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The n-dimensional hyperbolic space in E*"—3

By ROBERT OLAH-GAL (Miercurea-Ciuc)

Abstract. In this paper we will construct an isometric immersion of the n-
dimensional hyperbolic space into the euclidian space E*"~3 with a modification of
DANILO BLANU$A’s [2] immersion into E6"~5 [2].

§1. Introduction

In (1955) BLANUSA [2] gave a beautiful construction for the isometric
embedding of the complete hyperbolic plane H? into E® and also for the
isometric immersion of the n-dimensional hyperbolic space into E6"~5.
This immersion is of class C*°, but it is not analytic. A construction of
an analytical embedding of the hyperbolic plane into E™ (with sufficiently
large n) is unknown even these days.

In 1960 ROZENDORN [1] published a paper noting that every metric
ds®> = du® + f?(u) dv® can be immersed in E® using Blanusa’s method.

The immersion we are dealing with is a modification of BLANUSA’s
construction, therefore we shortly recall it. BLANUSA considered the sur-

face ®(u,v) in E® described in Cartesian coordinates x1, s, ..., zg by the
functions

1) o) =maw) = [ 1= 500" - 20

(2) zo(u,v) = f1(u)sin(vyhy (u))

(3) z3(u,v) = f1(u) cos(vipr(u))

(4) r4(u,v) = fa(u)sin(vipa(u))

(5) z5(u,v) = fa(u) cos(vipz(u))

(6) xe(u,v) = x6(v) = v —00 < u,v < 00
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where
_ ¢1(u)sinhu _ p2(u)sinhu
P = ALY — 2l
¥ (u) = €5+2[%‘u|], () = o6+2[ 5]
([x] denotes the integer part of z), and
1/2

1 [ sin(rx)
o1(u) = (Z/o sin—2(rz) dx) 5
(1 [" sin(mx) 1/2
o= (5 [ o)
U sin(mz)
o esin (7rx)
The functions ¢ (u) and po(u) have the properties
0<pi(u) <1, 0 < pa(u) <1,
p1(w) +pa(w)’ =1, @i(u) =pa(u+1), ueR

1o has a discontinuity for even integers u, and so has 11 for odd integers u,
but at these points (1 and ¢o vanish together with all of their derivatives,
and so the functions f; resp. fo are of class C*°. Besides,

coshu + ¢j(u) sinhu
piu) 7

while 1; is a step function and has zero derivatives. Furthermore we have

fi'(u) = £i%)

i=1,2

el (u)] + el!|¢f(u)] - 19l

Yi(u) Yi(u)
19 1 )
= —<— =12

et /2

Using the above properties of the functions f;, it is easy to see that

V1 H@)? — ()2

is real for any value of w.

BLANUSA has shown (see [2]) that (1)—(6) give a one-to-one C>° map-
ping of the (u,v) plane R? into E®, and the metric of ®(u,v) induced by
ES is
(7) ds® = du® + cosh® u dv?,

< 19¢lul=(4+ul)

£ (u)] <
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and hence ® has a constant negative curvature. (7) can be considered as
the metric of H?(u, v).

Theorem. (BLANUSA’s [2] p. 218). Functions (1)—(6) (u, v € R)
define an isometric C* embedding of the hyperbolic plane into ES.

§2. The hyperbolic plane in E®

By omitting x¢, we get a surface Y of E® with metric ds? = du® +
sinh? u dv?. > C E® has singularity only when u = 0, which corresponds
to the origin (0,0,0,0,0) of E®. For integers u the images of the parametric
lines are closed. We wish to illustrate the appearance of a surface having
one singular point in E® using an analog of the projection from E* onto
E3 (See Figure 1). At any other point the metric is positive definite and
the curvature is —1. So we obtain

Figure 1.
Parallel projection of a surface with constant negative
curvature in E4 into E3.
The image is also a surface with constant negative curvature in E3.
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Proposition 1. The surface ¥ given by (1)—(5) (u,v € R) is a surface
with constant negative curvature, having only one singular point.

