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Approximation of functions by nonlinear singular integral
operators depending on two parameters

By EUGENIUSZ WACHNICKI (†) (Kraków) and GRAŻYNA KRECH (Kraków)

The preparation of this paper became overshadowed by Professor Wachnicki’s death

in November 2015. We had intended to write jointly. I have done my best

to complete the main ideas, most of which were worked out together.

In sorrow, I dedicate this work to his memory.

Grażyna Krech

Abstract. The aim of this paper is to study the behavior of nonlinear singular

integral operators of the form

Tw(f)(s) =

∫
G

Kw(s− t, f(t))dt.

Here we estimate the rate of convergence at a point s0 in which a function f is continuous.

This is an extension of the paper by Świderski and Wachnicki [21].

1. Introduction

The approximation theory with nonlinear integral operators of convolution

type was introduced by J. Musielak in [20]. For futher reading, we refer the

reader to [4]–[6], [12], [15], [22], as well as the monographs [8] and [10], where

some kinds of convergence results of nonlinear singular integral operators in many
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different spaces have been considered. For further references on approximation

results for convolution and non-convolution type operators and their applications,

see, e.g., [2]–[3], [7], [11], [13].

Let G be a locally compact abelian group with the Haar measure. The Haar

integral of a real-valued function f on A ⊂ G is denoted by
∫
A
f(t)dt. We denote

by B(θ) the family of all neighbourhoods of the neutral element θ of G. Let

W be a nonempty set of indices with any topology, and w0 be an accumulation

point of W in this topology. We take the family K = (Kw)w∈W of functions

Kw : G × R → R, where Kw(t, 0) = 0 for t ∈ G, such that for every w ∈ W ,

Kw are integrable functions with respect to the first variable for all values of the

second variable. The family K will be called a kernel.

We consider a nonlinear integral operator Tw, w ∈W of the form

Tw(f)(s) =

∫
G

Kw(s− t, f(t))dt =

∫
G

Kw(t, f(s− t))dt. (1)

In papers [9], [17]–[19], the convergence of integral (1) in some normed or

modular spaces has been studied. In [21], the pointwise convergence of the

operators Tw in Lp(G) at the point s0, where s0 is a point of continuity of f

and (w, s) → (w, s0) in the sense of the product convergence, was investigated.

Karsli [14] and Karsli–Gupta [16] investigated the pointwise convergence and

the rate of convergence of the operators∫ b

a

Kw(t− x, f(t))dt, x ∈ [a, b] ⊂ R,

on a µ-generalized Lebesgue point x0 of f in L1(a, b) as (x,w)→ (x0, w0), or on

a discontinuity point x0 of the first kind.

In the present paper, we investigate the problem of the rate of convergence

of operators (1) in the case G = R or G = [−π, π) with the addition modulo 2π.

We also study the Voronovskaya-type theorem for operators (1), and give exam-

ples for which the presented theorems apply.

First, we shall find the conditions which provide the existence and conver-

gence to f of the integral Tw(f).

We assume that the following conditions hold:

(a) There exists an integrable function Lw : G→ R such that

|Kw(t, u)−Kw(t, v)| ≤ Lw(t)|u− v| (2)

for any w ∈W , t ∈ G, u, v ∈ R.
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(b) There exists a number M > 0 such that∫
G

Lw(t)dt ≤M for all w ∈W.

(c) limw→w0

1
u

∫
G
Kw(t, u)dt = 1 for every u ∈ R \ {0}.

(d) For every U ∈ B(θ),

lim
w→w0

∫
G\U

Lw(t)dt = 0.

Let f ∈ Lp(G), 1 ≤ p ≤ +∞. Condition (a) provides that Tw(f) ∈ Lp(G).

Further, denote

RUq (w) =


(∫

G\U
(Lw(t))

q

)1/q

, as 1 ≤ q < +∞,

sup
G\U

ess Lw(t), as q = +∞,

and assume that

(e) limw→w0
RUq (w) = 0 for every U ∈ B(θ) and 1

p + 1
q = 1.

We have the following theorem.

