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Jordan left derivations at the idempotent elements
on reflexive algebras

By BEHROOZ FADAEE (Sanandaj) and HOGER GHAHRAMANI (Sanandaj)

Abstract. Let A be a Banach algebra with unity 1, and M be a unital Banach

left A-module. Let δ : A → M be a continuous linear map with the property that

ab+ ba = z ⇒ 2aδ(b) + 2bδ(a) = δ(z), a, b ∈ A,

where z ∈ A. In this article, we first characterize the continuous linear maps δ satisfying

the above property for z = 1. Then we consider the case A = M = AlgL, where AlgL is

a reflexive algebra on a Hilbert space H, and z = P is a non-trivial idempotent in A with

P (H) ∈ L, and then we describe δ. Finally, we apply the main results to CSL-algebras,

irreducible CDC-algebras and nest algebras on a Hilbert space H.

1. Introduction

Throughout this paper, all algebras and vector spaces will be over the com-

plex field C. Let A be an algebra, and M be an A-bimodule. Recall that a linear

map d : A→M is said to be a derivation if d(ab) = ad(b) + d(a)b for all a, b ∈ A.

It is called a Jordan derivation if d(ab + ba) = ad(b) + d(a)b + bd(a) + d(b)a for

all a, b ∈ A, or equivalently, if δ(a2) = ad(a) + d(a)a for any a ∈ A. As is well

known, (Jordan) derivations are very important mappings both in theory and ap-

plications, and have been studied intensively. For instance, see [10] and references

therein. There have been a number of papers concerning the study of conditions

under which mappings of (Banach) algebras can be completely determined by the
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action on some sets of points. We refer the reader to [2], [7]–[9] and [15] for a full

account of the topic and a list of references. In the case of (Jordan) derivations,

the subsequent conditions attracted much attention of some mathematicians:

ab = z ⇒ δ(z) = aδ(b) + δ(a)b, a, b ∈ A, (♦),

or

ab+ ba = z ⇒ δ(z) = aδ(b) + δ(a)b+ bδ(a) + δ(b)a, a, b ∈ A, (♦♦),

where z ∈ A is fixed and δ : A → M is a linear (additive) map. Brešar [7]

studied the derivations of rings with idempotents in this direction with z = 0. It

was shown in [7] that if A is a prime ring containing a non-trivial idempotent and

δ : A→ A is an additive map satisfying (♦) with z = 0, then δ(a) = d(a)+ca (a ∈
A), where d is an additive derivation and c is a central element of A. Note that

the nest algebras are important operator algebras that are not prime. Jing et al.

in [22] showed that, for the cases of nest algebras on a Hilbert space and standard

operator algebras in a Banach space, the set of linear maps satisfying (♦) with

z = 0 and δ(I) = 0 coincides with the set of inner derivations. In [3], the authors

considered the condition (♦♦) with z = 0 on a continuous linear map δ from

a C?-algebra A into an essential Banach A-bimodule M, and they showed that

there exist a derivation d : A → M and a bimodule homomorphism Φ : A → M
such that δ = d + Φ. Also in [14], the author considered the condition (♦♦)

with z = 0 on a (continuous) linear map on some (Banach) algebras. In [2],

[17], [20]–[21], [24] and [33]–[34], the authors studied the mappings satisfying (♦)

or (♦♦) with z = 0 for some (operator) algebras. In [32] and [35], the authors

studied the linear maps on some operator algebras satisfying (♦), where z is

unit operator or an invertible operator. Li and Zhou [26] showed that if A is

a unital Banach algebra, M is a unital A-bimodule and δ : A→M is a linear map

satisfying (♦), where z is a left or right separating point of M, then d is a Jordan

