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On the simultaneous equations
σ(2a) = pf1qg1, σ(3b) = pf2qg2, σ(5c) = pf3qg3

By TOMOHIRO YAMADA (Osaka)

Abstract. Let σ(N) denote the sum of divisors of N . We shall solve the simul-

taneous equations σ(2a) = pf1qg1 , σ(3b) = pf2qg2 , σ(5c) = pf3qg3 with p, q distinct

primes.

1. Introduction

As usual, let σ(N) denote the sum of divisors of N , and ω(N) the num-

ber of distinct prime factors of N . In [18], the author has shown that there

are only finitely many odd superperfect numbers (i.e., the number satisfying

σ(σ(N)) = 2N) with bounded numbers of distinct prime factors, by proving

that the simultaneous equations σ(peii ) = qf1i1 · · · q
fki

k for k + 1 prime powers

peii (i = 1, 2, . . . , k + 1) cannot have solutions with p1, . . . , pk+1 all small. In this

paper, we use the method developed in [18] to solve the simultaneous equations

σ(2a) = pf1qg1 , σ(3b) = pf2qg2 , σ(5c) = pf3qg3 with p, q distinct primes.

Wakulicz [16] has shown that all solutions of the purely exponential dio-

phantine equation 2n − 5m = 3 are (n,m) = (2, 0), (3, 1) and (7, 3), from which

Makowski and Schinzel [9] derived that the equation σ(2a) = σ(5c) has only

the solution (a, c) = (4, 2). We note that it is easy to show that σ(2a) = σ(3b)

has no nontrivial solution, and σ(3b) = σ(5c) also has no nontrivial solution.

Bugeaud and Mignotte [3] have shown that neither of σ(2a), σ(3b), σ(5c) can

be a perfect power except σ(3) = 22 and σ(34) = 112. Moreover, they have shown
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that the only perfect powers xn−1
x−1 , with x = zt, z ≤ 10, are (35− 1)/2 = 112 and

(74 − 1)/6 = 202.

Now we shall state our result.

Theorem 1.1. The simultaneous equations

σ(2a) = pf1qg1 , σ(3b) = pf2qg2 , σ(5c) = pf3qg3 , (1)

with a, b, c > 0, f1, f2, f3, g1, g2, g3 ≥ 0 and p, q distinct primes, have only the

following solutions:

(i) (a, b, c) = (1, 1, 1),

(ii) (a, b, c) = (4, 1, 2),

(iii) (a, b, c) = (4, 4, 2) and

(iv) (a, c) = (4, 2) and σ(3b) is prime.

In other words, if ω(σ(2a3b5c)) ≤ 2, then (a, b, c) must satisfy one of the above

conditions.

Our result is related to the Nagell–Ljunggren equation

xm − 1

x− 1
= yn, x ≥ 2, y ≥ 2, m ≥ 3, n ≥ 2, (2)

which has been conjectured to have only three solutions (x, y,m, n) = (3, 11, 5, 2),

(7, 20, 4, 2) and (18, 7, 3, 3). Some of recent remarkable results concerning to the

Nagell–Ljunggren equation are [2], [3], [4], [11] and [12]. Our result leads us to

conjecture that the diophantine equation

x` − 1

x− 1
= ymzn (3)

has only finitely many solutions in integers x ≥ 2, z ≥ y ≥ 2 and `,m, n ≥
n0 for some constant n0. The abc-conjecture, which Mochizuki [13] claims to

prove, would allow us to take n0 = 3. More exactly, assuming the abc-conjecture,

we could prove that any integer solution of (3) with ` ≥ 3, m ≥ 1, n ≥ 2,

1 ≤ y < z, and x` sufficiently large must satisfy (`,m, n) = (4, 1, 2), (3, 1, 3) or

(`, n) = (3, 2).

