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An extension of the sine addition formula
on groups and semigroups

By BRUCE EBANKS (Louisville)

Abstract. The functional equation f(xy) = f(x)g(y) + g(x)f(y) is called the

sine addition formula, and in a very general setting it is known that g must be the

average of two multiplicative functions. Here we consider the case in which the two

multiplicative functions coincide, but we generalize that case to a functional equation

with four unknown functions. That is, assuming that M is a nonzero multiplicative

function, we solve f(xy) = k(x)M(y)+g(x)h(y) for the four unknown functions f, g, h, k

on groups and certain semigroups under the additional assumption that the unknown

functions are at least central.

1. Introduction

The functional equation

f(xy) = f(x)g(y) + g(x)f(y)

on a semigroup (S, ·) is known as the sine addition formula, since it has as one

of its solutions on (R,+) the pair f = sin, g = cos for f, g : R → R. It also has

other solutions on (R,+) such as f(x) = cxekx, g(x) = ekx for constants c and k.

In the more abstract setting of semigroups, the role of exponential functions is

played by multiplicative functions. A function M from a semigroup S to a field K

is said to be multiplicative if it satisfies the Cauchy functional equation

M(xy) = M(x)M(y), x, y ∈ S.
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In other words, M is a semigroup homomorphism of S into (K, ·). In this abstract

setting the role of cosine is played by the average of two multiplicative functions.

General results circa 2013 about the sine addition formula on groups and

semigroups are summarized in [4, Chapter 4]. In particular, we cite Theorem 4.1

which states among other things that on a topological semigroup S, if the pair

f, g : S → C is a continuous solution of the sine addition formula with f 6= 0,

then g must be of the form

g =
1

2
(M1 +M2)

for continuous multiplicative functions M1,M2. Also f and g must be abelian

(see below for definition). Furthermore, if M1 6= M2, then f = a(M1 −M2) for

some (nonzero) complex constant a. The form of f is also determined in the case

M1 = M2 provided that S is a group. Later an improvement was made in [2] for

the case M1 = M2 under the assumption that S is a semigroup generated by its

squares or a regular semigroup.

Here we solve a variant of the sine addition formula containing four unknown

functions, in the case where one instance of g in the sine addition formula is

replaced by a multiplicative function M (so we are in the case M1 = M2). Specif-

ically, we consider the functional equation

f(xy) = k(x)M(y) + g(x)h(y), x, y ∈ S, (1)

for four unknown functions g, h, k : S → K and f : S · S → K. Here M : S → K

is a given multiplicative function, K is a (commutative) field, S may be a group

or a semigroup, and S · S = {xy : x, y ∈ S}. In the case that S is a semigroup,

then we assume as in [2] that either S is generated by its squares or S is regular.

Throughout this paper we will assume that M is not the trivial multiplicative

function which is identically 0. When we state that a function is nonzero, we mean

that it is not the zero function.

Both the sine addition formula and equation (1) belong to a class of functional

equations known as Levi–Civita equations (see [5, Section 10] or [4, Chapter 5]).

For this type of equation, the structure of solutions (under certain assumptions

concerning the linear independence of functions on the right hand side of the

equation) can be described with the help of representations of S. In order to

apply this theory, one must first take into account the possible linear dependence

of functions on the right hand side. Even after doing that, explicit formulas

for the representations may be difficult to obtain. If S is a topological abelian

group and one is looking for continuous solutions, then things are a bit easier.
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In that context it is known that (again under linear independence assumptions)

the continuous solutions are normal exponential polynomials.

In the present article, we take a more direct approach, avoiding any as-

sumptions about linear independence and any use of representations of S. It is

interesting that it is possible to use elementary methods to find the forms of

the other four functions f, g, h, k in (1) just by assuming that the single func-

tion M is multiplicative and the other functions are at least central (see below

for definition).

The organization of the paper is as follows. In the next section, we begin

with some definitions and prove a couple of lemmas we need in order to solve

equation (1). Solutions of that equation are given in the third section. The final

section concerns continuous solutions of (1) on topological groups and semigroups,

followed by some examples and results in special cases.

2. Preliminaries

We begin with some definitions.

Let S be a semigroup and X a set. A function φ : S → X is central pro-

vided that φ(xy) = φ(yx) for all x, y ∈ S. Function φ : S → X is abelian if

φ(x1x2 · · ·xn) = φ(xπ(1)xπ(2) · · ·xπ(n)) for all x1, . . . , xn ∈ S, all permutations π

of {1, . . . , n} and all n = 2, 3, . . .. Clearly, every abelian function is central.

Note that any multiplicative function M taking values in a field is automat-

ically abelian.

On a semigroup S there is a natural ideal associated with any nonzero

multiplicative function that takes the value 0 somewhere. Let K be a field.