Theorem 1 ([21]). Let f ∈ Lp(G), 1 ≤ p ≤ +∞. Assume that the kernel K

satisfies (a)–(e). Then

lim
(w,s)→(w0,s0)

Tw(f)(s) = f(s0),

where s0 is an accumulation point at which f is continuous.

2. The rate of convergence

In this section, we assume that G = R or G = [−π, π) with the addition

modulo 2π. We prove the following result.

Theorem 2. Let f ∈ L∞(G). Assume that the kernel K satisfies (a)–(e).

Then

|Tw(f)(s)− f(s0)| ≤
(

2 + 3

∫
G

Lw(t)dt

)
ω(f, δ) +

∣∣∣∣∫
G

Kw(t, f(s0))dt− f(s0)

∣∣∣∣ ,
for every (w, s) ∈W ×G such that |s−s0| < δ =

(∫
G
t2Lw(t)dt

)1/2
, where ω(f, δ)

is a modulus of continuity of f , i.e.,

ω(f, δ) = sup
s∈G
|h|≤δ

|f(s+ h)− f(s)|.
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Proof. We observe that

|Tw(f)(s)− f(s0)| ≤
∣∣∣∣∫
G

Kw(s− t, f(t))dt− f(s0)

∣∣∣∣
≤
∣∣∣∣∫
G

Kw(s− t, f(t))dt−
∫
G

Kw(s− t, f(s0))dt

∣∣∣∣
+

∣∣∣∣∫
G

Kw(s− t, f(s0))dt− f(s0)

∣∣∣∣ = A1 +A2.

By (1) we get

A2 =

∣∣∣∣∫
G

Kw(s− t, f(s0))dt− f(s0)

∣∣∣∣ =

∣∣∣∣∫
G

Kw(t, f(s0))dt− f(s0)

∣∣∣∣ .
We remark that

|f(t)− f(s0)| ≤ ω(f, |t− s0|) ≤
(

1 +
(t− s0)2

δ2

)
ω(f, δ)

for every δ > 0. Hence, by (2) we get

A1 ≤
∫
G

|f(t)− f(s0)|Lw(s− t)dt ≤ ω(f, δ)

∫
G

(
1 +

(t− s0)2

δ2

)
Lw(s− t)dt

= ω(f, δ)

[∫
G

Lw(s− t)dt+
1

δ2

∫
G

(t− s0)2Lw(s− t)dt
]

= ω(f, δ)

[∫
G

Lw(t)dt+
1

δ2

∫
G

(s− t− s0)2Lw(t)dt

]
≤ ω(f, δ)

[∫
G

Lw(t)dt+
2

δ2

∫
G

t2Lw(t)dt+
2(s− s0)2

δ2

∫
G

Lw(t)dt

]
.

Putting δ =
(∫
G
t2Lw(t)dt

)1/2
, we obtain

A1 ≤ ω(f, δ)

[
3

∫
G

Lw(t)dt+ 2

]

for |s− s0| <
(∫
G
t2Lw(t)dt

)1/2
. Hence

|Tw(f)(s)− f(s0)| ≤ ω(f, δ)

[
3

∫
G

Lw(t)dt+ 2

]
+

∣∣∣∣∫
G

Kw(t, f(s0))dt− f(s0)

∣∣∣∣
for |s− s0| < δ =

(∫
G
t2Lw(t)dt

)1/2
. �
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Corollary 1. If
∫
G
Lw(t)dt = 1, then

|Tw(f)(s)− f(s0)| ≤ 5ω(f, δ) +

∣∣∣∣∫
G

Kw(t, f(s0))dt− f(s0)

∣∣∣∣
for |s− s0| < δ =

(∫
G
t2Lw(t)dt

)1/2
and w ∈W .

Now we give specific examples of operators for which the main theorem ap-

plies.

Example 1. In G = R we consider the natural topology and the Lebesgue

integral. Let u ∈ R. We define

Kn(t, u) = Kn(t)u =

√
n

π
ue−nt

2

, t ∈ R

for n ∈ N. The set of indices W is equal to N and w0 = +∞. In this case

Ln(t) =

√
n

π
e−nt

2

, t ∈ R.