Indeed, applying the abc-conjecture to the equation 1 + (x − 1)ymzn = x`,

we see that for any given ε > 0, the inequality

x2yz > x(x− 1)yz ≥
∏

p|(x−1)x`ymzn

p > x`(1−ε/2) (4)
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would hold for a sufficiently large x`. Hence, the inequality

2

`
+
`− 1

`
× 2

n+ min{n,m}
> 1− ε (5)

would also hold for a sufficiently large x`. In particular, taking ε = 1/15, we see

that the left of (5) must be greater than 14/15 for a sufficiently large x`. Recalling

that n ≥ 2 and m ≥ 1, we obtain that ` ≤ 4. We must have n + min{n,m} = 3

for ` = 4, and n + min{n,m} ≤ 4 for ` = 3. So, either of (`,m, n) = (4, 1, 2),

(3, 1, 3) or (`, n) = (3, 2) should hold for a sufficiently large xl.

2. Preliminary lemmas

In this section, we introduce some preliminary lemmas. One is Matveev’s

lower bound for linear forms of logarithms [10].

Lemma 2.1. Let a1, a2, . . . , an be positive integers such that log a1, . . . ,

log an are not all zero and Aj ≥ max{0.16, log aj} for each j = 1, 2, . . . , n. More-

over, we put

B = max{1, |b1|A1/An, |b2|A2/An, . . . , |bn|},
Ω = A1A2 . . . An, C0 = 1 + log 3− log 2,

C1(n) =
8

(n− 1)!
en+1(2n+ 3)(n+ 2)(4(n+ 1))n+1×(4.4n+ 5.5 log n+ 7), (6)

and

Λ = b1 log a1 + . . .+ bn log an. (7)

Then we have

log |Λ| > −C1(n)(C0 + logB) max
{

1,
n

6

}
Ω. (8)

The next lemmas deal with some arithmetical properties of values of cy-

clotomic polynomials. Lemma 2.2 is a basic and well-known result of this area.

Lemma 2.2 has been proved by Zsigmondy [19], and rediscovered by many au-

thors such as Dickson [6] and Kanold [7]. We need only the special case b = 1,

for which this lemma had already been proved by Bang [1]. See also Theo-

rem 6.4A.1 in [14].

Lemma 2.2. If a > b ≥ 1 are coprime integers, then an − bn has a prime

factor which does not divide am − bm for any m < n, unless (a, b, n) = (2, 1, 6),

a− b = n = 1, or n = 2, and a+ b is a power of 2.
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Let op(a) denote the residual order of a (mod p). Lemma 2.2 immediately

gives the following result.

Lemma 2.3. If (ae − 1)/(a − 1) = pf1qf2 for some integers a, e, f1, f2 and

primes p < q, then we have (a, e, p, q, f1, f2) = (2, 6, 3, 7, 2, 1), e = r or e = r2 for

some prime r. Moreover, in the case e = r, then we have p = r, oq(a) = r or

op(a) = oq(a) = r. In the case e = r2, we have (pf1 , qf2) = ((ar−1)/(a−1), (ar
2−

1)/(ar − 1)), (pf1 , qf2) = ((ar
2 − 1)/(ar − 1), (ar − 1)/(a − 1)) or (a, e, p, f1) =

(2m − 1, 4, 2,m+ 1) for some integer m.

Proof. If e has at least two distinct prime factors and (a, e) 6= (2, 6), then

e must have at least four distinct divisors. By Lemma 2.2, for each divisor d > 1

of e, (ad−1)/(a−1) has a prime factor which does not divide (am−1)/(a−1) for

any m < d, and therefore (ae− 1)/(a− 1) must have at least three distinct prime

factors, contrary to the assumption. Hence, (a, e) = (2, 6) or e must be a prime

power. If e = rl is power of a prime r, then, for each k ≤ l, (ar
k − 1)/(a − 1)

has a prime factor which divides none of (am − 1)/(a− 1) with m < rk. Thus we

must have l ≤ 2.

If e = r, then op(a) = 1 or r. If op(a) = 1, then a ≡ 1 (mod p) and

(ar − 1)/(a − 1) ≡ r (mod p). Hence, we must have p = r. Now we see that

q > p = r and oq(a) = r, since oq(a) = 1 should yield q = r as before, which is

clearly a contradiction. If op(a) = r, then r ≡ 1 (mod p), and therefore q > p > r.

