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When every irreducible character is a constituent of
a primitive permutation character

By TREVOR CHIMPINDE (Lusaka) and PÁL HEGEDŰS (Budapest)

Abstract. Wall’s theorem claims that a finite solvable group G has at most |G|−1

maximal subgroups. A recent proof of the theorem uses a partial correspondence between

maximal subgroups and irreducible characters. In this note, we characterise the extreme

case of that proof: when is it true that for every irreducible character χ there exists

a maximal subgroup M < G such that χM has a principal constituent?

1. Introduction

G. E. Wall [W] proved that every finite solvable group has fewer maximal

subgroups than elements. His proof was later followed by several others using var-

ious methods and deriving stronger bounds on the number of maximal subgroups

of finite solvable groups [CWW], [HM], [H], [N].

A character π is called primitive permutation character if π = 1GM for a max-

imal subgroup M < G. This is the permutation character corresponding to the

permutation representation of G on the cosets of M . One key ingredient of the

proof in [H] is that different primitive permutation characters of the solvable

group G share no common non-principal irreducible constituent. This allowed

a shift from the not easily enumerable maximal subgroups to the more handy

irreducible characters. At the end of [H] it is remarked that it seems difficult to

determine which of the irreducible characters do not arise in the correspondence

at all.
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Here we consider the extremal situation, when nothing is left out. That is,

when the set of these constituents of primitive permutation characters give the

whole set Irr(G) \ {1G}. Formulated yet equivalently, when is it true that for

every irreducible character χ there exists a maximal subgroup M < G such that

χM has a principal constituent 1M? In this note, we give the following group

theoretic characterisation of this property.

Theorem 1. Let G be a finite solvable group. Every irreducible complex

character of G is a constituent of a primitive permutation character of G if and

only if either

(1) G is elementary Abelian; or

(2) G is a Frobenius group with cyclic complement H of prime order and ele-

mentary Abelian kernel which is a homogeneous H-module.

For simplicity, we use the following two abbreviations.

Definition 1. The group G has property (S) if every irreducible complex

character of G is a constituent of a primitive permutation character of G.

The group G has property (F ) if G is a Frobenius group with cyclic comple-

ment H of prime order and elementary Abelian kernel which is a homogeneous

H-module.

2. Proofs

Following [H] which, in turn, uses an argument of [AG], we let τ(M) ⊆ Irr(G)

denote the set of non-principal constituents of the permutation character 1GM .

Then the sets τ(M1) and τ(M2) are disjoint for non-conjugate maximal subgroups

M1 and M2.

We start with a simple observation, that property (S) is inherited to factor

groups.

Lemma 2. Let N be a normal subgroup of G. Suppose that G has prop-

erty (S). Then G/N also has property (S).

Proof. Let χ 6= 1G/N be an irreducible character of G/N , and χ′ be the

inflation of it to an irreducible character of G. By assumption, there exists M < G

maximal such that 0 < (χ′M , 1M ) = (χ′, 1GM ). If Kerχ′ 6⊆M , then G = M Kerχ′,

and Mackey’s theorem implies that 1M
G
Kerχ′ = 1M∩Kerχ′

Kerχ′
. Now 1G and χ′

are both components of 1Kerχ′
G, so, by Frobenius reciprocity,

1 < (1Kerχ′
G, 1M

G) = (1Kerχ′ , 1M
G
Kerχ′) = (1Kerχ′ , 1M∩Kerχ′

Kerχ′
) = 1.
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This contradiction shows that M≥Kerχ′≥N . So (χM/N , 1M/N )=(χ′M , 1M )>0,

as required. �

Lemma 3. If G has property (S), then Φ(G) = 1.

Proof. If M is maximal, then ∩χ∈τ(M) Kerχ = Ker 1GM = ∩x∈GMx. So (S)

implies that 1 = ∩χ∈Irr(G) Kerχ = ∩M Ker(1GM ) = Φ(G). �

This shows in particular that if the p-group G has property (S), then G is

elementary Abelian.

Turning to the proof of Theorem 1, let us first assume that G is elementary

Abelian, say, of order pn. Then G has exactly pn−1
p−1 maximal subgroups, and

each is equal to the kernel of p− 1 irreducible characters. So |τ(M)| = p− 1 and

| ∪M τ(M)| = pn − 1, that is, (S) holds.

The next part of the proof of Theorem 1 is the ‘if’ claim of the following

equivalence.

Proposition 4. Let G be a Frobenius group with complement of prime

order q. Then G has property (S) if and only if G has property (F ).

Proof. Let H denote the Frobenius complement of G. The Frobenius ker-

nel K of G is the unique normal maximal subgroup. We claim first that there

is a bijection between the set A of conjugacy classes of non-normal maximal

subgroups of G and the set B of maximal H-invariant subgroups of K.

PutA′ for the maximal subgroups of G containing H. If M is any non-normal

maximal subgroup of G, then, as q = |H| | |M |, it contains a Sylow q-subgroup,

so a conjugate of M contains H. Therefore, to prove the claim, it is enough to

establish a bijection between B and A′, and show that distinct elements of A′ are

not conjugate.

Note that the Frattini subgroup Φ(K) < K is a normal subgroup of G.

Therefore, if W ∈ B, then W ≤ Φ(K)W < K is also H-invariant, and hence

Φ(K) ≤W , consequently, W /G. We go on to confirm that the inverse bijections

are M 7→M ∩K for M ∈ A′, and W 7→WH for W ∈ B.