derivation. Zhu and Xiong [36] showed that every strong operator topology

continuous linear map from a nest algebra AlgN into itself satisfying (♦), where

z is any orthogonal projection operator PN (0 6= N ∈ N ), is a derivation, when

N is a continuous nest on a complex and separable Hilbert space H. In [12], the

author studied the additive maps on Banach algebras satisfying (♦), where z is

a non-trivial idempotent. In [4]–[5], the authors studied the additive maps on

triangular algebras and prime algebras satisfying (♦♦), where z is an idempotent

element or z is the unit element. Also, mappings satisfying (♦) or (♦♦) are studied

in [11], [13], [19], [23], [28], [30]–[31] and [37]–[38].
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Let A be an algebra, M be a left A-module, and δ : A → M be a linear

mapping. δ is said to be a Jordan left derivation if δ(ab+ ba) = 2aδ(b) + 2bδ(a)

for any a, b ∈ A, or equivalently, if δ(a2) = 2aδ(a) for any a ∈ A. The concept of

Jordan left derivation was introduced by Brešar and Vukman in [6]. The main

motivation to introduce Jordan left derivations is that, under mild hypotheses,

the existence of a nonzero Jordan left derivation on an associative ring B forces

B to be commutative, and to rediscover a result by I. M. Singer and J. Wermer

for commutative Banach algebras. For results concerning Jordan left derivations,

we refer the readers to [16] and the references therein.

Motivated by these reasons, in this paper we consider the following condition

on a continuous linear map δ from a Banach algebra A into a Banach left A-

module M:

ab+ ba = z ⇒ 2aδ(b) + 2bδ(a) = δ(z), a, b ∈ A,

where z ∈ A is fixed. In [25], the authors studied this condition with z = 0 or

z = 1 on some algebras.

In this paper, we prove that a continuous linear map δ from a unital Banach

algebra A to a Banach left A module M which is a Jordan left derivation at the

unit element is a Jordan left derivation (see Proposition 2.2). There are several

consequences, such as, for example, Corollary 2.4, where it is established that

for every CSL-algebra and for every unital semi-simple Banach algebra A, every

continuous linear map δ : A → M which is a Jordan left derivation at the unit

element must be zero. The second part of the paper is devoted to the study of

continuous linear maps on a reflexive algebra which are Jordan left derivations at

a non-trivial idempotent element (see Theorem 2.5). Finally, we apply the main

results to CSL-algebras, irreducible CDC-algebras and nest algebras on a Hilbert

space H (Corollaries 2.6, 2.8 and 2.9).

The following are the notations and terminologies which are used throughout

this article.

Let A be a Banach algebra with unity 1. Denote by Inv(A) the set of invert-

ible elements of A. Inv(A) is an open subset of A, and hence it is a disjoint union of

open connected subsets, the components of Inv(A). The component containing 1

is called the principal component of Inv(A) and it is denoted by Inv 0(A). We

denote by eA the range of the exponential function in A, i.e.,

eA = {ea | a ∈ A},

and we have eA ⊆ Inv0(A).

Let H be a Hilbert space. We denote by B(H) the algebra of all bounded

linear operators on H. The identity operator on H is denoted by I, and the
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projection of H onto the closed subspace L is denoted by PL. A subspace lattice L
on a Hilbert space H is a collection of closed (under norm topology) subspaces

of H which is closed under the formation of arbitrary intersection (denoted by ∧)

and closed linear span (denoted by ∨), and which includes {0} and H. If L is

a subspace lattice of H and L ∈ L, we define

L− = ∨{M ∈ L |L *M}, L+ = ∧{M ∈ L |M * L}.

A totally ordered subspace lattice N on X is called a nest. A subspace lattice L on

a Hilbert space H is called a commutative subspace lattice, or shortly, a CSL, if the

projections of H onto the subspaces of L commute with each other. A subspace

lattice L is said to be completely distributive if L = ∨{M ∈ L |L *M−} for every

L ∈ L with L 6= {0}. When L 6= {{0},H}, we say that L is non-trivial.

For a subspace lattice L, we define the associated subspace lattice AlgL by

AlgL = {T ∈ B(H) |T (L) ⊆ L for all L ∈ L}.