If M : S → K is a nonzero multiplicative function, then we define

IM = {x ∈ S : M(x) = 0},

which we can think of as the null ideal of M . (Note that in general we allow for

the possibility that IM may be empty, even though we are thinking of it as an

ideal.) It is easy to see that IM is a two-sided ideal if not empty, since if x ∈ IM
and y ∈ S, then M(xy) = M(x)M(y) = 0, and the same is true if y ∈ IM and

x ∈ S. It follows that T := S \ IM = {t ∈ S : M(t) 6= 0} is a subsemigroup

of S. The null ideal IM (if nonempty) is proper since M 6= 0, thus T is nonempty.

It may also happen that T = S if IM is empty.

If S is a group and M : S → K is a nonzero multiplicative function, then

M is nowhere zero. Indeed, if there is x0 ∈ S such that M(x0) = 0, then
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M(x) = M(x0)M(x−10 x) = 0 for every x ∈ S. Thus IM = ∅ when S is a group.

A nonzero multiplicative function from a group S into C is called a character

on S.

If S is a topological semigroup, we let C(S) denote the algebra of continuous

functions from S into C.

For any field K, let K∗ = K \ {0} denote the subset of nonzero elements

of K.

In tandem with multiplicative functions from a semigroup S to a field K,

we also have the notion of additive function, which is another type of homomor-

phism. A function A : S → K is said to be additive if

A(xy) = A(x) +A(y), x, y ∈ S.

In other words, A is a semigroup homomorphism of S into (K,+).

We continue with two lemmas needed for our main results.

Lemma 1. Let S be a semigroup, let K be a field, and suppose f, g : S → K

satisfy the functional equation

f(xy) = f(x)g(y), x, y ∈ S. (2)

If f 6= 0, then g is multiplicative, say g = M . Furthermore,

(i) if M = 0, then f = 0 on S · S;

(ii) if M 6= 0 and f is central, then f = µM for some constant µ ∈ K.

Proof. Using associativity in S, we have

f(x)g(yz) = f(x · yz) = f(xy · z) = f(xy)g(z) = f(x)g(y)g(z), x, y, z ∈ S.

Thus g is multiplicative if there is any x0 ∈ S for which f(x0) 6= 0.

Now with g = M , equation (2) shows that f = 0 on S ·S in the case M = 0.

If M 6= 0, then there exists y0 ∈ S such that M(y0) 6= 0. Using centrality of f ,

we find that

f(x)M(y) = f(xy) = f(yx) = f(y)M(x),

and putting y = y0 here, we arrive at f = µM where µ = f(y0)/M(y0). �

Lemma 2. Let S be a semigroup, let K be a field, let σ ∈ K∗, let M : S → K

be a nonzero multiplicative function, and let A : S → K. Then k : S → K is

a central solution of

k(xy) = [k(x) + σM(x)A(y)]M(y), x, y ∈ S, (3)
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if and only if k = (ρ + σA)M for some ρ ∈ K, and the restriction of A to

the subsemigroup T = S \ IM is additive. (The values A(y) for y ∈ IM are

arbitrary because they are always multiplied by M(y) = 0, both in the functional

equation (3) and in the solution formula for k.)

Proof. Interchanging x and y in (3), we get (again since k is central)

k(x)M(y) + σM(x)A(y)M(y) = k(xy) = k(yx) = k(y)M(x) + σM(y)A(x)M(x),

or

[k(x)− σA(x)M(x)]M(y) = [k(y)− σA(y)M(y)]M(x).

Using y = y0 ∈ S such that M(y0) 6= 0, we obtain

k(x)− σA(x)M(x) = ρM(x)

for some constant ρ ∈ K. Thus k = (ρ+ σA)M .

Substituting the form of k into (3) and simplifying, we arrive at

A(xy)M(xy) = [A(x) +A(y)]M(x)M(y), x, y ∈ S,

since σ 6= 0. Since M(t) 6= 0 for all t ∈ T , we have A(xy) = A(x) + A(y) for all

x, y ∈ T as claimed.

Conversely, it is easy to see that such a function k satisfies equation (3). �

3. Solutions of (1)

Initially we do not consider topological aspects, but they are easily incorpo-

rated later and will be dealt with in the final section.

Recall our main functional equation (1):

f(xy) = k(x)M(y) + g(x)h(y), x, y ∈ S.

Since we will assume that f 6= 0 in our main results, let us first dispense with

the simple situation f = 0.

Proposition 3. Let S be a semigroup, let K be a field, and let M : S → K

be a nonzero multiplicative function. Suppose f = 0 in equation (1), so that

g, h, k : S → K satisfy the functional equation

0 = k(x)M(y) + g(x)h(y), x, y ∈ S. (4)

The solutions fall into two categories:
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(i) g = k = 0 and h arbitrary; or

(ii) k = −cg, h = cM for some constant c ∈ K, and g(6= 0) is arbitrary.