Hence, we must have op(a) = oq(a) = r.

If e = r2, then (ar
2 − 1)/(a − 1) must have a prime factor not dividing

(ar − 1)/(a − 1). Hence, (ar − 1)/(a − 1) must be a prime power. If a prime p

(or q) divides both (ar−1)/(a−1) and (ar
2−1)/(ar−1), then, by Lemma 6.4A.2

in [14], we must have op(a) = 1 and p = r (or oq(a) = 1 and q = r). However,

by Lemma 2.2, this occurs only if r = 2 and a+ 1 = 2m for some integer m. �

The following lemma is proved in [3], as mentioned in the Introduction.

Lemma 2.4. Let a, e, x, f be positive integers with a, x, f > 1 and e > 2.

The equation (ae − 1)/(a− 1) = xf has no solution but (a, e, x, f) = (3, 5, 11, 2),

(7, 4, 20, 2) in integers 2 ≤ a ≤ 10, e > 2, x > 1, f > 1.

Using results mentioned in the Introduction, we can immediately solve some

special case of our main theorem.

Lemma 2.5. Choose a < b from the first three primes 2, 3, 5. If (ae−1)/(a−
1) = pk and (bf − 1)/(b − 1) = pl for some integers e, f, k, l and some prime p,

then (ae, bf ) = (25, 53) and p = 31, k = l = 1.
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Proof. In the case k = l = 1 and (ae − 1)/(a − 1) = (bf − 1)/(b − 1), as

observed in the Introduction, we have (ae, bf ) = (25, 53).

Lemma 2.4 yields that the perfect power case must arise from (35−1)/2 = 112

or (32 − 1)/2 = 22. In this case, we must have 2e − 1 = 2 or 11 or (5f − 1)/4 = 2

or 11, which is clearly impossible. �

3. Bounding the smallest exponent

For convenience, we put a1 = 2, a2 = 3, a3 = 5 and e1 = a + 1, e2 = b + 1,

e3 = c + 1. In this section, we would like to give an absolute and explicit upper

bound for the smallest one among aeii ’s, which is the main part of our argument.

Lemma 3.1. For each i = 1, 2, 3, we have

ei log ai < Ei = Ci log p log q(log log p+ Ci+3), (9)

where C1 = 1.422 × 1010, C2 = 1.226 × 1012, C3 = 1.795 × 1012, C4 = 23.3,

C5 = 27.8, C6 = 28.1.

Proof. Let Λi = fi log p + gi log q + log(ai − 1) − ei log ai = log(1 − a−eii )

for i = 1, 2, 3. It immediately follows from Matveev’s theorem that

− log |Λ1| < C(3)

(
C0 + log

(
e1 log 2

log q

))
log 2 log p log q, (10)

and

− log |Λj | < C(4)

(
C0 + log

(
ej log aj

log q

))
log 2 log aj log p log q, (11)

for j = 2, 3.

Now we shall prove (9) in the case i = 1. We may assume that e1 >

1010 log q/ log 2. Since 0 < |Λ1| = − log(1− 2−e1) < 1/(2e1 − 1), we have

− log |Λ1| > log(2e1 − 1) > (1− 10−10)e1 log 2. (12)

Combining upper and lower bounds for Λ1, we obtain

e1 log 2

log q
< (1 + 10−10)

(
C0 + log

(
e1 log 2

log q

))
C(3) log 2 log p

< 1.244× 1010 log p log

(
e1 log 2

log q

)
. (13)
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Hence, observing that 1.244× 1010 log p ≥ 1.244× 1010 log 2, we obtain

e1 log 2

log q
< 1.143× (1.244× 1010 log p) log(1.244× 1010 log p)

< 1.422× 1010(log log p+ 23.3), (14)

giving (9) in the case i = 1.

Next we shall prove (9) in the case i = 2. We may assume that e2 >

1010 log q/ log 3 as in the previous case. From 0 < |Λ2| = − log(1 − 3−e2) <

1/(3e2 − 1), we see that

− log |Λ2| > log(3e2 − 1) > (1− 10−10)e2 log 3, (15)

and therefore

e2 log 3

log q
< (1 + 10−10)

(
C0 + log

(
e2 log 3

log q

))
C(4) log 2 log 3 log p

< 1.089× 1012 log p log

(
e2 log 3

log q

)
. (16)

This gives (9) in the case i = 2.

