118@126.com

JIANHONG HUANG SCHOOL OF MATHEMATICS AND STATISTICS JIANGSU NORMAL UNIVERSITY XUZHOU, 221116 P. R. CHINA

E-mail: jhh320@126.com

ALEXANDER N. SKIBA
DEPARTMENT OF MATHEMATICS AND
TECHNOLOGIES OF PROGRAMMING
FRANCISK SKORINA GOMEL STATE UNIVERSITY
GOMEL, 246019
BELARUS

 $E ext{-}mail:$ alexander.skiba49@gmail.com

(Received January 16, 2017; revised May 10, 2017)