Obviously, AlgL is a unital weakly closed subalgebra of B(H). Dually, if A is

a subalgebra of B(H), by LatA we denote the collection of closed subspaces of H
that are left invariant by each operator in A. An algebra A ⊆ B(H) is reflexive

if A = Alg LatA. Clearly, every reflexive algebra is of the form AlgL for some

subspace lattice and vice versa. We call AlgL a CSL-algebra if L is a commutative

subspace lattice, and a CDC-algebra if L is a completely distributive CSL. Also,

for a nest N , the algeba AlgN is called a nest algebra. Recall that a CSL-algebra

AlgL is irreducible if and only if the commutant is trivial, i.e., (AlgL)′ = CI.

In particular, nest algebras are irreducible CDC-algebras.

2. Main results

First, we characterize continuous linear maps of unital Banach algebras which

are Jordan left derivations at the unit element.

In order to prove our results we need the following result.

Lemma 2.1. Let A be a Banach algebra with unity 1, and let M be a unital

Banach left A-module. Let δ : A→M be a continuous linear map satisfying

a ∈ Inv0(A)⇒ aδ(a−1) + a−1δ(a) = δ(1).

Then δ is a Jordan left derivation.
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Proof. Since 1 ∈ Inv0(A), it follows that 2δ(1) = δ(1). Hence δ(1) = 0.

Let a be in A. For each scalar λ ∈ C, we have eλaδ(e−λa) + e−λaδ(eλa) = 0,

since eA ⊆ Inv0(A). Thus

0 = eλaδ(e−λa) + e−λaδ(eλa)

= Σ∞n=0

λnan

n!
δ

(
Σ∞m=0

(−1)mλmam

m!

)
+ Σ∞m=0

(−1)mλmam

m!
δ

(
Σ∞n=0

λnan

n!

)
= Σ∞m=0Σ∞n=0

(−1)mλm+n

m!n!
(anδ(am) + amδ(an))

= Σ∞k=0λ
k

( ∑
m+n=k

(−1)m

m!n!
(anδ(am) + amδ(an))

)
,

since δ is a continuous linear map. Consequently,∑
m+n=k

(−1)m

m!n!
(anδ(am) + amδ(an)) = 0 (1)

for all a ∈ A and k ≥ 0. Taking k = 2 in (1), we obtain

1

2
(δ(a2) + a2δ(1))− (aδ(a) + aδ(a)) +

1

2
(a2δ(1) + δ(a2)) = 0,

for any a ∈ A. So from δ(1) = 0, we have

δ(a2) = 2aδ(a), (a ∈ A). �

Proposition 2.2. Let A be a Banach algebra with unity 1, and let M be

a unital Banach left A-module. Let δ : A → M be a continuous linear map

satisfying

ab+ ba = 1⇒ 2aδ(b) + 2bδ(a) = δ(1), a, b ∈ A, (∗)

then δ is a Jordan left derivation.

Proof. Let a ∈ Inv0(A) be arbitrary. Since
(
1
2a
)
a−1 + a−1

(
1
2a
)

= 1, it

follows that

2

(
1

2
a

)
δ(a−1) + 2a−1δ

(
1

2
a

)
= δ(1).

So

aδ(a−1) + a−1δ(a) = δ(1),

for all a ∈ Inv0(A). Therefore from Lemma 2.1, δ is a Jordan left derivation. �
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Corollary 2.3. Let A be a Banach algebra with unity 1, and let M be

a unital Banach left A-module. Let x, y ∈ Z(A) with x+y = 1, and let δ : A→M
be a continuous linear map satisfying

ab+ ba = x⇒ 2aδ(b) + 2bδ(a) = δ(x), a, b ∈ A,

and

ab+ ba = y ⇒ 2aδ(b) + 2bδ(a) = δ(y), a, b ∈ A.

Then δ is a Jordan left derivation.

Proof. For a, b∈A with ab+ba=1, we have abx+bax=x and aby+bay=y.