Similarly, (9) in the case i = 3 follows from

e3 log 5

log q
< (1 + 10−10)

(
C0 + log

(
e3 log 5

log q

))
C(4) log 2 log 5 log p

< 1.595× 1012 log p log

(
e3 log 5

log q

)
. (17)

This completes the proof of the lemma. �

Next, we shall show that we cannot have all of aeii ’s large.

Lemma 3.2. Let x be the smallest among aeii ’s. Let h1 = f2g3 − f3g2,

h2 = f3g1 − f1g3 and h3 = f1g2 − f2g1 and H = max |hi|. Then

log x ≤ log

(
7H

4

)
+ C(3)(C0 + log((e1 + 3)H)) log 2 log 3 log 5. (18)

Proof. We begin by observing that

(2e1 − 1)h1

(
3e2 − 1

2

)h2
(

5e3 − 1

4

)h3

= 1. (19)
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Now we put

Λ = (e1h1 − h2 − 2h3) log 2 + e2h2 log 3 + e3h3 log 5

= h1 log

(
2e1

2e1 − 1

)
+ h2 log

(
3e2

3e2 − 1

)
+ h3

(
log

5e3

5e3 − 1

)
. (20)

Then we have

0 < |Λ| ≤ H
(

1

2e1 − 1
+

1

3e2 − 1
+

1

5e3 − 1

)
≤ 7H

4x
, (21)

and therefore

log |Λ| ≤ − log x+ log

(
7H

4

)
. (22)

It follows from the assumption ei > 0 that Λ 6= 0. Hence, Matveev’s lower

bound gives

log |Λ| ≥ −C(3)(C0 + log((e1 + 3)H)) log 2 log 3 log 5. (23)

Combining (22) and (23), we obtain (18). �

The third step is to obtain upper bounds for each ei.

Lemma 3.3. Unless x = p = 31, we have e1 < 4.44× 1052, e2 < 2.54× 1054

and e3 < 2.55× 1054, and H < 2.89× 1068.

Proof. We may assume without the loss of generality that p < q. We begin

by considering the case q | x. In this case, we have

log q < log x < log

(
7H

4

)
+ C(3)(C0 + log((e1 + 3)H)) log 2 log 3 log 5. (24)

We note that

H ≤ C2C3 log p log q(log log p+ C5)(log log p+ C6), (25)

since it follows from Lemma 3.1 that

fi < ei log ai/ log pi < Ci log q(log log p+ Ci+3) (26)

and

gi < ei log ai/ log qi < Ci log p(log log p+ Ci+3). (27)
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Hence, we obtain log p < log q < 4.35× 1012.

Now we consider the case p < q and q - x. Put i to be the index such that

x = (aeii − 1)/(ai − 1), j, k be the other two and

Λ′ = ejhj log aj + ekhk log ak − hj log(aj − 1)− hk log(ak − 1) + hi log x

= hj log

(
a
ej
j

a
ej
j − 1

)
+ hk log

(
aekk

aekk − 1

)
. (28)

It follows from Lemma 2.5 that if (a
ej
j −1)/(aj−1) = pfj or (aekk −1)/(ak−1) =

pfk , then aeii = 25 or 53 and x = p = 31. Hence, we see that both numbers

(a
ej
j − 1)/(aj − 1), (aekk − 1)/(ak − 1) must be divisible by q unless x = p = 31.