Proof. Putting y = y0 such that M(y0) 6= 0 in (4), we find that k = −cg
where c := h(y0)/M(y0). With this, equation (4) can be written in the form

0 = g(x)[h(y)− cM(y)], x, y ∈ S,

showing that either g = 0 or h = cM . �

Now we state our two main theorems, one for groups and the other for

semigroups. A joint proof is given for both cases.

Theorem 4. Let G be a group, let K be a field, and let M : G → K∗ be

a nonzero multiplicative function. Suppose f, g, h, k : G→ K satisfy equation (1),

where f, g, k are central, h is abelian, and f 6= 0.

The solutions fall into four categories:

(i) f = aM , g = 0, k = aM , and h is arbitrary;

(ii) f = aM , h = c1M , k = aM − c1g, where g is arbitrary (nonzero);

(iii) f = c1M + bdM ′, g = bM ′, h = c2M + dM ′, k = c1M − bc2M ′; or

(iv) f = (c2 + bc1 + bA)M , g = bM , h = (c1 +A)M , k = (c2 + bA)M ;

for some constants a, b, d ∈ K∗ and c1, c2 ∈ K, where M ′ : G→ K∗ is a nonzero

multiplicative function and A : G→ K is a nonzero additive function.

Conversely, each of these combinations of functions is a solution of (1).

There are two differences between the result on groups (above) and the result

on semigroups (below). First, solution category (iv) becomes a bit more compli-

cated on semigroups because IM may be a nonempty proper subset of S in the

semigroup case, but IM is empty in the group case. Second, a fifth category of

solution may be possible in the semigroup case if S · S 6= S (which cannot occur

if S is a group).

Theorem 5. Let S be a semigroup which is generated by its squares, let

K be a field, and let M : S → K be a nonzero multiplicative function. Suppose

g, h, k : S → K and f : S · S → K satisfy equation (1), where f, g, k are central,

h is abelian, and f 6= 0.

The solutions fall into four categories if S · S = S:

(i) f = aM , g = 0, k = aM , and h is arbitrary;

(ii) f = aM , h = c1M , k = aM − c1g, where g is arbitrary (nonzero);

(iii) f = c1M + bdM ′, g = bM ′, h = c2M + dM ′, k = c1M − bc2M ′; or
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(iv) f = (c2 + bc1 + bA)M , g = bM , h = (c1 +A)M , k = (c2 + bA)M ;

for some constants a, b, d ∈ K∗ and c1, c2 ∈ K, where M ′ : S → K is a nonzero

multiplicative function, and A : S → K is a function which is additive and nonzero

on the nonempty subsemigroup T = {t ∈ S : M(t) 6= 0} and has arbitrary values

on S \ T = IM .

If S · S 6= S, then the above formulas for f must be restricted to S · S (for

example, f = aM |S·S in (i)). In addition to the first four, there is also a fifth

category of solution:

(v) f(xy) = c1M(xy) + bg(x)g(y), h = c2M + bg, k = c1M − c2g;

for some constants b ∈ K∗ and c1, c2 ∈ K, where g|S·S = 0 and g(x1)g(y1) =

g(x2)g(y2) whenever x1y1 = x2y2.

Conversely, each of these combinations of functions is a solution of (1).

Proof. First we handle the special case g = 0 separately. In this case,

(1) reduces to

f(xy) = k(x)M(y), x, y ∈ S.

Using associativity, here we calculate that

k(x)M(y)M(z) = k(x)M(yz) = f(x · yz) = f(xy · z) = k(xy)M(z), x, y, z ∈ S.

Since M is nonzero, we conclude that

k(x)M(y) = k(xy), x, y ∈ S.

Since k is central, we get from Lemma 1 that k = aM for some constant a ∈ K.

Thus it follows that f(xy) = aM(xy), that is f = aM |S·S . (If S · S = S, this

is just f = aM .) Noting that f 6= 0, we must specify that a ∈ K∗, and this

constitutes solution (i).

Henceforth we assume that g 6= 0. Again using associativity with equa-

tion (1), we calculate that

k(xy)M(z) + g(xy)h(z) = f(xy · z) = f(x · yz) = k(x)M(yz) + g(x)h(yz),

for all x, y, z ∈ S. This rearranges to

[k(xy)− k(x)M(y)]M(z) = g(x)h(yz)− g(xy)h(z), x, y, z ∈ S. (5)

Taking z = z0 here such that M(z0) 6= 0, we deduce that

k(xy) + cg(xy) = k(x)M(y) + g(x)h′(y), x, y ∈ S, (6)
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for some constant c ∈ K and function h′ : S → K. For future reference, we ob-

serve that h′ is defined by

h′(y) =
h(yz0)

M(z0)
, y ∈ S,

and thus h′ is central since h is abelian.