So axb+ bax = x and ayb+ bay = y. It follows from the hypothesis that

δ(x) = 2axδ(b) + 2bδ(ax),

and

δ(y) = 2ayδ(b) + 2bδ(ay).

Combining the two equations above, we get that

δ(1) = δ(x+ y) = 2aδ(b) + 2bδ(a).

So from Proposition 2.2, δ is a Jordan left derivation. �

If A is a CSL-algebra or a unital semisimple Banach algebra, then by [25]

and [29], every continuous Jordan left derivation on A is zero. Hence, the next

corollary follows from Proposition 2.2.

Corollary 2.4. Let A be a CSL-algebra or a unital semisimple Banach

algebra, and let δ : A→ A be a continuous linear map satisfying

ab+ ba = 1⇒ 2aδ(b) + 2bδ(a) = δ(1), a, b ∈ A.

Then δ is zero.

We continue by characterizing the continuous linear maps which are Jordan

left derivations at non-trivial idempotent elements on reflexive algebras.

Theorem 2.5. Let A = AlgL be a reflexive algebra on a Hilbert space H.

Suppose that there exists a non-trivial idempotent P ∈AlgL with range P (H)∈L.

If δ : AlgL → AlgL is a continuous linear map, then δ satisfies

AB +BA = P ⇒ 2Aδ(B) + 2Bδ(A) = δ(P ), A,B ∈ A, (∗∗)

if and only if δ(A) = α(A) + β(A) + PA(I − P )δ(I), where
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(i) α : A → A is a continuous linear map which is a Jordan left derivation and

α(A) = Pα(PAP ) for all A ∈ A;

(ii) β : A→ A is a continuous linear map satisfying:

(a) β(A) = (I − P )β((I − P )A(I − P ))(I − P ) for all A ∈ A.

(b) Given A,B ∈ A with (I−P )A(I−P )B(I−P ) + (I−P )B(I−P )A(I−
P ) = 0, then (I − P )Aβ(B) + (I − P )Bβ(A) = 0.

(c) PA(I − P )β(B) = PA(I − P )B(I − P )δ(I) for all A,B ∈ A.

Proof. As a notational convenience, we denote A = AlgL, P1 = P , P2 =

I − P , A11 = P1AP1, A12 = P1AP2 and A22 = P2AP2. Then we have P2AP1 =

{0}, and hence

A = A11+̇A12+̇A22

as sum of linear spaces. This is the so-called Peirce decomposition of A = AlgL.

The sets A11, A12 and A22 are closed in A. In fact, A11 and A22 are Banach

subalgebras of A with unity P1 and P2, respectively, and A12 is a unital Banach

(A11,A22)-bimodule. Throughout the proof, Aij and Bij will denote arbitrary

elements in Aij for 1 ≤ i, j ≤ 2.

Assume that δ satisfies (∗∗). For A,B ∈ A with AB + BA = 2P , we have(
1
2A
)
B +B

(
1
2A
)

= P . So, it follows that

AB +BA = 2P ⇒ Aδ(B) +Bδ(A) = δ(P ), A,B ∈ A.

For any A11 ∈ Inv(A11) and A22 ∈ A22, since A11(A−111 +A22)+(A−111 +A22)A11 =

2P1 (A−111 is the inverse of A11 in A11), we have

A11δ(A
−1
11 +A22) + (A−111 +A22).δ(A11) = δ(P1). (2)

Multiplying this identity by P2, both on the left and on the right we find

A22δ(A11)P2 = P2δ(P1)P2.