Using ∫ ∞
0

e−nt
2

dt =
1

2

√
π

n
,

∫ ∞
0

t2e−nt
2

dt =
1

4n

√
π

n
,

we obtain∫
R
Ln(t)dt = 1,

∫
R
t2Ln(t)dt =

1

2n
,

∫
R
Kn(t, u)dt = u.

Therefore,

|Tn(f)(s)− f(s0)| ≤ 5ω(f, δ) +

∣∣∣∣∫
R
Kn(t, f(s0))dt− f(s0)

∣∣∣∣ = 5ω(f, δ)

for |s− s0| < δ = 1√
2n

.

This is the example of a linear kernel with respect to the second variable, i.e.,

Kw(t, u) = Lw(t)u. This case is widely used in approximation theory, see [10].

Example 2. Take G = [−π, π) with the operation of addition modulo 2π.

In G we consider the natural topology and the Lebesgue integral. Let u ∈ R.

We define

Kn(t, u) =


nu

2
+ sin

nu

2
, if t ∈ [− 1

n ,
1
n ],

0, if t ∈ [−π, π) \ [− 1
n ,

1
n ],
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for n ∈ N. The set of indices W is equal to N and w0 = +∞. In this case,

we find that

Ln(t) =

n, if t ∈ [− 1
n ,

1
n ],

0, if t ∈ [−π, π) \ [− 1
n ,

1
n ].

Moreover,∫
G

Ln(t)dt = 2,

∫
G

t2Ln(t)dt =
2

3n2
,

∫
G

Kn(t, u)dt =
2

n
sin

nu

2
+ u.

Hence

|Tn(f)(s)− f(s0)| ≤ 8ω(f, δ) +
2

n

∣∣∣∣sin nf(s0)

2

∣∣∣∣ ≤ 8ω(f, δ) +
2

n
,

for |s− s0| ≤ δ =
√
2

n
√
3

and n ∈ N.

Example 3. Analogously, we can consider

Kn(t, u) =

n
2 sin

u

2n
, if t ∈ [− 1

n ,
1
n ],

0, if t ∈ [−π, π) \ [− 1
n ,

1
n ].

We take G = [−π, π) with the operation of addition modulo 2π. The set of indices

is equal to N, w0 = +∞. In this case, we get

Ln(t) =


n

2
, for t ∈ [− 1

n ,
1
n ],

0, for t ∈ [−π, π) \ [− 1
n ,

1
n ],

and ∫
G

Ln(t)dt = 1,

∫
G

t2Ln(t)dt =
1

3n2
,

∫
G

Kn(t, u)dt = 2n sin
u

2n
.

Hence

|Tn(f)(s)− f(s0)| ≤ 5ω(f, δ) +

∣∣∣∣2n sin
f(s0)

2n
− f(s0)

∣∣∣∣ ,
for |s− s0| < δ = 1

n
√
3
, n ∈ N.
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3. Some results for r-times differentiable functions

Let Cr, r ∈ N, be the class of all r-times differentiable functions f ∈ L∞(G)

with derivatives f (k) ∈ L∞(G) for 0 ≤ k ≤ r. Observe, that for f ∈ Cr, r ∈ N,

t ∈ R, we can write

f(s) =

r∑
j=0

f (j)(t)

j!
(s− t)j + Ir(t, s), s ∈ R,

where

Ir(t, s) =
(s− t)r

(r − 1)!

∫ 1

0

(1− u)r−1
[
f (r)(t+ u(s− t))− f (r)(t)

]
du.

Let

Fr(t, s) =

r∑
j=0

f (j)(t)

j!
(s− t)j , s, t ∈ R,

therefore,

Fr(t, s) = f(s)− Ir(t, s), s, t ∈ R.

Assume that G = R or G = [−π, π) with the addition modulo 2π and W = N.

For f ∈ Cr, we consider the operator

Tn;r(f)(s) :=

∫
G

Kn(s− t, Fr(t, s))dt =

∫
G

Kn(t, Fr(s− t, s))dt.

Theorem 3. Let f ∈ Cr, and let the kernel K verify conditions (a)–(e).