Thus we obtain

0 < Λ′ < H

(
1

a
ej
j − 1

+
1

aekk − 1

)
≤ 3H

2q
. (29)

As in the previous case, Matveev’s theorem now gives

log |Λ′| ≥ −C(4)

(
C0 + log

(
E3H

log x

))
log 2 log 3 log 5 log x. (30)

Combining (29) and (30), we obtain

log q ≤ log

(
3H

2

)
+ C(4)

(
C0 + log

(
E3H

log x

))
log 2 log 3 log 5 log x. (31)

Since

E3 = C3 log p log q(log log p+ C6) ≤ C3 log x log q(log log x+ C6) (32)

and

H < C2C3(log q)2(log log q + C5)(log log q + C6), (33)

combining (18) and (31), we obtain log q < 3.45× 1027. Moreover, we have

log p = log x < log

(
7H

4

)
+ C(3)(C0 + log((e1 + 3)H)) log 2 log 3 log 5

< 7.22× 1012. (34)

So, we conclude that in both cases, we have log p < 7.22× 1012 and log q <

3.45 × 1027. Now Lemma 3.1 immediately gives that e1 < 4.44 × 1052, e2 <

2.54 × 1054 and e3 < 2.55 × 1054. Finally, the upper bound H < 2.89 × 1068

follows from H < C2C3(log p)(log q)(log log p+ C6)(log log q + C5). �
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Now, using the lattice reduction algorithm, we shall obtain feasible upper

bounds.

Lemma 3.4. We have log x < 354.8. Moreover, if p < q and q divides x,

then log x < 249.5.

Proof. We begin by noting that we can assume x 6= 31 without the loss of

generality.

In order to reduce our upper bounds, we use the LLL lattice reduction algo-

rithm introduced in [8]. Let M be the matrix defined by m12 = m13 = m21 =

m23 = 0, m11 = m22 = γ and m3i = bCγ log aic for i = 1, 2, 3, where C and γ are

constants chosen later. Let L denote the LLL-reduced matrix of M , and l(L) the

shortest length of vectors in the lattice generated by the column vectors of L.

From the previous lemma, we know that Λ has coefficients with absolute

values at most H max{e1 + 3, e2, e3} < 7.37 × 10122. It is implicit in the proof

of Lemma 3.7 of de Weger’s book [17] that if l(Γ) > X1

√
16 + 4γ and X1 ≥

7.37× 10122, then |Λ| > X1/(Cγ).

Taking C = 10370, γ = 2, we can confirm that l(Γ) > X1

√
16 + 4γ, and

therefore we obtain that |Λ| > 3.685× 10−248. Hence, we have

log x < log

(
7H

4

)
− log |Λ| < 727.94. (35)

We choose the index i such that x = (aeii − 1)/(ai− 1), and let j, k be the others.

From the above estimate for x, we derive that

ei ≤
⌊

log 2x

log ai

⌋
≤ 1051. (36)

We consider the case p < q and q does not divide x. From (31) we obtain

log q < 3.337× 1017. Lemma 3.1 gives that

|hi| < C2C3 log x log q(log log x+ C6)(log log q + C5) < 1.264× 1048, (37)

|hj | = |figk| < C3 log x(log log q + C6) < 8.944× 1016, (38)

|ej | < C3 log x log q(log log q + C6)/ log 2 < 4.306× 1034, (39)

and similar upper bounds hold for |hk| and |ek|, respectively. Hence, Λ has

coefficients with absolute values at most 3.852 × 1051. Using the LLL-reduction

again with C = 10157 and γ = 2, we obtain |Λ| > 1.926 × 10−106, and therefore

log x < log(7H/4)− log |Λ| < 354.8.
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Next, we consider the case p < q and q divides x. In this case, we have log p <

log q ≤ log x < 727.94. We choose the index i such that x = (aeii − 1)/(ai − 1)

and let j, k be the other two. Lemma 3.1 gives that

|hi| < C2C3 log2 x(log log x+ C5)(log log x+ C6) < 1.392× 1033, (40)

|hj | ≤ max |figk, fkgi| < C3 log x(log log x+ C6) < 4.533× 1016, (41)

|ej | < C3 log2 x(log log x+ C6)/ log 2 < 4.761× 1019, (42)

and similar upper bounds hold for |hk| and |ek|, respectively. Combining these

upper bounds with (36), we see that Λ has coefficients with absolute values at

most 2.159 × 1036. We use the LLL-reduction again with C = 10111 and γ = 2,

we obtain |Λ| > 1.079× 10−75, and therefore log x < log(7H/4)− log |Λ| < 249.5.