Now taking A22 = P2 in this equation, we obtain P2δ(A11)P2 = P2δ(P1)P2, and

hence 2P2δ(A11)P2 = P2δ(A11)P2 for all A11 ∈ Inv(A11). So P2δ(A11)P2 = 0 for

all A11 ∈ Inv(A11). Since any element in a unital Banach algebra is a sum of

invertible elements, by the linearity of δ we have

P2δ(A11)P2 = 0, (3)

for all A11 ∈ A11. Multiplying equation (2) by P1 both on the left and on the

right, we arrive at

A11δ(A
−1
11 +A22)P1 +A−111 δ(A11)P1 = P1δ(P1)P1.
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Now letting A11 = P1 in this equation, we get P1δ(A22)P1 = −P1δ(P1)P1, and

therefore 2P1δ(A22)P1 = P1δ(A22)P1 for all A22 ∈ A22. So

P1δ(P1)P1 = 0 and P1δ(A22)P1 = 0, (4)

for all A22 ∈ A22. Now, multiplying equation (2), from the left by P1 and from

the right by P2, it follows that

A11δ(A
−1
11 +A22)P2 +A−111 δ(A11)P2 = P1δ(P1)P2.

Taking A11 = P1 in this equation and by a similar argument as above, we have

P1δ(P1)P2 = 0 and P1δ(A22)P2 = 0, (5)

for all A22 ∈ A22. By equations (3), (4) and (5), it follows that

δ(P1) = 0, δ(P2) = P2δ(P2)P2 and δ(I) = P2δ(P2)P2. (6)

Since (A11+A12)(A−111 −A
−1
11 A12A22−A−211 A12+A22)+(A−111 −A

−1
11 A12A22−

A−211 A12 + A22)(A11 + A12) = 2P1, for each A11 ∈ Inv(A11), A12 ∈ A12 and

A22 ∈ A22, we have

(A11 +A12)δ(A−111 −A
−1
11 A12A22 −A−211 A12 +A22)

+ (A−111 −A
−1
11 A12A22 −A−211 A12 +A22)δ(A11 +A12) = 0, (7)

for all A11 ∈ Inv(A11), A12 ∈ A12 and A22 ∈ A22. Multiplying equation (7) by P1

both on the left and on the right, and by the fact that P2AP1 = {0}, we arrive at

A11δ(A
−1
11 −A

−1
11 A12A22 −A−211 A12 +A22)P1 +A−111 δ(A11 +A12)P1 = 0.

Now letting A11 = P1 and A22 = P2 in this identity and by equation (4), we see

that

P1δ(A12)P1 = 0, (8)

for all A12 ∈ A12. Multiplying equation (7) by P2 both on the left and on the

right, we get A22δ(A12)P2 = 0. Replacing A22 by P2, we find

P2δ(A12)P2 = 0, (9)

for all A12 ∈ A12. Now, multiplying equation (7), from the left by P1, and from

the right by P2, we see from equations (3), (5) and (9) that

A11δ(A
−1
11 )P2 −A11δ(A

−1
11 A12A22)P2 −A11δ(A

−2
11 A12)P2

+A12δ(A22)P2 +A−111 δ(A11)P2 + +A−111 δ(A12)P2 = 0.
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Letting A11 = P1 in this equation, it follows that −P1δ(A12A22)P2+A12δ(A22)P2

= 0 for all A12 ∈ A12 and A22 ∈ A22. So

P1δ(A12A22)P2 = A12δ(A22)P2, (10)

for all A12 ∈ A12 and A22 ∈ A22. By taking A22 = P2 in (10), it follows from

equations (6) that

P1δ(A12)P2 = A12δ(P2)P2 = A12δ(I), (11)

for all A12 ∈ A12. Now, it follows from equations (10) and (11) that

A12δ(A22)P2 = P1δ(A12A22)P2 = A12A22δ(I), (12)

for all A12 ∈ A12 and A22 ∈ A22.

Define α : A → A by α(A) = P1δ(P1AP1). So α is continuous, α(I) =

α(P1) = 0 and α(A) = P1α(P1AP1) for all A ∈ A. Consider A,B ∈ A with

AB+BA = I. Since P2AP1 = {0}, it follows that P1AP1BP1 +P1BP1AP1 = P1,

and hence

2P1AP1δ(P1BP1) + 2P1BP1δ(P1AP1) = δ(P1).