Now apply the same process to (6) as we did to (1), with k+ cg in place of f

and h′ in place of h. On one hand, we have

k(xy · z) + cg(xy · z) = k(xy)M(z) + g(xy)h′(z)

= [k(x)M(y) + g(x)h′(y)− cg(xy)]M(z) + g(xy)h′(z)

= [k(x)M(y) + g(x)h′(y)]M(z) + g(xy)[h′(z)− cM(z)].

And on the other hand,

k(x · yz) + cg(x · yz) = k(x)M(yz) + g(x)h′(yz) = k(x)M(y)M(z) + g(x)h′(yz).

Therefore, we conclude that

g(xy)[h′(z)− cM(z)] = g(x)[h′(yz)− h′(y)M(z)], x, y, z ∈ S. (7)

There are two cases to consider.

Case 1. Suppose h′ = cM . Then (6) reduces to

k(xy) + cg(xy) = [k(x) + cg(x)]M(y), x, y ∈ S.

Applying Lemma 1 to this equation, we conclude that (since k + cg is central)

k + cg = aM

for some constant a ∈ K.

Returning this information to (1), we have now

f(xy) = [aM(x)− cg(x)]M(y) + g(x)h(y) = aM(xy) + g(x)[h(y)− cM(y)].

Since f is central, we see that

g(x)[h(y)− cM(y)] = g(y)[h(x)− cM(x)],

and since g 6= 0, this means that

h = cM + µg

for some constant µ ∈ K. Now equation (5) reduces to

0 = µ[g(x)g(yz)− g(xy)g(z)], x, y, z ∈ S. (8)

We have two subcases to consider.
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Subcase 1(a). Suppose µ = 0. Here we have h = cM and k = aM − cg.

Inserting these into (1), we find that

f(xy) = aM(x)M(y) = aM(xy).

Thus f = aM |S·S , and this is solution (ii) (noting that a 6= 0 since f 6= 0), where

we have put c1 := c.

Subcase 1(b). Suppose µ 6= 0. Then from (8) we get

g(x)g(yz) = g(xy)g(z), x, y, z ∈ S.

Choosing z = z0 such that g(z0) 6= 0, we arrive at

g(x)g′(y) = g(xy), (9)

for some function g′ : S → K. It now follows from Lemma 1 that g′ is multiplica-

tive, with either g′ = 0 and g = 0 on S · S, or g′ 6= 0 and g is a constant times

the multiplicative function g′.

For the moment, let us suppose that S · S = S. Then since g 6= 0 it follows

that also g′ 6= 0, hence

g = bM ′

for some multiplicative map M ′ : S → K and b ∈ K∗ (both nonzero since g 6= 0).

Thus we have h = cM + µbM ′, k = aM − cbM ′, and (1) becomes

f(xy) = [aM(x)− cbM ′(x)]M(y) + bM ′(x)[cM(y) + µbM ′(y)]

= aM(xy) + µb2M ′(xy).

Thus we have f = aM + µb2M ′, and this is solution (iii) with d := µb (6= 0),

c1 := a, and c2 := c.

If S is a group, then we are finished with this subcase. Now suppose S is

a semigroup and S · S 6= S. If g′ 6= 0, then we proceed as we did for S · S = S,

and get situation (iii) again. The remaining possibility is g′ = 0 and g|S·S = 0.

In this case, (1) becomes

f(xy) = aM(x)M(y) + µg(x)g(y) = aM(xy) + µg(x)g(y).

This formula gives consistent values for f only if the value of g(x)g(y) is uniquely

determined by the value of xy. This constitutes solution (v) with b := µ (6= 0),

c1 := a, and c2 := c.

That concludes Case 1.
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Case 2. Suppose h′ 6= cM . Using z = z0 so that h′(z0)− cM(z0) 6= 0 in (7),

we find that

g(xy) = g(x)h′′(y), x, y ∈ S, (10)

for some function h′′ : S → K. Since g 6= 0, we again apply Lemma 1 and

conclude that h′′ is multiplicative: either h′′ = 0 and g|S·S = 0, or h′′ 6= 0 and g

is a constant times the multiplicative function h′′.

First let us suppose that h′′ = 0 and g|S·S = 0 (which can occur only if

S · S 6= S). Now (7) tells us that

0 = h′(yz)− h′(y)M(z), y, z ∈ S,

since g 6= 0. Applying Lemma 1 once more, we see that h′ = τM for some τ ∈ K
with τ 6= c (since h′ 6= cM). Then equation (6) yields

k(xy) = [k(x) + τg(x)]M(y), x, y ∈ S,

and since k is central, we have

[k(x) + τg(x)]M(y) = [k(y) + τg(y)]M(x), x, y ∈ S,

so k + τg = c1M for some c1 ∈ K. Hence k = c1M − τg. With this, (1) becomes

f(xy) = [c1M(x)− cτg(x)]M(y) + g(x)h(y) = c1M(xy) + g(x)[h(y)− τM(y)]

for all x, y ∈ S. Since f is central, this gives

g(x)[h(y)− τM(y)] = g(y)[h(x)− τM(x)],

and since g 6= 0, we have h(y)−τM(y) = bg(y) for some b ∈ K. Thus h = τM+bg,

and we are again in situation (v), where c2 := τ . (Note that here b 6= 0, else we

are back to solution (ii).)

