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On some open problems of number theory

By ANDRZEJ SCHINZEL (Warszawa)

Abstract. I shall present here 14 open problems of number theory arranged
chronologically from Antiquity to 1952, giving each time the best known partial result
now and in 1952.

Antiquity has left us a definition of a perfect number and two problems
concerning perfect numbers.

Definition 1. A positive integer n is perfect if it is the sum of its all proper
divisors.

Problem 1. Do there exist infinitely many even perfect numbers?

Euclid’s Elements contains a formula for even perfect numbers, which in the
modern notation looks 2p−1(2p − 1), where 2p − 1 is a prime. Euler proved that
all even perfect numbers are given by this formula. Till now we know 49 even
perfect numbers, the greatest being 274207280(274207281 − 1), in January 1952 we
knew only 12 even perfect numbers, the greatest being 2126(2127−1) (see [5], and
[2, B1]).

Problem 2. Does there exist an odd perfect number?

L. E. Dickson proved in 1913 that for every given k there exist only finitely
many odd perfect numbers with exactly k distinct prime factors. P. Nielsen proved
in 2003 that such numbers are less than 24k (see [7, p. 15]). We now know that
for odd perfect numbers n, n > 10300, k = ω(n) ≥ 9, in 1952 we knew that
n > 5 · 105, ω(n) ≥ 6 (see ibid.).
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In order to reach the next open problem, we have to mention amicable num-
bers, studied first in the Middle Ages.

Definition 2. Positive integers m < n are amicable if

s(m) = n, s(n) = m,

where s(n) is the sum of all proper divisors of n.

Antiquity had known one pair of amicable numbers 220 and 284. In the 9th
century, it was shown by Thabit ben Qurra that if the numbers p = 3 · 2n − 1,
q = 3 · 2n−1 − 1, r = 9 · 22n−1 − 1 are primes for n > 1, then 2npq and 2nr are an
amicable pair. This suggests

Problem 3. Do there exist infinitely many amicable pairs?

We know more than 107 amicable pairs. The best known upper estimate for
the number of amicable pairs 〈m,n〉, where m ≤ x, is

O
(
x exp

(
−(1/2 + o(1))(log x log log x)1/2)),

(see [9]).
The arithmetical function s(n) occurs also in Problem 10.
In order to reach next unsolved problems, we go to the 18th century. Chris-

tian Goldbach asked in a letter to Euler of 1742 the following question: Is every
integer > 2 the sum of three primes? In Goldbach’s time, differently than now,
1 had been considered a prime. Keeping this in mind we can formulate

Problem 4 (Goldbach 1742). Is every even integer n > 2 the sum of two
primes?

The affirmative answer has been checked for n < 1.6 · 1018 (see [7, p. 232];
in 1952, n < 6 · 104). Besides, J. R. Chen showed in 1973 that all even integers
large enough are sums of a prime and of a P2 (Pk denotes the product of at most
k primes). In 1952, it was known that there exists a k such that all even numbers
> 2 are sums of a prime and of a Pk, see [7, p. 276]. The Goldbach problem
makes sense also for odd integers. This case has been in principle solved by
I. M. Vinogradov in 1937. However, the bound from which his proof worked has
been huge, far exceeding the possibilities of the present day computers. Therefore,
a sensation has been created by H. Helfgott, who, in 2013, diminished the bound
to e30, up to which the phenomenon has been checked, thus obtaining the following
theorem: every odd integer > 5 is the sum of three primes (see [3]).

The 18th century left us another open problem, for which a definition is
needed.
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Definition 3. A positive integer d is “numerus idoneus” (a convenient num-
ber) if every odd integer representable essentially uniquely as x2 + dy2 and satis-
fying in this unique representation the condition (x, dy) = 1 is prime.

All positive integers ≤ 10 are convenient, 11 is not convenient, because 15 =
22 + 11 · 12 and (2, 11 · 1) = 1, but 15 is not a prime.

Problem 5 (Euler 1778). Does there exist “numerus idoneus” greater than
1848?

Euler found 65 convenient numbers, the greatest of which is 1848. Gauss no-
ticed that convenient numbers d are characterized by the equation
p(−4d) = 1, where p(D) is the number of classes of positive (properly) primitive
forms with discriminant D in the principal genus. S. Chowla used this character-
ization in his proof of 1934 that there are only finitely many convenient numbers
(see [7, p. 21]). P. J. Weinberger [10] proved in 1973 that there is at most one
greater than 1848 and there is none such up to 1

4 · 1060. In 1952, the relevant
bound was 5 · 104 (see [7, p. 21]).

The outstanding problems in number theory proposed in the 19th century
are well described in the lecture given by E. Landau at the International Congress
of Mathematicians in 1912. They have, however, been proposed in a more general
form earlier (see [7, pp. 37–39]).

Problem 6 (de Polignac 1849). Do there exist infinitely many twin primes,
i.e. such pairs (p, q) that p, q are primes and q − p = 2?