So

2AP1δ(P1BP1) + 2BP1δ(P1AP1) = P1δ(P1).

Therefore

2Aα(B) + 2Bα(A) = α(I).

Thus by Proposition 2.2, α is a Jordan left derivation, proving (i). Now define

β : A→ A by β(A) = P2δ(P2AP2)P2. It is clear that β(A) = P2β(P2AP2)P2 for

all A ∈ A. Let A,B ∈ A with P2AP2BP2+P2BP2AP2 = 0. So (P1+P2AP2)(P1+

P2BP2) + (P1 + P2BP2)(P1 + P2AP2) = 2P1, and hence

(P1 + P2AP2)δ(P1 + P2BP2) + (P1 + P2BP2)δ(P1 + P2AP2) = δ(P1) = 0.

Multiplying this identity by P2 both on the left and on the right, we find

P2AP2δ(P2BP2)P2 + P2BP2δ(P2AP2)P2 = 0.

So

P2Aβ(B) + P2Bβ(A) = 0.
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Also from equation (12), we have

P1Aβ(B) = P1AP2BP2δ(I),

for all A,B ∈ A, proving (ii).

Now by equations (3)–(5), (8)–(9) and (11), it follows that

δ(A) = α(A) + β(A) + P1AP2δ(I),

for all A ∈ A. Thus δ has the desired form.

Conversely, assume that δ satisfies the given conditions. By assumption, α is

a left Jordan derivation, and

(i) α(A) = P1α(A11), β(A) = P2β(A22)P2,

(ii) A22B22 +B22A22 = 0⇒ A22β(B) +B22β(A) = 0,

(iii) A12β(B) = A12B22δ(I), (13)

for all A,B ∈ A and Aij , Bij ∈ Aij . For every A,B ∈ A with AB +BA = P1, by

the fact that P2AP1 = 0, we see that

(i) A11B11 +B11A11 = P1,

(ii) A11B12 +A12B22 +B11A12 +B12A22 = 0,

(iii) A22B22 +B22A22 = 0, (14)

where Aij = PiAPj and Bij = PiBPj , for 1 ≤ i, j ≤ 2.

Since α is a left Jordan derivation, equation (14)-(i) implies

2A11α(B11) + 2B11α(A11) = α(P1) = δ(P1). (15)

By equations (13)-(ii) and (14)-(iii),

A22β(B22) +B22β(A22) = 0. (16)

By equations (13)-(iii) and (14)-(ii),

A12β(B22) +B12β(A22) +A11B12δ(I) +B11A12δ(I)

= (A12B22 +B12A22 +A11B12 +B11A12)δ(I) = 0. (17)
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Finally, by equations (15)–(17),

2Aδ(B) + 2Bδ(A)

= 2A(α(B) + β(B) +B12δ(I)) + 2B(α(A) + β(A) +A12δ(I))

= 2A(P1α(B11)+P2β(B22)P2+B12δ(I))+2B(P1α(A11)+P2β(A22)P2+A12δ(I))

= 2A11α(B11) + 2(A12 +A22)β(B22)P2 + 2A11B12δ(I)

+ 2B11α(A11) + 2(B12 +B22)β(A22)P2 + 2B11A12δ(I) = δ(P1).

So δ satisfies (∗∗) . �

Note that if P is a non-trivial idempotent in AlgL satisfying PPL = PL and

PLP = P for some non-trivial element L ∈ L, then P (H) = L ∈ L.

If AlgL is a non-trivial CSL-algebra on a Hilbert space H, then for every

non-trivial element L ∈ L, we have PL ∈ AlgL. We also know that every contin-

uous Jordan left derivation on a CSL-algebra is zero [25]. From these facts and

Theorem 2.5, we can easily obtain the following corollary.