The other possible outcome of (10) is that M ′ := h′′ 6= 0 and

g = bM ′

for some constant b 6= 0 and nonzero multiplicative map M ′ : S → K. Now (7)

takes the form

bM ′(xy)[h′(z)− τM(z)] = bM ′(x)[h′(yz)− h′(y)M(z)], x, y, z ∈ S,
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which reduces to

h′(yz) = M ′(y)h′(z) + [h′(y)− τM ′(y)]M(z). (11)

Interchanging y, z, we get

h′(zy) = M ′(z)h′(y) + [h′(z)− τM ′(z)]M(y).

Recalling that h′ is central, the last two equations yield

[h′(y)− τM ′(y)][M(z)−M ′(z)] = [h′(z)− τM ′(z)][M(y)−M ′(y)].

There are two subcases to consider.

Subcase 2(a). Suppose M 6= M ′. Then taking z = t0 such that M(t0) −
M ′(t0) 6= 0, we deduce that h′(y)− τM ′(y) = c[M(y)−M ′(y)] for some constant

c ∈ K. Thus,

h′ = cM + (τ − c)M ′.

Returning the forms of g and h′ to (7) and simplifying, the equation simplifies to

0 = (τ − c)M ′(x)M ′(y)M(z), x, y, z ∈ S.

But since τ 6= c and both M ′ and M are nonzero, this is impossible. Therefore,

this subcase cannot occur.

Subcase 2(b). Suppose M = M ′. Now (11) takes the form

h′(yz) = M(y)h′(z) + [h′(y)− τM(y)]M(z).

Let T = {t ∈ S : M(t) 6= 0} = S \ IM . On this subsemigroup we can divide the

previous equation by M(yz) and write

h′(yz)

M(yz)
=
h′(z)

M(z)
+
h′(y)

M(y)
− τ, y, z ∈ T.

This means that the function A′ : T → K defined by

A′(t) =
h′(t)

M(t)
− τ, t ∈ T,
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is additive, and we have

h′(t) = (τ +A′(t))M(t), t ∈ T. (12)

If IM = ∅ (which is the case if S is a group), then we have T = S and (dropping

the prime mark from A′)

h′ = (τ +A)M,

where A : S → K is additive. We show that h′ has the same form when IM 6= ∅.
Indeed, suppose S is a semigroup generated by its squares and y ∈ IM = S\T .

Then we have from (11)

h′(yz) = h′(y)M(z), y ∈ IM , z ∈ S.

In particular, this means that h′(yz) = 0 for y, z ∈ IM . We want to show

that h′ vanishes on IM . Let x ∈ IM . Since S is generated by its squares,

we have x = x21x
2
2 · · ·x2n for some xi ∈ S (i = 1, . . . , n). Now 0 = M(x) =

M(x1)2M(x2)2 · · ·M(xn)2, so M(xi) = 0 for some i, thus xi ∈ IM . Hence

x = (x21x
2
2 · · ·xi) · (xix2i+1 · · ·x2n) = y1y2 with y1, y2 ∈ IM , since IM is an ideal.

Therefore, we have h′(x) = h′(y1y2) = 0 for all x ∈ IM . Now extend A′ to a func-

tion A : S → K by defining A(x) := A′(x) for x ∈ T , and defining A(x) arbitrarily

for x ∈ S \ T = IM . Merging this with (12), we arrive again at h′ = (τ +A)M .

Recall also that g = bM ′ = bM 6= 0. Returning this information to (6)

results in

k(xy) = k(x)M(y) + bM(x)A(y)M(y), x, y ∈ S.

By Lemma 2, the solution of this equation is

k = (c2 + bA)M

for some constant c2 ∈ K.

Next, equation (5) reveals that

h(yz) = [h(z) +A(y)M(z)]M(y), y, z ∈ S.

Since h is central, this equation also is governed by Lemma 2. The outcome is

that

h = (c1 +A)M
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for some constant c1 ∈ K. With this, equation (1) finally becomes

f(xy) = (c2 + bA(x))M(x)M(y) + bM(x)(c1 +A(y))M(y),

which simplifies to

f(xy) = (c2 + bc1 + bA(xy))M(xy).

This is solution (iv), and Case 2 is finished.