First, if M ≥ H is any maximal subgroup of G, then M ∩ K is indeed

an H-invariant subgroup of K. And conversely, if W is a maximal (normal)

H-invariant subgroup of K, then WH ≥ H is a subgroup of G. If M ≥ H,

then, clearly, M ≥ (M ∩ K)H. However, |M | = q|M ∩ K| = |(M ∩ K)H|, so

M = (M ∩K)H. Similarly, WH ∩K ≥ W , but |WH ∩K| = |WH|
q = |W | gives

WH ∩ K = W . This shows that the images of the maps are maximal, hence

the maps are inverses of each other. Suppose M ∈ A′ and g ∈ G such that

Mg ∈ A′, as well. Then there exists x ∈ K such that Mg = Mx, and hence
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Mx∩K = (M ∩K)x = M ∩K. Therefore, M = (M ∩K)H = (Mx∩K)H = Mx.

This establishes the claim.

Of course, ∩W∈BW ≥ Φ(K), so Φ(G) ≥ Φ(K). By Lemma 3, neither (S)

nor (F ) holds if Φ(K) > 1. Therefore, in the following we assume that Φ(K) = 1,

in other words, K is a vector space of possibly mixed characteristic.

Now G has q−1 non-principal linear characters forming τ(K) and |K|−1q irre-

ducible characters of degree q. Let K = ⊕fi=1Vi, where each Vi is a homogeneous

FpiH-module associated to a simple module Si. So |K| =
∏f
i=1 |Vi|. Note, that

f = 1 here is equivalent to saying that G has property (F ).

There are |Vi|−1
|Si|−1 maximal submodules of Vi, so there are

∑
i
|Vi|−1
|Si|−1 maxi-

mal H-invariant subgroups of K. Let W ∈ B be one of them, it has a simple

complement, isomorphic to Si, say. Let M = WH be the corresponding max-

imal subgroup of G. Then 1GM (1) = |Si|, so |τ(M)| = |Si|−1
q . Summing up,

| ∪M 6/G τ(M)| =
∑
i
|Vi|−1
q .

The group G has property (S) if and only if
∏f
i=1 |Vi| − 1 = |K| − 1 =∑f

i=1(|Vi| − 1) if and only if f = 1 if and only if G has property (F ),

as required. �

Proof of Theorem 1. To complete the proof, suppose that G has prop-

erty (S). First we prove that if G is Abelian, then it should be elementary

Abelian. In an Abelian group every maximal subgroup has prime index, so every

irreducible character in ∪Mτ(M) has kernel of prime index. If G is not elementary

Abelian, then it has a cyclic homomorphic image of composite order. This image

has a faithful linear character, so it does not have property (S). This contradicts

Lemma 2.

From now on, suppose that G is solvable but non-Abelian. We prove that

it has property (F ). Let N be a minimal normal subgroup of order pn, say.

By Lemma 3, there exists a maximal subgroup H not containing N . Therefore

H < NH ≤ G, and we must have NH = G. As N is Abelian, we have N ∩H/N ,

while N ∩ H / H, so 1 ≤ N ∩ H < N is normal in G. By minimality of N , we

must have N ∩H = 1. That is, G is a semidirect product of N and H where H

acts irreducibly on N .

By Lemma 2, H ∼= G/N is elementary Abelian or has property (F ). Assume

first that H is elementary Abelian of order qm. By the remark after Lemma 3,

p 6= q. That is, M ∈ Sylq(G) for every maximal subgroup M not containing N .

These form one conjugacy class. In particular, τ(H) should contain every nonlin-

ear irreducible character of G. By the irreducibility of the action of H on N , the

kernel, K, of this action has index q = |H : K|. Of course, K ≤ Z(G). So every
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non-principal irreducible character λ of N extends to NK in qm−1 ways. We in-

duce these extensions to G, each becomes an irreducible character of G of degree q.

(See [I, Theorem (6.11)].) As |G| =
∑
χ∈Irr(G) χ(1)2 = |H|+

∑
χ(1)=q χ(1)2, there

are |G|−|H|q2 such irreducible characters. But |τ(H)| ≤ |G:H|−1
q = q

|H|
|G|−|H|

q2 . So

equality means that H is of prime order. By Proposition 4, it has property (F ),

as required.

From now on, assume that G/K has property (F ) for every minimal normal

subgroup K, in particular, H ∼= G/N is a Frobenius group with Frobenius ker-

nel H ′ and complement J . Put H1 = CH(N) /G. Of course, H ′ ≥ H1. As G/H1

is non-Abelian, it has property (F ). Here NH ′/H1 is a normal subgroup of prime

index, so it is the elementary Abelian Frobenius kernel of G/H1.

If H1 < H ′, then the action of H ′/H1 on N would be faithful, so NH ′/H1

would be non-Abelian, a contradiction. So H1 = H ′ and J acts fixed-point-freely

on the Abelian normal subgroup L = N×H1. That is, we can apply Proposition 4,

hence G has property (F ), as required. �
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[H] P. Hegedűs, The number of maximal subgroups of a solvable group, Publ. Math.
Debrecen 78 (2011), 687–689.

[HM] M. Herzog and O. Manz, On the number of subgroups in finite solvable groups,

J. Austral. Math. Soc. Ser. A 58 (1995), 134–141.

[I] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York – London,

1976.

[N] B. Newton, On the number of maximal subgroups of a finite solvable group, Arch.

Math. (Basel) 96 (2011), 501–506.

[W] G. E. Wall, Some applications of the Eulerian functions of a finite group, J. Austral
Math. Soc. 2 (1961/1962), 35–59.

TREVOR CHIMPINDE

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ZAMBIA

POST BOX 53468

LUSAKA

ZAMBIA

E-mail: trevor@aims.ac.za
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