Corollary 2.6. Let AlgL be a non-trivial CSL-algebra on a Hilbert space H
and L ∈ L be non-trivial. If δ : AlgL → AlgL is a continuous linear map, then δ

satisfies

AB +BA = PL ⇒ 2Aδ(B) + 2Bδ(A) = δ(PL), A,B ∈ AlgL,

if and only if δ(A) = β(A)+PLA(I−PL)δ(I) for all A ∈ AlgL, where β : AlgL →
AlgL is a continuous linear map satisfying

β(A) = (I − PL)β((I − PL)A(I − PL))(I − PL) for all A ∈ AlgL,

(I − PL)A(I − PL)B(I − PL) + (I − PL)B(I − PL)A(I − PL) = 0

⇒ (I − PL)Aβ(B) + (I − PL)Bβ(A) = 0, A,B ∈ AlgL,

and

PLA(I − PL)β(B) = PLA(I − PL)B(I − PL)δ(I) for all A,B ∈ AlgL.

To prove the next corollary, we need the following lemma from [27, Theo-

rem 3.4 and the paragraph following Definition 3.1].

Lemma 2.7. Let AlgL be an irreducible CDC-algebra on a Hilbert space H,

then there is a non-trivial element L ∈ L such that for A ∈ AlgL, PL AlgL(I −
PL)A = {0} implies (I − PL)A = 0.
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Corollary 2.8. Let AlgL be an irreducible CDC-algebra on a Hilbert

space H, and let PL ∈ AlgL be the projection in Lemma 2.7. If δ : AlgL → AlgL
is a continuous linear map, then δ satisfies

AB +BA = PL ⇒ 2Aδ(B) + 2Bδ(A) = δ(PL), A,B ∈ AlgL,

if and only if δ(A) = Aδ(I) for all A ∈ AlgL and PLδ(I) = 0.

Proof. First, we give the proof of the ‘only if’ part. By Corollary 2.6, we

have δ(A) = β(A) +PLA(I −PL)δ(I) for all A ∈ AlgL, where β : AlgL → AlgL
is a continuous linear map satisfying

β(A) = (I − PL)β((I − PL)A(I − PL))(I − PL) for all A ∈ A,

and

PLA(I − PL)β(B) = PLA(I − PL)B(I − PL)δ(I) for all A,B ∈ A.

So δ(PL) = β(PL) = 0 and PLδ(I) = PLδ(I − PL) = PLβ(I − PL) = 0. Also we

have PL AlgL(I−PL)(β(B)−B(I−PL)δ(I)) = {0} for all B ∈ AlgL. Therefore

by Lemma 2.7, we have

β(B) = (I − PL)B(I − PL)δ(I),

for all B ∈ AlgL. Now, it follows from these results that

δ(A) = β(A) + PLA(I − PL)δ(I)

= (I − PL)A(I − PL)δ(I) + PLA(I − PL)δ(I) = A(I − PL)δ(I) = Aδ(I),

for all A ∈ AlgL.

Next, we check the ‘if part’. For any A,B ∈ AlgL with AB + BA = PL,

we have

2Aδ(B) + 2Bδ(A) = 2ABδ(I) + 2BAδ(I) = 2PLδ(I) = 0 = δ(PL),

since δ(PL) = PLδ(I) = 0. So δ has the desired form. �

Let AlgN be a non-trivial nest algebra on a Hilbert space H, then for every

non-trivial element N ∈ N , PN AlgN (I − PN )A = {0} implies (I − PN )A = 0

(A ∈ AlgN ). By applying similar arguments to those in the proof of Corollary 2.8,

we get:
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Corollary 2.9. Let AlgN be a nest algebra on a Hilbert space H, and let

N ∈ N be a non-trivial element. If δ : AlgN → AlgN is a continuous linear

map, then δ satisfies

AB +BA = PN ⇒ 2Aδ(B) + 2Bδ(A) = δ(PN ), A,B ∈ AlgN ,

if and only if δ(A) = Aδ(I) for all A ∈ AlgN and PNδ(I) = 0.
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