Conversely, it is easily verified that the combinations of functions in (i), (ii),

(iii), (iv) (and (v) in the semigroup case) are solutions of (1), and the proof is

complete. �

Remarks.

1. Note that S · S = S for any semigroup S that contains an identity element,

that is if S is a monoid. So in Theorem 5, we can dispense with solution (v)

if S is a monoid.

2. The only place in the proof of Theorem 5 where we used the assumption that

the semigroup S is generated by its squares was in proving that h′ = 0 on

IM in Subcase 2(b). The proof works under other conditions. For example,

it works if S is regular, which by definition means that for every x ∈ S there

exists y ∈ S such that x = xyx.

4. Topological considerations, some examples and special cases

Topological versions of Theorems 4 and 5 are easy to obtain. Again we state

the results separately but combine their proofs into one.

Corollary 6. Let G be a topological group, and let M ∈ C(G) be a character

on G. Suppose f, g, h, k ∈ C(G) satisfy equation (1), where f, g, k are central,

h is abelian, and f 6= 0.

The solutions fall into four categories:

(i) f = aM , g = 0, k = aM , and h is arbitrary;

(ii) f = aM , h = c1M , k = aM − c1g, and g is arbitrary (nonzero);

(iii) f = c1M + bdM ′, g = bM ′, h = c2M + dM ′, k = c1M − bc2M ′; or

(iv) f = (c2 + bc1 + bA)M , g = bM , h = (c1 +A)M , k = (c2 + bA)M ;
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for some constants a, b, d ∈ C∗ and c1, c2 ∈ C, where M ′ ∈ C(G) is a character

and A ∈ C(G) is a nonzero additive function.

Conversely, each of these combinations of functions is a continuous solution

of (1).

Corollary 7. Let S be a topological semigroup which is generated by its

squares, and let M ∈ C(S) be a nonzero multiplicative function. Suppose g, h, k ∈
C(S) and f ∈ C(S ·S) satisfy equation (1), where f, g, k are central, h is abelian,

and f 6= 0.

The solutions fall into four categories if S · S = S:

(i) f = aM , g = 0, k = aM , and h is arbitrary;

(ii) f = aM , h = c1M , k = aM − c1g, and g is arbitrary (nonzero);

(iii) f = c1M + bdM ′, g = bM ′, h = c2M + dM ′, k = c1M − bc2M ′; or

(iv) f = (c2 + bc1 + bA)M , g = bM , h = (c1 +A)M , k = (c2 + bA)M ;

for some constants a, b, d ∈ C∗ and c1, c2 ∈ C, where M ′ ∈ C(S) is a nonzero

multiplicative function, and A : S → C is a function which is additive, nonzero,

and continuous on the nonempty subsemigroup T = {t ∈ S : M(t) 6= 0} and

arbitrary on S \ T = IM .

If S · S 6= S, then the above formulas for f must be restricted to S · S (for

example, f = aM |S·S in (i)). In addition to the first four, there is also a fifth

category of solution:

(v) f(xy) = c1M(xy) + bg(x)g(y), h = c2M + bg, k = c1M − c2g;

for some constants b ∈ C∗ and c1, c2 ∈ C, where g|S·S = 0 and g(x1)g(y1) =

g(x2)g(y2) whenever x1y1 = x2y2.

Proof. By Theorems 4 and 5, the only things needing proof are the continu-

ity statements regardingM ′ and A. ForM ′, the continuity follows fromM ′ = g/b.

For A, continuity on T (= G in the group case) follows from A(t) = h(t)/M(t)−c1
for t ∈ T . �

We close the paper with some examples, a remark, and two specialized results.

In the first two examples S is commutative, so all functions on S are abelian

(and thus central).

The first example is an application of Corollary 7. Let S be the open interval

(0, 1) ⊂ R under multiplication, so S is generated by its squares and S ·S = S. Re-

call that the nonzero multiplicative functions in C(0, 1) are of the form M(x)=xλ

where λ runs through the complex numbers. Hence T = S in Corollary 7 above.
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Also note that the nonzero additive functions in C(0, 1) are of the form A(x) =

a log x for some constant a ∈ C∗.

Example 8. Assuming f 6= 0, the continuous solutions of (1) are the following

(where in each case M(x) = xλ):

(i) f(x) = k(x) = axλ, g = 0, where h ∈ C(0, 1) is arbitrary;

(ii) f(x) = axλ, h(x) = c1x
λ, k(x) = axλ − c1g(x), with g ∈ C(0, 1) arbitrary

(nonzero);

(iii) f(x) = c1x
λ+bdxµ, g(x) = bxµ, h(x) = c2x

λ+dxµ, k(x) = c1x
λ−bc2xµ; and

(iv) f(x) = (c2 + bc1 + ba log x)xλ, g(x) = bxλ, h(x) = (c1 + a log x)xλ,

k(x) = (c2 + ba log x)xλ;

for some constants a, b, d ∈ C∗ and c1, c2, µ, λ ∈ C.