In 1955 AMSLER [3] proved that each surface of E3 with constant
negative curvature has an edge (i.e. it contains a curve consisting of singu-
larities), and showed the nonexistence in E3 of surfaces of constant nega-
tive curvature with singularity consisting of one point alone. Proposition 1
shows that AMSLER’s theorem fails to be valid in E™ if n > 5.

If we change sinhu to coshu in f; and fs, then (1)—(6) give a surface
with the metric ds® = du® + (cosh2u + 1) dv?, which is a metric of Efimov
type and its curvature is

1+ 12e?* + 6e?™ + 12e5% 4 Bv
(1+ 6e2+ + 64“)2

K(u,v) = < —1/4.

If we omit x¢ again, we get a surface > in E5 with constant negative
curvature.

Y is given by

B 0 = @2 (u) coshu
= w2 T

, u,v € R.

A calculation shows that the metric of & in E? is also (7) and this can be
considered as the metric of R?(u,v) = H?(u,v).

Theorem. Functions given by (8)—(12) u,v € R define an isometric
C> immersion of the hyperbolic plane into E° .

PROOF. BLANUSA has shown that o1 /11 and 3 /15 are of class C.
From this follows that g; and gy also have this property. We show that

1 (u,v) = /Ou \/1 — 91()* — 92(y)*dy
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is real for any value of u. The majoring of g;’ is totally analogous to that
of fi/

@i(u) coshu + ¢} (u) sinhu

! = i —1.9:
‘gi/(u)| < e|UI|(’0i(u1|b—|(_e)|U|(pg(U)| < Lgim)l < 19elul=(4+[ul)
i\u i\u
19 1 .
=—<—, 1=12

et /2

It follows that x1(u,v) is real for any value of u; moreover 8“ 35 8“
(it=1,...,5), therefore (8)—(12) is an immersion, indeed. D

We remark that the above calculation is analogous to that of BLANU-

9

SA.

3. The n-dimensional hyperbolic space in E4"~3

In order to map the n-dimensional hyperbolic space into E"~? iso-
metrically, Blanusa constructed two new functions. These are the following

1 1
= 1 = 1
Yi(y) Vou Pa(y) V u
where 1, 2,11, 19 are the same as in §1.
Let zg, 1, Tr2, ..., 2r6 (r =1,...,n — 1) denote a Cartesian coordi-

nate system in E"~° and let u,v, (r=1,...,n—1) (u > 0 and v, € R)
be the parameter domain endowed with the metric

(13) ds* = Z Z xTh, = <du + Zdv ) :

So we have got the hyperbolic space H".
Theorem (BLANUSA [2] p. 225). The functions

sl = o) = [ 5~ PR — i) = 2wy,

r1 (U, vp) = \/fm cos(vn — 1v,.),
Tro(U,vy) = < sin(vn — 1v,)

i

n —
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() = TH cos(Vin Lo (1),
rea(te) = T gin(v T (1)
s (1,07) = T2 cos(v/ir— T a(),
ol 0,) = 2 sin(Va = Toa()
Cso<u <o,  (r=1,....n—1), 0<u.

define a C*° isometric immersion of the n-dimensional hyperbolic space
into E®"5 with the metric (13).

In order to reduce the number of dimensions from 6n — 5 to 4n — 3,
we need to find a metric

n—1
ds® = g1 (u) du® + Z Gri1rp1(w)dv?
r=1
with constant negative curvature, where gos = ¢33 = -+ = gnn = f(u)2.

The following observation helps us to generalize a two-dimensional
metric g11 = g11(u), g12 = 0, g22 = g22(u) with constant negative curvature
to an n-dimensional metric g;; = g;i(u) and g;; = 0,7 # j with constant
negative curvature.