If there exists n ∈ N and M1(r) > 0, such that

nr
∫
G

t2rLn(t)dt < M1(r),

then

|Tn;r(f)(s)− f(s0)| ≤M2(r)
1

r!
n−r/2ω

(
f (r); δ

)
+

∣∣∣∣∫
G

Kn(t, Fr(s0, s))dt− f(s0)

∣∣∣∣ ,
for (n, s) ∈ N × G such that |s − s0| < δ =

(∫
G
t2Ln(t)dt

)1/2
, where M2(r) is

a positive constant.
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Proof. Observe that

|Tn;r(f)(s)− f(s0)| ≤
∣∣∣∣∫
G

Kn(s− t, Fr(t, s))dt−
∫
G

Kn(s− t, Fr(s0, s))dt
∣∣∣∣

+

∣∣∣∣∫
G

Kn(s− t, Fr(s0, s))dt− f(s0)

∣∣∣∣ = A1 +A2.

We have

A2 =

∣∣∣∣∫
G

Kn(s− t, Fr(s0, s))dt− f(s0)

∣∣∣∣ =

∣∣∣∣∫
G

Kn(t, Fr(s0, s))dt− f(s0)

∣∣∣∣
and

A1 ≤
∫
G

Ln(s− t) |Fr(t, s)− Fr(s0, s)| dt.

Now, we estimate

|Fr(t, s)− Fr(s0, s)− f(s) + f(s)| ≤ |Fr(t, s)− f(s)|+ |Fr(s0, s)− f(s)|
= |Ir(t, s)|+ |Ir(s0, s)| .

Using the properties of the modulus of smoothness, we get

|Ir(t, s)| ≤
|t− s|r

(r − 1)!

∫ 1

0

(1− u)r−1ω
(
f (r);u|t− s|

)
du

≤ 1

r!
|t− s|rω

(
f (r); |t− s|

)
≤ 1

r!
ω
(
f (r); δ

)(
|t− s|r +

1

δ
|t− s|r+1

)
, δ > 0.

Therefore,

A1 ≤
∫
G

Ln(s− t)
{

1

r!
ω
(
f (r); δ

)(
|t− s|r +

1

δ
|t− s|r+1

)
+

1

r!
ω
(
f (r); δ

)(
|s0 − s|r +

1

δ
|s0 − s|r+1

)}
dt

=
1

r!
ω
(
f (r); δ

){∫
G

Ln(s− t)
(
|t− s|r +

1

δ
|t− s|r+1

)
dt

+

(
|s0 − s|r +

1

δ
|s0 − s|r+1

)∫
G

Ln(s− t)dt
}

=
1

r!
ω
(
f (r); δ

){∫
G

|t|rLn(t)dt+
1

δ

∫
G

|t|r+1Ln(t)dt

+

(
|s0 − s|r +

1

δ
|s0 − s|r+1

)∫
G

Ln(t)dt

}
.
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From ∫
G

|t|rLn(t)dt ≤
(∫

G

Ln(t)dt

)1/2(∫
G

t2rLn(t)dt

)1/2

and ∫
G

|t|r+1Ln(t)dt ≤
(∫

G

t2Ln(t)dt

)1/2(∫
G

t2rLn(t)dt

)1/2

,

we obtain for (n, s) ∈ N × G such that |s − s0| < δ =
(∫
G
t2Ln(t)dt

)1/2
,

the following inequality:

A1 ≤
1

r!
ω
(
f (r); δ

){(∫
G

Ln(t)dt

)1/2(∫
G

t2rLn(t)dt

)1/2

+
1

δ

(∫
G

t2Ln(t)dt

)1/2(∫
G

t2rLn(t)dt

)1/2

+2δr
∫
G

Ln(t)dt

}
.

Let

nr
∫
G

t2rLn(t)dt < M1(r),

where M1(r) is some positive constant. Therefore∫
G

t2rLn(t)dt <
M1(r)

nr
.