J. R. Chen proved that there exist infinitely many pairs (p, P2), where P2 −
p = 2 (see [7, p. 277]). Chen has been working in China and amazing progress
in Problem 6 has been made by the Chinese mathematician working in the U.S.,
Y. Zhang. He has proved [11] that denoting by pn the n-th prime, we have
lim infn→∞(pn+1− pn) ≤ 7 · 107. The number 7 · 107 has been diminished to 246,
but this is unpublished. On the other hand, J. Maynard [6] proved in 2015 by
a different method that lim infn→∞(pn+1 − pn) ≤ 600.

Problem 7 (Bouniakowsky 1857). Do there exist infinitely many primes of
the form x2 + 1?

Bouniakowsky considered a general irreducible polynomial f ∈ Z[x] and con-
jectured that f(x)

df
represents for x ∈ N infinitely many primes (positive or nega-

tive), where df is the fixed divisor of f (see [1, p. 333]).
Let us put d = deg f and assume that f has the leading coefficient positive.

If d = 1, Bouniakowsky’s conjecture becomes Dirichlet’s theorem on arithmetic
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progression. In general, A. Buchstab in 1967 and H.-E. Richert in 1969 proved
that f(x)

df
represents for x ∈ N infinitely many Pd+1, and for d = 2, H. Iwaniec

proved in 1998 that P3 can be replaced by P2, see [7, p. 76]. J. Friedlander and
H. Iwaniec proved in 1998 that x2 + y4 represents infinitely many primes, see [7,
p. 324].

In order to formulate Riemann’s problem, probably the most important prob-
lem of mathematics, in an elementary form, we need a definition.

Definition 4. π(x) is the number of primes ≤ x,

lix =
∫ x

0

dt

log t = C +
∫ x

2

dt

log t .

Problem 8 (Riemann 1859 – von Koch 1901). Does there exist a constant A
such that for every positive x

|π(x)− lix| < A
√
x log x?

The affirmative answer to this problem is equivalent to the Riemann Hypoth-
esis (see [7, p. 31]). We even do not know for any positive ε < 1

2 the inequality

|π(x)− lix| < Aεx
1−ε,

and the best known result in this direction proved by Korobov and Vinogradov
in 1958 is

|π(x)− lix| < Axe−c(log x)3/5(log log x)−1/5
,

where c is a positive constant.
In 1952, the exponent of log x had been any number less than 4

7 (see [7,
p. 199–200]).

Problem 9 (Oppermann 1882). Does there exist a prime between every pair
of consecutive squares?

The problem concerns dn = pn+1 − pn, as does Problem 6, and asks roughly
whether

dn < 2√pn. (∗)

The last known estimate valid for all n is dn < Ap0.525
n due to R. Baker, G. Har-

man and J. Pintz, in 1952 the last available estimate was dn < Ap
48/77
n (see [7,

pp. 141–142]). H. Cramér proved in 1921 that assuming the affirmative answer
to Problem 8, the density of indices n such that (∗) holds is one (see [7, p. 140]).



On some open problems of number theory 259

Problem 10 (Catalan 1887 – Dickson 1913). If s(0) = 0, is the sequence
n, s(n), ss(n), . . . bounded for every positive integer n?

For perfect n the sequence has period of length 1, for amicable n and s(n),
of length 2. For an inconclusive evidence that the answer to this problem may be
negative, see [2, B6].

Passing to the 20th century, we again need a definition.

Definition 5. ϕ(n) is the number of positive integers ≤ n and prime to n.

Problem 11 (Carmichael 1907–1922). Does there exist an integer m such
that the equation ϕ(x) = m has exactly one solution?

R. Carmichael in 1907 had an alleged proof of the negative answer, in 1922,
he found an error in the proof and asked the problem. In 1952, it was known that
m > 10400, now it is known that m > 101010 , see [7, p. 21] and [2, B39].

Problem 12 (Pillai 1945). Does the difference between consecutive perfect
powers tend to infinity?

The affirmative answer to the problem is equivalent to finiteness of solutions
of the Diophantine equation xz − yt = d, z, t ≥ 1, for every positive integer d.
R. Tijdeman proved in 1976 the finiteness for d = 1, and P. Mihailescu proved
in 2004 that 8 and 9 form the only pair of consecutive perfect powers differing
by 1.

The next two problems are partially due to the famous Hungarian mathe-
matician, P. Erdős.

Problem 13 (Erdős and Straus 1948). Has the equation

4
n

= 1
x

+ 1
y

+ 1
z

a solution in positive integers for all n > 1?

The affirmative answer is known for n < 1014 (see [7, p. 312] and [2, D11]),
in 1952 it had been proved for n ≤ 106128, see [8].

To formulate Problem 14, we need a definition.

Definition 6. A system of congruences x ≡ ai (mod mi) (1 ≤ i ≤ k) is
covering if every integer x satisfies at least one of the congruences.

Problem 14 (Erdős and Selfridge 1952). Does there exist a covering system
with distinct odd moduli mi > 1?
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For a long time, Erdős proposed a problem, whether there exists a covering
system with distinct moduli mi arbitrarily large. This has been answered nega-
tively by B. Hough [4]. He proved in 2015 that in every covering system with
distinct moduli min1≤i≤k mi ≤ 1016.
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