Proposition. The metric

(14) ds® = z(w)du® + f*(u)dv?
has curvature K = —1 if and only if
(15) o' f 4+ 2fx? —2f"x = 0.

Furthermore, this differential equation has the following particular solu-
tions

f/2 f/2 . f/2

(16) I

PROOF. Suppose that (14) has curvature K = —1. Then, using the
elementary formula

(17) K(u,v) = Gu+52)
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9922 9911 9911 9911

_ —_ 912 81} _ Tou _ 25w Tou 912 5y

where d = \/g11 g22 — 91a, t1 = a0 = fz =—5 p) 170
(see e.g. [4]). In our case d = f\/x, t; = —25—5, ts = 0 so we obtain the

differential equation (15).
Conversely (14) and (15) yield K = —1 by (17). Finally, a simple
substitution shows that the functions (16) satisfy the equation (15).

Ezamples 1. If f(u) = coshu then we obtain for z(u) = z1(u), z(u) =
zo(u), z(u) = z3(u) the metrics ds® = du® + cosh®u dv?, ds* = tanh®u du?

2 2 2 _ _sinh®u 2 2 2 .
+cosh” udv® and ds® = 5 +1 du” 4 cosh”u dv”®, respectively.

Ezamples 2. In case f(u) = L we obtain for z(u) = z1(u),

xo(u), x(u) = z3(u) the metrics ds? = 2(1 ) du? + X dv?, ds?
+dv?) and ds? = du? + 25 dv? respectlvely.

z(u) =
L (e
Let us consider the mapping

p:R"(u,v,) — E"73

given in Cartesian coordinates by

1) auo) =wo(w) = [ 1= AW Ry
(19) zr1(u,vr) = f1(u)sin(vp1 (u))
(20) Tr2(u, vr) = f1(u) cos(vr1(u))
(21) Tr3(u,vr) = fo(u)sin(vri2(u))
(22) Tra(u, vp) = fo(u) cos(v,ha(u))
—o<uv. <o (r=1,....,n—-1)
where (w)er (w)er
_pi(u)e 4y = P2lue
=y 0=

and @1, s, 11,19 are the same as in §1.

Theorem (the main result). The mapping p defines a C*> isometric
immersion of the n-dimensional hyperbolical space H" into E4"~3,

To prove the Theorem we need the next

Lemma. The n-dimensional metric

(23) ds® = (f'/£)°du’ + f2(u) Y dv;®
=2
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has curvature K = —1. In other words
(24) Rijki = —(9ik9j1 — gugik)-

PrOOF. We get by an easy calculation that the Christoffel symbols
of the first kind are

RIS () S S A

fu)? flu)3>
Cij = flu)f(u), i=1j=k>1
—f(u)f'(u), i=7>1, k=1
0, otherwise,

and the Christoffel symbols of the second kind are

'fWZUWWM“_ﬂWW SR A
e (T - e ) PSi=k=
I (w) ST
E _ e 1=1, j=k>1
Cli=q 7
—ﬁaw i=j>1, k=1
( 0, otherwise.

From these it follows that
—fl(w)? i=k=1j=1>1
(25) R =14 —f(w?, i=k>1,j=1>1
0, otherwise.
On the other hand,
flw)? i=k=1,j=1>1
(26) gigjt — Gugik = f(w)?t, i=k>1,j=101>1
0, otherwise.

From (25) and (26) we obtain (24). By the Lemma, (23) implies that
Rijki = —(9ikgj1 — 9irgjr) and thus K = —1 is true.

PROOF of the Theorem. Functions (18)—(22) are C*°, so p is also C°.

Straigthforward calculations show that the images of the tangents to
the parametric lines are linearly independent and hence p : R* — E4"—3
is an immersion. The induced metric of p(R™) is

n
ds?® = du® + e Z dv;>.
i=2
Thus, according to the Lemma, it has curvature K = —1, and therefore p
determines an isometric immersion of H” = (p(R"™), ds*) into E*"~3.
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