Using this and the above estimate, we get

A1 ≤
1

r!
ω
(
f (r); δ

){M2
1 (r)

nr/2
+
M1(r)

nr/2
+

2Mr+1
1 (r)

nr/2

}
≤M2(r)

1

r!
n−r/2ω

(
f (r); δ

)
for some M2(r) > 0. Finally, we conclude

|Tn;r(f)(s)− f(s0)| ≤M2(r)
1

r!
n−r/2ω

(
f (r); δ

)
+

∣∣∣∣∫
G

Kn(t, Fr(s0, s))dt− f(s0)

∣∣∣∣
for f ∈ Cr, (n, s) ∈ N×G such that |s− s0| < δ, and some M2(r) > 0. �

Now, consider the operator from Example 2. In this case, we derive

nr
∫
G

t2rLn(t)dt = nr
∫ 1/n

−1/n
t2rndt = n−r

2

2r + 1
< M1(r),

where M1(r) is a positive constant. The assumptions of Theorem 3 are fulfilled,

and we obtain the following estimation

|Tn;r(f)(s)− f(s0)| ≤M2(r)
1

r!
n−r/2ω

(
f (r); δ

)
+

2

n
,

for (n, s) ∈ N×G such that |s−s0| < δ =
√
2

n
√
3
, where M2(r) is a positive constant.
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4. A Voronovskaya-type theorem

In this section, we suppose that G = R or G = [−π, π) with the addition

modulo 2π, W = N and w0 = +∞. We prove the following result.

Theorem 4. Let f ∈ L∞(G), where f is twice differentiable at the point

s0 ∈ G. Let the kernel K verify conditions (a)–(e). Moreover, we suppose that

lim sup
n→+∞

n

∫
G

|t|Ln(t)dt = α, lim sup
n→+∞

n

∫
G

t2Ln(t)dt = β,

lim sup
n→+∞

n

∣∣∣∣∫
G

Kn(t, f(s0))dt− f(s0)

∣∣∣∣ = γ, n2

∫
G

t4Ln(t)dt < M2
1 ,

where M1 is a positive constant. Then

lim sup
(s,n)→(s0,+∞)

(s,n)∈ZC
a

n |Tn(f)(s)− f(s0)| ≤ γ + α|f ′(s0)|+ 1

2
β|f ′′(s0)|, (3)

where ZCa = {(s, n) ∈ G× N : na|s− s0| < C}, and a > 1, C > 0 are fixed num-

bers.

Proof. We get

n|Tn(f)(s)− f(s0)| = n

∣∣∣∣∫
G

Kn(s− t, f(t))dt− f(s0)

∣∣∣∣
≤ n

∣∣∣∣∫
G

[Kn(s− t, f(t))−Kn(s− t, f(s0))] dt

∣∣∣∣
+ n

∣∣∣∣∫
G

Kn(s− t, f(s0))dt− f(s0)

∣∣∣∣ = I1 + I2.

By (1) and the assumption, we get

I2 = n

∣∣∣∣∫
G

Kn(t, f(s0))dt− f(s0)

∣∣∣∣ and lim sup
n→+∞

I2 = γ.

By (a), we obtain

I1 ≤ n
∫
G

|f(t)− f(s0)|Ln(s− t)dt.

Applying the Taylor formula,

f(t) = f(s0) + f ′(s0)(t− s0) +
1

2
(t− s0)2f ′′(s0) + ε(t, s0)(t− s0)2,
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where limt→s0 ε(t, s0) = 0 and the function t → ε(t, s0) is of the class L∞(G),

we see that

I1 ≤ n|f ′(s0)|
∫
G

|t− s0|Ln(s− t)dt+
n

2
|f ′′(s0)|

∫
G

(t− s0)2Ln(s− t)dt

+ n

∫
G

|ε(t, s0)|(s0 − t)2Ln(s− t)dt = |f ′(s0)|I11 +
1

2
|f ′′(s0)|I12 + I13.

By the assumption, we get

I11 ≤ n
∫
G

|s− t|Ln(s− t)dt+ n

∫
G

|s− s0|Ln(s− t)dt

= n

∫
G

|t|Ln(t)dt+ n|s− s0|
∫
G

Ln(t)dt ≤ n
∫
G

|t|Ln(t)dt+ n1−aC ·M,

and

I12 ≤ 2n

∫
G

(s− t)2Ln(s− t)dt+ 2n

∫
G

(s− s0)2Ln(s− t)dt

= 2n

∫
G

t2Ln(t)dt+ 2n(s− s0)2
∫
G

Ln(t)dt

≤ 2n

∫
G

t2Ln(t)dt+ 2n1−a|s− s0|C ·M,

for some M > 0 and (n, s) ∈ ZCa . Hence

lim
(s,n)→(s0,+∞)

(s,n)∈ZC
a

(
|f ′(s0)|I11 +

1

2
|f ′′(s0)|I12

)
= α|f ′(s0)|+ 1

2
β|f ′′(s0)|.

