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The n-dimensional hyperbolic space in E4n−3

By RÓBERT OLÁH-GÁL (Miercurea-Ciuc)

Abstract. In this paper we will construct an isometric immersion of the n-
dimensional hyperbolic space into the euclidian space E4n−3 with a modification of
Danilo Blanu�sa’s [2] immersion into E6n−5 [2].

§1. Introduction

In (1955) Blanus̆a [2] gave a beautiful construction for the isometric
embedding of the complete hyperbolic plane H2 into E6 and also for the
isometric immersion of the n-dimensional hyperbolic space into E6n−5.
This immersion is of class C∞, but it is not analytic. A construction of
an analytical embedding of the hyperbolic plane into En (with sufficiently
large n) is unknown even these days.

In 1960 Rozendorn [1] published a paper noting that every metric
ds2 = du2 + f2(u) dv2 can be immersed in E5 using Blanus̆a’s method.

The immersion we are dealing with is a modification of Blanus̆a’s
construction, therefore we shortly recall it. Blanus̆a considered the sur-
face Φ(u, v) in E6 described in Cartesian coordinates x1, x2, . . . , x6 by the
functions

x1(u, v) = x1(u) =
∫ u

0

√
1− f1

′(y)2 − f2
′(y)2dy(1)

x2(u, v) = f1(u) sin(vψ1(u))(2)

x3(u, v) = f1(u) cos(vψ1(u))(3)

x4(u, v) = f2(u) sin(vψ2(u))(4)

x5(u, v) = f2(u) cos(vψ2(u))(5)

x6(u, v) = x6(v) = v −∞ < u, v < ∞(6)
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where

f1(u) =
ϕ1(u) sinh u

ψ1(u)
, f2(u) =

ϕ2(u) sinh u

ψ2(u)

ψ1(u) = e5+2[ 1+|u|
2 ], ψ2(u) = e6+2[ |u|2 ]

([x] denotes the integer part of x), and

ϕ1(u) =
(

1
A

∫ 1+u

0

sin(πx)
esin−2(πx)

dx

)1/2

,

ϕ2(u) =
(

1
A

∫ u

0

sin(πx)
esin−2(πx)

dx

)1/2

A =
∫ 1

0

sin(πx)
esin−2(πx)

dx , A ≈ 0.141327.

The functions ϕ1(u) and ϕ2(u) have the properties

0 ≤ ϕ1(u) ≤ 1, 0 ≤ ϕ2(u) ≤ 1,

ϕ1(u)2 + ϕ2(u)2 = 1, ϕ1(u) = ϕ2(u + 1), u ∈ R.

ψ2 has a discontinuity for even integers u, and so has ψ1 for odd integers u,
but at these points ϕ1 and ϕ2 vanish together with all of their derivatives,
and so the functions f1 resp. f2 are of class C∞. Besides,

fi
′(u) =

ϕi(u) cosh u + ϕ′i(u) sinh u

ψi(u)
, i = 1, 2

while ψi is a step function and has zero derivatives. Furthermore we have

|fi
′(u)| < e|u||ϕi(u)|+ e|u||ϕ′i(u)|

ψi(u)
<

19e|u|

ψi(u)
< 19e|u|−(4+|u|)

=
19
e4

<
1√
2
, i = 1, 2.

Using the above properties of the functions fi, it is easy to see that
√

1− f ′1(y)2 − f ′2(y)2

is real for any value of u.
Blanus̆a has shown (see [2]) that (1)–(6) give a one-to-one C∞ map-

ping of the (u, v) plane R2 into E6, and the metric of Φ(u, v) induced by
E6 is

(7) ds2 = du2 + cosh2 u dv2,
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and hence Φ has a constant negative curvature. (7) can be considered as
the metric of H2(u,v).

Theorem. (Blanus̆a’s [2] p. 218). Functions (1)–(6) (u, v ∈ R)
define an isometric C∞ embedding of the hyperbolic plane into E6.

§2. The hyperbolic plane in E5

By omitting x6, we get a surface
∑

of E5 with metric ds2 = du2 +
sinh2 u dv2.

∑ ⊂ E5 has singularity only when u = 0, which corresponds
to the origin (0, 0, 0, 0, 0) of E5. For integers u the images of the parametric
lines are closed. We wish to illustrate the appearance of a surface having
one singular point in E5 using an analog of the projection from E4 onto
E3 (See Figure 1). At any other point the metric is positive definite and
the curvature is −1. So we obtain

Figure 1.
Parallel projection of a surface with constant negative

curvature in E4 into E3.

The image is also a surface with constant negative curvature in E3.
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Proposition 1. The surface Σ given by (1)–(5) (u, v ∈ R) is a surface

with constant negative curvature, having only one singular point.

In 1955 Amsler [3] proved that each surface of E3 with constant
negative curvature has an edge (i.e. it contains a curve consisting of singu-
larities), and showed the nonexistence in E3 of surfaces of constant nega-
tive curvature with singularity consisting of one point alone. Proposition 1
shows that Amsler’s theorem fails to be valid in En if n ≥ 5.

