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On some properties of values of a class
of arithmetical functions

By JÓZSEF BUKOR (Nitra) and JÁNOS TÓTH (Nitra)

Euler’s totient function ϕ has the following properties:
For an arbitrary natural number m there exists a natural number n such
that

(1)
ϕ(n− 1)

ϕ(n)
> m and

ϕ(n + 1)
ϕ(n)

> m

and a natural number n′ such that

(2)
ϕ(n′)

ϕ(n′ − 1)
> m and

ϕ(n′)
ϕ(n′ + 1)

> m

(cf. [2], also [1] pp. 208–209).
The next properties of ϕ are proved in [3] and are explicit in [4]:

For any two natural numbers m and k there exists a natural number n
such that

(3)
ϕ(n + i)

ϕ(n + i− 1)
> m for i = 1, 2, . . . , k

and a natural number n′ such that

(4)
ϕ(n′ + i− 1)

ϕ(n′ + i)
> m for i = 1, 2, . . . , k

The same properties (1)–(4) are valid for the function σ, where σ(n)
is the sum of the natural divisors of a natural number n (cf. [1] p. 246).

It is natural to ask, whether for σ
ϕ properties (1)–(4) are still valid.

The answer is positive, moreover there exists a class of positive multiplica-
tive arithmetic functions satisfying properties (1)–(4).

Let pn denote the n–th prime number. We have
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Theorem 1. Let f(n) be a multiplicative arithmetic function satisfy-
ing the following conditions:

(i) lim inf
n→∞

f(pn)n < +∞.

(ii) For an arbitrary natural number n, f(n) ≥ 1 and for any two
primes p and q, p > q and an arbitrary natural number α, f(p) ≤
f(pα) ≤ f(q).

(iii) The series
∞∑

n=1
(f(pn)− 1) diverges.

Then for any positive K and natural number l there is a natural number
k and a positive constant c for which

(5) f(k + 2i) < c and f(k + 2i + 1) > K · c for i = 0, 1, . . . , l.

Proof. For a fixed l there is a natural number m such that pm > 2l
and l | m.
Let c1 = f(2)m−1. It is known that the condition (iii) is equivalent with

the statement
∞∏

n=1
f(pn) = +∞. From the conditions (i)–(iii) follows

that there exists a positive number c2 such that for infinitely many n’s
f(pn)n < c2. Therefore there is a natural number n such that

(6) f(pn)n < c2 and
∏

j≡0 (mod l)
m<j<n

f(pj) > K · c1 · c2

Let us consider the system of congruences

x ≡ 2l − 2i

(
mod

∏

j≡i (mod l)
m≤j≤n

pj

)
, i = 0, 1, . . . , l − 1.

By the Chinese Remainder Theorem there exists a number x0 satisfying
these congruences such that

(7) 0 < x0 <

n∏

j=m

pj .

Hence we get a sequence of natural numbers a0, a1, . . . , al−1 for which

(8) x0 = 2l − 2i + ai ·
∏

j≡i (mod l)
m≤j≤n

pj , i = 0, 1, . . . , l − 1.

Put k = x0 − (2l + 1). It is easy to see that k > 0. Let us estimate the
values f(k + 2i) and f(k + 2i + 1) for i ∈ {0, 1, . . . , l}.



On some properties of values . . . 189

Clearly k + 2i ≤ k + 2l. From (7) and (8) we have k + 2i <
n∏

j=m

pj

and k +2i is not divisible by the prime numbers pj (j = m,m+1, . . . , n).

Let
m−1∏
j=1

p
αj

j

r∏
j=1

q
βj

j be a factorization of k + 2i into prime numbers, where

αj ≥ 0 (j = 1, 2, . . . ,m − 1) and βj ≥ 1 (j = 1, 2, . . . , r). Then qj > pm

(j = 1, 2, . . . , r) and clearly r < n. Thus using (ii) we have

f(k + 2i) =
m−1∏

j=1

f(pαj

j )
r∏

j=1

f(qβj

j ) < f(2)m−1 · f(pn)n.