In order to prove (3), it is sufficient to obtain

lim
(s,n)→(s0,+∞)

(s,n)∈ZC
a

I13 = 0.

We get

I13 ≤ 2n

∫
G

|ε(t, s0)|(s− t)2Ln(s− t)dt+ 2n

∫
G

|ε(t, s0)|(s− s0)2Ln(s− t)dt

= J1 + J2.
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By assumption,

J2 ≤ 2n1−aC|s− s0|
∫
G

|ε(t, s0)|Ln(s− t)dt for (s, n) ∈ ZCa .

Recalling the Cauchy–Schwarz inequality, we can infer

J1 ≤ 2n

(∫
G

ε2(t, s0)Ln(s− t)dt
)1/2

·
(∫

G

(s− t)4Ln(s− t)dt
)1/2

≤ 2M1

(∫
G

ε2(t, s0)Ln(s− t)dt
)1/2

.

By the approximative properties of the convolution (see [10]) and (b), (c), (d),

we get

lim
n→+∞

∫
G

ε2(t, s0)Ln(s− t)dt = ε2(s0, s0) = 0,

lim
n→+∞

∫
G

|ε(t, s0)|Ln(s− t)dt = |ε2(s0, s0)| = 0.

Hence

lim
(s,n)→(s0,+∞)

(s,n)∈ZC
a

I13 = 0.

Thus, the proof of Theorem 4 is complete. �

We apply Theorem 4 to Example 3. In this case, the assumptions of Theo-

rem 4 are satisfied. Indeed

n

∫
G

|t|Ln(t)dt =
n2

2

∫ 1/n

−1/n
|t|dt =

1

2
,

n

∫
G

t2Ln(t)dt =
n2

2

∫ 1/n

−1/n
t2dt =

1

3n
,

n2
∫
G

t4Ln(t)dt =
n3

2

∫ 1/n

−1/n
t4dt =

1

5n2
,

n

∣∣∣∣∫
G

Kn(t, f(s0))dt− f(s0)

∣∣∣∣ =

∣∣∣∣2n2 sin
f(s0)

2n
− nf(s0)

∣∣∣∣→ 0 as n→ +∞.

Hence

lim sup
(s,n)→(s0,+∞)

(s,n)∈ZC
a

n |Tn(f)(s)− f(s0)| ≤ 1

2
|f ′(s0)|.

Analogously, we can prove the following result.
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Theorem 5. Let f ∈ L∞(G), where f is twice differentiable at the point

s0 ∈ G. Let the kernel K verify conditions (a)–(e). Moreover, we suppose that

there exist positive constants Mi, i = 1, 2, 3, 4 such that

n

∫
G

|t|Ln(t)dt ≤M1, n

∫
G

t2Ln(t)dt ≤M2,

n

∣∣∣∣∫
G

Kn(t, f(s0))dt− f(s0)

∣∣∣∣ ≤M3, n2
∫
G

t4Ln(t)dt < M4.

Then, there exists a constant M5 > 0 such that

n |Tn(f)(s)− f(s0)| ≤M5

in the set ZCa = {(s, n) ∈ G× N : na|s− s0| < C}, where a > 1 and C is a positive

constant.

Next, we apply Theorem 5 to Example 2. In this case, we get

n

∫
G

|t|Ln(t)dt = 1, n

∫
G

t2Ln(t)dt =
2

3n
≤ 2

3
,

n

∣∣∣∣∫
G

Kn(t, u)dt− u
∣∣∣∣ = 2

∣∣∣sin nu
2

∣∣∣ < 2, n2
∫
G

t4Ln(t)dt =
2

5n3
<

2

5
.

Hence

n |Tn(f)(s)− f(s0)| ≤M5,

for (s, n) ∈ ZCa and some M5 > 0.
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