If we change sinh u to cosh u in f1 and f2, then (1)–(6) give a surface
with the metric ds2 = du2 +

(
cosh2u + 1

)
dv2, which is a metric of Efimov

type and its curvature is

K(u, v) = −1 + 12e2u + 6e4u + 12e6u + e8u

(1 + 6e2u + e4u)2
< −1/4.

If we omit x6 again, we get a surface Σ̃ in E5 with constant negative
curvature.

Σ̃ is given by

x1(u, v) = x1(u) =
∫ u

0

√
1− g′1(y)2 − g′2(y)2dy(8)

x2(u, v) = g1(u) cos(vψ1(u)),(9)

x3(u, v) = g1(u) sin(vψ1(u)),(10)

x4(u, v) = g2(u) cos(vψ2(u)),(11)

x5(u, v) = g2(u) sin(vψ2(u)),(12)

g1(u) =
ϕ1(u) cosh u

ψ1(u)
, g2(u) =

ϕ2(u) cosh u

ψ2(u)
, u, v ∈ R.

A calculation shows that the metric of Σ̃ in E5 is also (7) and this can be
considered as the metric of R2(u,v) ≡ H2(u,v).

Theorem. Functions given by (8)–(12) u, v ∈ R define an isometric
C∞ immersion of the hyperbolic plane into E5 .

Proof. Blanus̆a has shown that ϕ1/ψ1 and ϕ2/ψ2 are of class C∞.
From this follows that g1 and g2 also have this property. We show that

x1(u, v) =
∫ u

0

√
1− g′1(y)2 − g′2(y)2dy
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is real for any value of u. The majoring of gi
′ is totally analogous to that

of fi
′

g′i(u) =
ϕi(u) cosh u + ϕ′i(u) sinh u

ψi(u)
, i = 1, 2;

|gi
′(u)| < e|u||ϕi(u)|+ e|u||ϕ′i(u)|

ψi(u)
<

19e|u|

ψi(u)
< 19e|u|−(4+|u|)

=
19
e4

<
1√
2
, i = 1, 2.

It follows that x1(u, v) is real for any value of u; moreover ∂xi

∂u ∦ ∂xi

∂v
(i = 1, . . . , 5), therefore (8)–(12) is an immersion, indeed. ¤

We remark that the above calculation is analogous to that of Blanu-
s̆a.

§3. The n-dimensional hyperbolic space in E4n−3

In order to map the n-dimensional hyperbolic space into E6n−5 iso-
metrically, Blanus̆a constructed two new functions. These are the following

F1(u) =
ϕ1( 1

u )
ψ1( 1

u )

√
1
u2
− e−2u, F2(u) =

ϕ2( 1
u )

ψ2( 1
u )

√
1
u2
− e−2u,

where ϕ1, ϕ2, ψ1, ψ2 are the same as in §1.
Let x0, xr1, xr2, . . . , xr6 (r = 1, . . . , n− 1) denote a Cartesian coordi-

nate system in E6n−5, and let u, vr (r = 1, . . . , n− 1) (u > 0 and vr ∈ R)
be the parameter domain endowed with the metric

(13) ds2 = dx2
0 +

n−1∑
r=1

6∑
s=1

dx2
rs =

1
u2

(
du2 +

n−1∑
r=1

dv2
r

)
.

So we have got the hyperbolic space Hn.

Theorem (Blanus̆a [2] p. 225). The functions

x0(u, vr) = x0(u) =
∫ u

1

√
1
y2
− F ′1(y)2 − F ′2(y)2 − e−2ydy,

xr1(u, vr) =
e−u

√
n− 1

cos(
√

n− 1vr),

xr2(u, vr) =
e−u

√
n− 1

sin(
√

n− 1vr)
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xr3(u, vr) =
F1(u)√
n− 1

cos(
√

n− 1vrψ1(
1
u

)),

xr4(u, vr) =
F1(u)√
n− 1

sin(
√

n− 1vrψ1(
1
u

))

xr5(u, vr) =
F2(u)√
n− 1

cos(
√

n− 1vrψ2(
1
u

)),

xr6(u, vr) =
F2(u)√
n− 1

sin(
√

n− 1vrψ2(
1
u

))

−∞ < vr < ∞, (r = 1, . . . , n− 1), 0 < u.

define a C∞ isometric immersion of the n-dimensional hyperbolic space
into E6n−5 with the metric (13).

In order to reduce the number of dimensions from 6n− 5 to 4n− 3,
we need to find a metric

ds2 = g11(u) du2 +
n−1∑
r=1

gr+1,r+1(u)dv2
r

with constant negative curvature, where g22 = g33 = · · · = gnn ≡ f(u)2.
The following observation helps us to generalize a two-dimensional

metric g11 = g11(u), g12 = 0, g22 = g22(u) with constant negative curvature
to an n-dimensional metric gii = gii(u) and gij = 0, i 6= j with constant
negative curvature.