Therefore
f(k + 2i) < c1 · c2

and (ii), (8), (6) together yield

f(k + 2i + 1) = f

(
ai

∏

j≡i (mod l)
m≤j≤n

pj

)
≥

≥
∏

j≡i (mod l)
m≤j≤n

f(pj) ≥
∏

j≡0 (mod l)
m<j<n

f(pj) > K · c1 · c2.

In view of Theorem 1 we immediately have

Corollary 1. Let f(n) be a multiplicative function satisfying condi-
tions (i)–(iii) of Theorem 1. Then for any positive number K and natural
number l there exists a natural number k such that

f(k + 2i + 1)
f(k + 2i)

> K and
f(k + 2i + 1)
f(k + 2i + 2)

> K for i = 0, 1, . . . , l − 1.

Remark 1. Note that the functions σ(n)
ϕ(n) ,

σ(n)
n , n

ϕ(n) and the multi-
plicative function h(n) =

∏
k:pk|n

(1 + 1
k ) satisfy conditions (i)–(iii). Prop-

erties (1) and (2) can be visualized on the diagram of ϕ as a “valley” and
a “peak”, respectively. Thus by Corollary 1 we can say that the diagrams
of the functions σ(n)

ϕ(n) ,
σ(n)

n , n
ϕ(n) and h(n) contain arbitrary number of

arbitrary big “peaks” and “valleys”, moreover alternately.

Remark 2. It is easy to verify that if the multiplicative functions f, g
satisfy the conditions (i)–(iii) then c·fα·gβ (c ≥ 1, α, β ≥ 0, not both zero)
satisfies them too. Consequently, there are infinitely many multiplicative
functions satisfying conditions (i)–(iii).
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Theorem 2. Let f(n) be a multiplicative function satisfying condi-
tions (i)–(iii) of Theorem 1. Then for any given positive K and natural
number l there exists a natural number k, such that

(9)
f(k + i + 1)

f(k + i)
> K for i = 1, 2, . . . , l − 1

and a natural number k, such that

(10)
f(k + i)

f(k + i + 1)
> K for i = 1, 2, . . . , l − 1.

Proof. We prove (9), the proof of (10) is analogous.
Set L =

(
l+1
2

)
, c1 = f(2)2L. In virtue of conditions (i)–(iii) we get that

for some natural number n

(11)
∏

j≡n (mod L)
2L≤j≤n

f(pj) > c1 · c2 ·K and f(pn)n < c2.

Let m be the smallest natural number with the properties pm > l and
m ≡ n (mod L). Clearly m < 2L. Put n1 = n−m

L . Let us consider the
system of congruences

x + 1 ≡ 0
(

mod
n1∏

j=1

pm+jL

)

x + 2 ≡ 0
(

mod
n1∏

j=1

pm+jL−1 · pm+jL−2

)

(12)

x + 3 ≡ 0
(

mod
n1∏

j=1

pm+jL−3 · pm+jL−4 · pm+jL−5

)

. . .

x + l ≡ 0
(

mod
n1∏

j=1

pm+jL−(l
2) · pm+jL−(l

2)−1 . . . pm+jL−(l
2)−(l−1)

)

From the Chinese Remainder Theorem follows the existence of a natural
number k, 0 < k <

n∏
j=m+1

pj satisfying the system of congruences, i.e.

there exist natural numbers a1, a2, . . . , al for which

(13) k + i = ai

n1∏

j=1

i−1∏
t=0

pm+jL−(i
2)−t i = 1, 2, . . . , l.
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For simplicity we use the notation h(j, i, t) instead of m + Lj − (
i
2

)− t.
Let a factorization of ai be of the form

ai =
m∏

j=1

p
αj

j ·
n1∏

j=1

i−1∏
t=0

pαh(j,i,t)
h(j,i,t)

·
r∏

j=1

q
βj

j ,

where αj ≥ 0 for j = 1, 2, . . . , n and βj ≥ 1 for the primes qj (j =
1, 2, . . . , r) which are greater than pn. Clearly r < n. According to (ii) we
have

(14)

f(k + i) = f




m∏

j=1

p
αj

j ·
n1∏

j=1

i−1∏
t=0

pαh(j,i,t)+1
h(j,i,t)

·
r∏

j=1

q
βj

j


 ≥

≥
n1∏

j=1

i−1∏
t=0

f
(
pαh(j,i,t)+1

h(j,i,t)

)
.