This proves the lemma. �

4. Checking the small ranges

The final step is checking all possibilities of x. We note that from The Cun-

ningham Project (see [15] or [5]), we know all prime factors of x’s below our upper

bounds.

For x = (aeii − 1)/(ai − 1), we should check the residual orders of the other

prime aj modulo x. A summary is given in Tables 1–6, where Pn such as P13 in

the row e1 = 49 denotes a prime with n digits, and (n) indicates that the residual

order is a multiple of n. For example, putting x = 2347 − 1 = pq with p < q,

oq(3) is divisible by 6, since q− 1 is divisible by 23× 32 and 3(q−1)/8, 3(q−1)/3 6≡ 1

(mod q), although 3(q−1)/4 ≡ 1 (mod q), which yields that (3e2 − 1)/2 = pf2qg2

with g2 > 0 is impossible.

If p = x = 2e1 − 1 is prime, then e1 ≤ 511, and therefore e1 must belong to

the set

{2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127}.

Among them, there exists no e1 such that ox(3) = 1, being a prime or the square

of a prime, as we can see from Table 1. Hence, by Lemma 2.3, we must have

(3e2 − 1)/2 = qg2 . By Lemma 2.5, (5e3 − 1)/4 must be divisible by p = x. Hence,

by Lemma 2.3, ox(5) = 1 or ox(5) must be a prime or the square of a prime, and

therefore, from Table 1, e1 = e3 = 2 or e1 = 5, e3 = 3. If e1 = e3 = 2, then

(5e3 − 1)/4 = 6 = 2× 3, and therefore (3e2 − 1)/2 must be a power of 2, yielding

that e2 = 2. If e1 = 5 and e3 = 3, then p = 31 and (3e2 − 1)/2 = qg2 , yielding

that e2 = 5 or (3e2 − 1)/2 = q.
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If x = 2e1 − 1 is not a prime power, then e1 ≤ 359, and therefore e1 must

belong to the set

{4, 6, 9, 11, 23, 37, 41, 49, 59, 67, 83, 97, 101, 103, 109, 131,

137, 139, 149, 167, 197, 199, 227, 241, 269, 271, 281, 293, 347}.

Hence, we can write x = 2e1 − 1 = pq for distinct primes p < q. By Lemma 2.5,

(3e2 − 1)/2 = pg2 and (5e3 − 1)/4 = pg3 cannot simultaneously hold. In other

words, at least one of these two integers must be divisible by q. But, for no e1 in

the above set, oq(5) is 1, a prime or prime-square, as can be seen from Table 2.

Hence, (3e2 − 1)/2 must be divisible by q. The only e1 for which oq(3) is 1,

a prime or prime-square is e1 = 4. Then we must have x = 24 − 1 = 3 × 5 and

(p, q) = (3, 5). But this implies that e2 is divisible by 4, and (3e2 − 1)/2 must be

divisible by 2. Hence, (3e2 − 1)/2 cannot be of the form pf2qg2 . Hence, it cannot

occur that x = 2e1 − 1 is not a prime power.

If x = (3e2 − 1)/2 = pf2 is prime or prime power, then

e2 ∈ {2, 3, 5, 7, 13, 71, 103}.

For none of them, op(2) = 1, 6 or a prime power. Hence, as above, (5e3 − 1)/4

must be divisible by p. Since op(5) must be 1 or a prime power, we must have

e2 ∈ {2, 3, 5}. If e2 = 2, then p = 2 and e3 = 2, which yields that q = 3

and e1 = 2. If e2 = 3, then p = 13 and e3 = 4, which is impossible since

(5e3 − 1)/4 = 156 = 22 × 3 × 13 has three distinct prime factors. If e2 = 5,

then p = 11 and e3 = 5. Hence, (5e3 − 1)/4 = 781 = 11 × 71. This implies

that 2e1 − 1 = 11f171g1 , which is impossible since 210 − 1 = 3 × 11 × 31 and

235 − 1 = 31× 71× 127× 122921.

If x = (3e2 − 1)/2 is not a prime power, then

e2 ∈ {9, 11, 17, 19, 23, 37, 43, 59, 61, 223}.