Proposition. The metric

(14) ds2 = x(u)du2 + f2(u)dv2

has curvature K = −1 if and only if

(15) x′f ′ + 2fx2 − 2f ′′x = 0.

Furthermore, this differential equation has the following particular solu-
tions

(16) x1 =
f ′2

f2 − 1
; x2 =

f ′2

f2
; x3 =

f ′2

1 + f2
.

Proof. Suppose that (14) has curvature K = −1. Then, using the
elementary formula

(17) K(u, v) =

(
∂t1
∂u + ∂t2

∂v

)

2 d
,
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where d =
√

g11 g22 − g2
12, t1 = g12

∂g11
∂v

d g11
−

∂g22
∂u

d , t2 = 2
∂g11
∂u

d −
∂g11

∂v

d − g12
∂g11
∂u

d g11

(see e.g. [4]). In our case d = f
√

x, t1 = −2 f ′√
x
, t2 = 0 so we obtain the

differential equation (15).
Conversely (14) and (15) yield K = −1 by (17). Finally, a simple

substitution shows that the functions (16) satisfy the equation (15).

Examples 1. If f(u) = cosh u then we obtain for x(u) = x1(u), x(u) =
x2(u), x(u) = x3(u) the metrics ds2 = du2 + cosh2u dv2, ds2 = tanh2u du2

+cosh2 u dv2 and ds2 = sinh2 u
cosh2 u+1

du2 + cosh2u dv2, respectively.

Examples 2. In case f(u) = 1
u we obtain for x(u) = x1(u), x(u) =

x2(u), x(u) = x3(u) the metrics ds2 = 1
u2(1−u2) du2 + 1

u2 dv2, ds2 = 1
u2 (du2

+dv2) and ds2 = 1
u2(1+u2) du2 + 1

u2 dv2, respectively.

Let us consider the mapping

ρ : Rn(u, vr) −→ E4n−3

given in Cartesian coordinates by

x0(u, vr) = x0(u) =
∫ u

0

√
1− f ′1(y)2 − f ′2(y)2dy(18)

xr1(u, vr) = f1(u) sin(vrψ1(u))(19)

xr2(u, vr) = f1(u) cos(vrψ1(u))(20)

xr3(u, vr) = f2(u) sin(vrψ2(u))(21)

xr4(u, vr) = f2(u) cos(vrψ2(u))(22)

−∞ < u, vr < ∞ (r = 1, . . . , n− 1)

where

f1(u) =
ϕ1(u)eu

ψ1(u)
, f2(u) =

ϕ2(u)eu

ψ2(u)

and ϕ1, ϕ2, ψ1, ψ2 are the same as in §1.

Theorem (the main result). The mapping ρ defines a C∞ isometric
immersion of the n-dimensional hyperbolical space Hn into E4n−3.

To prove the Theorem we need the next

Lemma. The n-dimensional metric

(23) ds2 = (f ′/f)2du2 + f2(u)
n∑

i=2

dvi
2
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has curvature K = −1. In other words

(24) Rijkl = −(gikgjl − gilgjk).

Proof. We get by an easy calculation that the Christoffel symbols
of the first kind are

cijk =





f(u)′f(u)′′

f(u)2 − f(u)′3

f(u)3 , i = j = k = 1

f(u)f ′(u), i = 1, j = k > 1
−f(u)f ′(u), i = j > 1, k = 1
0, otherwise,

and the Christoffel symbols of the second kind are

Ck
ij =





f(u)2

f(u)′2

(
f(u)′f(u)′′

f(u)2 − f(u)′3

f(u)3

)
, i = j = k = 1

f ′(u)
f(u) , i = 1, j = k > 1

− f(u)3

f ′(u) , i = j > 1, k = 1

0, otherwise.

From these it follows that

(25) Rijkl =





−f ′(u)2, i = k = 1, j = l > 1
−f(u)4, i = k > 1, j = l > 1
0, otherwise.

On the other hand,

(26) gikgjl − gilgjk =





f ′(u)2, i = k = 1, j = l > 1
f(u)4, i = k > 1, j = l > 1
0, otherwise.

From (25) and (26) we obtain (24). By the Lemma, (23) implies that
Rijkl = −(gikgjl − gilgjk) and thus K = −1 is true.

Proof of the Theorem. Functions (18)–(22) are C∞, so ρ is also C∞.
Straigthforward calculations show that the images of the tangents to

the parametric lines are linearly independent and hence ρ : Rn −→ E4n−3

is an immersion. The induced metric of ρ(Rn) is

ds2 = du2 + e2u
n∑

i=2

dvi
2.

Thus, according to the Lemma, it has curvature K = −1, and therefore ρ
determines an isometric immersion of Hn = (ρ(Rn), ds2) into E4n−3.
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STR. PETŐFI, NR. 28
ROMÂNIA

(Received March 23, 1993; revised December 5, 1994)