The next example is an application of Theorem 5. Note that a nonzero mul-

tiplicative function on (0, 1) can never take the value 0, so IM is empty and

T = S in the notation of Theorem 5. Here we have taken k = h = f so that our

functional equation more closely resembles the sine addition formula.

Example 9. Let S again be the open interval (0, 1) ⊂ R under multiplication,

so S · S = S, let K be a field, and let M : (0, 1)→ K be a nonzero multiplicative

function. Suppose f, g : (0, 1)→ K satisfy

f(xy) = f(x)M(y) + g(x)f(y), x, y ∈ (0, 1),

with f 6= 0, and consider the four types of solutions provided by Theorem 5.

Solution type (i) holds with f = aM and g = 0. Solution type (ii) cannot occur,

because k = f forces c1 = 0 which makes h = f impossible. In solution type

(iii), k = f forces c2 = −d, so h = −d(M − M ′); then h = f requires f to

have the same form, so c1 = −d and b = 1; thus the solutions in this category are

f = d(M ′−M) and g = M ′, where M ′ 6= M since f 6= 0. Finally, in category (iv)

we see that k = f forces bc1 = 0, which is possible only if c1 = 0; then h =

AM = f , so c2 = 0, again b = 1, and the solutions are f = AM and g = M .

Summarizing, the solutions are:

(a) f = aM and g = 0 for some constant a ∈ K∗;

(b) f = a(M −M ′) and g = M ′ 6= M for some nonzero multiplicative function

M ′ : (0, 1)→ K and constant a ∈ K∗;

(c) f = AM and g = M for some nonzero additive function A : (0, 1)→ K.
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Our next example is non-abelian. Let S = M(2,C) be the semigroup of

complex 2× 2 matrices under the operation of matrix multiplication. This semi-

group is generated by its squares (see, for example, page 192 in [2]), so we may

apply Corollary 7 to find the continuous solutions of (1). Also S is a monoid (as

it contains the identity matrix), so we need not concern ourselves with solution

category (v).

The nonzero multiplicative functions in C(S) are given by [2, Lemma 5.4(ii)].

One of them is M = 1; all the others are of the form

M(X) = |det(X)|λ−n(det(X))n, X ∈ GL(2,C),

for some λ ∈ C with positive real part and some n ∈ Z, and M(X) = 0 when

det(X) = 0.

In the case M = 1, we have IM = ∅ and T = S \ IM = S. For all other

continuous and nonzero M , we find that IM is the ideal {X ∈ S|det(X) = 0} of

singular matrices. In this case, T = S \ IM is the subsemigroup GL(2,C) = {X ∈
S|det(X) 6= 0} consisting of the invertible matrices.

The additive functions in C(GL(2,C)) are provided in [2, Lemma 5.4(iv)]

and are given by

A(X) = γ log(det(X)), X ∈ GL(2,C),

where γ runs through C. If M 6= 1, then T = S \ IM = GL(2,C), so this will be

the form of A in the next example for that case.

If, on the other hand, we suppose M = 1, then IM = ∅ and T = S \ IM = S.

If A ∈ C(S) is additive, then its restriction to the subsemigroup GL(2,C) must

be of the form in the previous paragraph. Now in solution category (iv), we have

h = c1 +A and h ∈ C(S). Thus the continuity of h as det(X) tends to 0 requires

that γ = 0, so A vanishes on GL(2,C). Now we show that A also vanishes on

the subsemigroup S \ GL(2,C) of singular matrices. From [3] and [1], we learn

that every element of this subsemigroup is a product of at most two idempotents.

If X is an idempotent (X2 = X), then A(X) = A(X2) = 2A(X), so A(X) = 0.

If V ∈ S \ GL(2,C) is not idempotent, then there exist idempotents X,Y such

that V = XY , so A(V ) = A(XY ) = A(X) + A(Y ) = 0. Therefore, A = 0 in

solution category (iv) when M = 1.

As a final preparation for the next example, we note that the forms of con-

tinuous central functions g : S → C can be found in [2, Proposition 5.5(c)], where

it is shown that

g(X) = Ψ(tr(X),det(X)), X ∈ S,

where Ψ : C× C→ C is continuous and tr(X) is the trace of X.
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Example 10. Let S = M(2,C) be the multiplicative semigroup of complex

2× 2 matrices. We get the solutions f, g, h, k ∈ C(S) of equation (1) with f, g, k

central, h abelian, and f 6= 0 by plugging the relevant forms of M,M ′, A (and g

in solution (ii)) from the preceding discussion into the solution formulas (i)–(iv)

of Corollary 7.