The inequalities

f




m∏

j=1

p
αj

j


 < f(2)m < f(2)2L = c1 and f




r∏

j=1

q
βj

j


 < f(pn)n < c2

imply

(15)

f(k + i) = f




m∏

j=1

p
αj

j


 ·

n1∏

j=1

i−1∏
t=0

f
(
pαh(j,i,t)+1

h(j,i,t)

)
· f




r∏

j=1

q
βj

j


 <

< c1 · c2 ·
n1∏

j=1

i−1∏
t=0

f
(
pαh(j,i,t)+1

h(j,i,t)

)
.

Using inequalities (14), (15) and (11) we have

f(k + i + 1)
f(k + i)

>
1

c1c2

n1∏

j=1




i−1∏
t=0

f
(
p

αh(j,i+1,t)+1
h(j,i+1,t)

)

f
(
p

αh(j,i,t)+1
h(j,i,t)

) · f
(
pαh(j,i+1,i)+1

h(j,i+1,i)

)

 >

>
1

c1c2

n1∏

j=1

f(pm+jL) > K

for i = 1, 2, . . . , l − 1 which proves the theorem.
With a slight modification of the proofs of Theorem 1 and Theorem

2 we can prove the following
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Corollary 2. Let f(n) be a multiplicative function satisfying the con-
ditions (i)–(iii) of Theorem 1. Then for any positive number K and natural
number l there exists a natural number k for which

(−1)i+1(f(k + i)− f(k + i− 1)) > K,

(−1)i+1(f(k + i)− f(k + i + 1)) > K, (i = 0, 1, . . . , l − 1)

and there exists a natural number k′ such that

f(k′ + i + 1)− f(k′ + i) > K, (i = 0, 1, . . . , l − 1) .

Corollary 3. Let g(n) be a multiplicative arithmetic function satisfy-
ing the following conditions:

(i) lim sup
n→∞

g(pn)n > 0.

(ii) For an arbitrary natural number n, g(n) ≤ 1 and for any two
primes p and q, p > q and an arbitrary natural number α, g(p) ≥
g(pα) ≥ g(q).

(iii) The series
∞∑

n=1

1−g(pn)
g(pn) diverges.

Then, for any positive K and natural number l there are natural numbers
k and k′ for which

g(k + 2i + 1)
g(k + 2i)

> K,
g(k + 2i + 1)
g(k + 2i + 2)

> K and

g(k′ + i + 1)
g(k′ + i)

> K, (i = 1, 2, . . . , l − 1).

Proof. The proof follows immediately from the fact that the func-
tion f = 1

g satisfies conditions (i)–(iii) of Theorem 1.

Remark 3. From [5] follows that if f(pn) > 1, lim
n→∞

f(pn) = 1 and
∞∑

n=1
(f(pn) − 1) diverges for a multiplicative function f , then the set

{f(n); n ∈ N} is dense in (1, +∞). It is an easy exercise to show that
conditions (i)–(iii) of Theorem 1 imply the above conditions. Therefore
the set of values of an arithmetic function satisfying conditions (i)–(iii)
from Theorem 1 is a dense set in (1, +∞).
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JÓZSEF BUKOR
COLLEGE OF EDUCATION
DEPARTMENT OF MATHEMATICS
FARSKÁ 19.
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FARSKÁ 19.
949 01 NITRA
SLOVAKIA

E-MAIL: TOTH@UNITRA.SK