We note here the necessity of f being central for our results. In a private

communication, Henrik Stetkær has shared with us an example of a non-central

continuous solution of the functional equation

f(xy) = f(x)M(y) + M̌(x)f(y), x, y ∈ G, (13)

where G is the (ax + b)-group, M is a continuous character on G, and M̌(x) :=

M(x−1). This equation is clearly of the form (1). Our group G consists of elements

of the form

(
a b

0 1

)
, for a, b ∈ R with a > 0, under the operation of matrix

multiplication. For brevity, we write

(a, b) :=

(
a b

0 1

)
.

According to [4, Example 3.13], the continuous characters on G are of the

form

Mt(a, b) = at, (a, b) ∈ G,

where t ∈ C. In Example 2.10 of the same reference we find that the continuous

additive functions on G into C have the form

Ac(a, b) = c log a, (a, b) ∈ G,

for some constant c ∈ C.

It is easily checked that f,M defined by

f(a, b) = b/
√
a, M(a, b) = 1/

√
a, (a, b) ∈ G,

are continuous, nonzero, and satisfy equation (13). (Note that M = M−1/2 and

M̌ = M1/2.) It is not difficult to check that this solution does not fit any of the

forms in Corollary 6. The explanation is that this f is not central. For example,

f((1, 2)(2, 1)) = f(2, 3) = 3/
√

2 6= 5/
√

2 = f(2, 5) = f((2, 1)(1, 2)).

We end the paper with two specialized results in which we prescribe that g

in equation (1) is a multiplicative function M ′. The first is a consequence of our

main theorems.
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Corollary 11. Let S be either a semigroup which is generated by its squares

or a group, let K be a field, and let M,M ′ : S → K be nonzero multiplicative

functions. Suppose h, k : S → K and f : S ·S → K satisfy the functional equation

f(xy) = k(x)M(y) +M ′(x)h(y), x, y ∈ S, (14)

where f, k are central, h is abelian, and f 6= 0. The solutions fall into three

categories:

(a) f = aM , M ′ = 0, k = aM , and h is arbitrary;

(b) f = c1M + c3M
′, h = c2M + c3M

′, k = c1M − c2M ′; or

(c) f = (c2 + c1 +A)M , h = (c1 +A)M , k = (c2 +A)M , M ′ = M ;

for some constants a ∈ K∗ and c1, c2, c3 ∈ K, whereA : S → K is a function which

is additive and nonzero on the (nonempty) subsemigroup T = {t ∈ S : M(t) 6= 0}.
In the group case T = S holds, and in the semigroup case the solution formulas

for f must be restricted to S · S. Moreover, in solution category (b) we must

choose (c1, c3) so that f 6= 0.

Conversely, each of these combinations of functions is a solution of (14).

Proof. In either the group or semigroup case, we have at least four cat-

egories of potential solutions as listed in Theorems 5 and 4. In category (i) of

those two theorems, we are in category (a) of the present corollary. In cate-

gory (ii) of those two theorems, the fact that g = M ′ means that k = aM −c2M ′;
this solution is contained in category (b) here (with c3 = 0 and c1 = a ∈ K∗).
In category (iii) of Theorems 5 and 4, we must take b = 1 to get g = M ′; thus

we are in category (b) again. In category (iv), we must again take b = 1 so that

g is a nonzero multiplicative function (g = M ′ = M this time); thus we are in

category (c) here. In the semigroup case, we see there is a possible fifth category

if S · S 6= S, but since g = M ′ is specified, we fall back into category (b) again

and the proof is finished. �

Finally, we note that in the special case of (14) in which f = h = k, we can

get by with fewer assumptions.

Proposition 12. Let S be either a semigroup which is generated by its

squares or a group, let K be a field, and let M,M ′ : S → K be multiplicative

functions which are not both zero. The central solutions f : S → K of the

functional equation

f(xy) = f(x)M(y) +M ′(x)f(y), x, y ∈ S, (15)
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fall into two categories:

(a) f = a(M −M ′), M 6= M ′; or

(b) f = AM , M = M ′ =: M ;

for some constant a ∈ K and a function A : S → K which is additive on T =

S \ IM = {t ∈ S : M(t) 6= 0} and arbitrary on IM . In the group case, T = S.

Conversely, each of these combinations of functions is a solution of (15).

Proof. First, suppose M = M ′( 6= 0). Then [2, Lemma 3.4(ii)] tells us that

f has the form given in (b). If, on the other hand, M 6= M ′, then we use the fact

that f is central to get

f(x)M(y) +M ′(x)f(y) = f(xy) = f(yx) = f(y)M(x) +M ′(y)f(x),

which yields

f(x)[M(y)−M ′(y)] = f(y)[M(x)−M ′(x)].

Putting y = y0 such that M(y0) 6= M ′(y0), we see that f has the form given

in (a). �
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