Hence, we can write x = (3e1−1)/2 = pq for distinct primes p < q with p, q 6= 31.

However, oq(2) or oq(5) can never be 1, 6, or a prime power among the above e2’s.

Hence, both 2e1−1 and (5e3−1)/4 must be a power of p. By Lemma 2.5, we must

have p = 31, which is impossible as mentioned above.

If x = (5e3 − 1)/4 is a prime power, then

e3 ∈ {3, 7, 11, 13, 47, 127, 149, 181}.

Among them, no e3 gives a prime power (or one) residual order 3 (mod x), and

only e3 = 3 makes the residual order 2 (mod x) acceptable in view of Lemma 2.3.
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Hence, p = 31, e3 = 3, e1 = 5 and (3e2 − 1)/2 = qf2 , which implies that e2 = 5 or

(3e2 − 1)/2 = q.

If x = (5e3 − 1)/4 is not a prime power, then

e3 ∈ {2, 5, 17, 23, 31, 41, 43, 59, 71}.

Hence, we can write x = (5e3 − 1)/4 = pq for distinct primes p < q. None of

such e3 > 2 gives an acceptable residual order 2 (mod q) or 3 (mod q) in view of

Lemma 2.3. Hence, we see that neither 2e1 − 1 nor (3e2 − 1)/2 can be divisible

by q, and both must be a power of p, contrary to Lemma 2.5. Hence, we must

have e3 = 2, (p, q) = (2, 3). This yields that e1 = e2 = 2.

This completes the proof of Theorem 1.1. �

Table 1. The residual orders of 3, 5 modulo p for p = 2e1 − 1.

e1 op(3) op(5)

2 N/A 2

3 6 6

5 30 3

7 126 42

13 910 1365

17 131070 65535

19 524286 74898

31 715827882 195225786

61 (10) (15)

89 (6) (84)

107 (6) (6)

127 (6) (6)

Table 2. The residual orders of 3, 5 modulo p, q for pq = 2e1 − 1, p < q.

e1 2e1 − 1 = pq op(3) oq(3) op(5) oq(5)

9 7× 73 6 12 6 72

11 23× 89 11 88 22 44

23 47× 178481 23 178480 46 44620

37 223× 616318177 222 308159088 222 616318176

41 13367× 164511353 6683 164511352 13366 164511352

49 127× P13 126 (8) 42 (8)

59 179951× P13 89975 (8) 89975 (8)

67 193707721× P12 96853860 (6) 8071155 (6)

83 167× P23 83 (10) 166 (166)

Continued on next page
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Table 2 – Continued from previous page

e1 2e1 − 1 = pq op(3) oq(3) op(5) oq(5)

97 11447× P26 5723 (194) 11446 (194)

101 P13× P14 (303) (303) (303) (303)

103 2550183799× P22 (166) (206) (249) (309)

109 745988807× P24 (11663) (118) (214) (118)

131 263× P38 131 (74) 262 (74)

137 P20× P22 (274) (66290053) (1202723) (66290053)

139 P13× P30 (6) (6) (6) (15)

149 P20× P25 (745) (16) (745) (8)

167 2349023× P44 (26) (22) (26) (22)

197 7487× P56 (3743) (394) (38) (394)

199 P12× P49 (14) (1393) (8) (1393)

227 P18× P52 (8) (35) (8) (497)

241 22000409× P66 (8) (5114261) (482) (5114261)

269 13822297× P74 (6) (6) (6) (22)

271 15242475217× P72 (8) (542) (8) (15)

281 80929× P80 (8) (278) (6) (417)

293 P26× P63 (6) (6) (8) (6)

347 P23× P82 (6) (6) (21) (8)

Table 3. The residual orders of 2, 5 modulo p for pf2 = (3e2 − 1)/2.

e2 op(2) op(5)

2 N/A 1

3 12 4

5 10 5

7 1092 364

13 398580 30660

71 (8) (8)

103 (12) (14)



70 Tomohiro Yamada

Table 4. The residual orders of 2, 5 modulo p, q for pq = (3e2 − 1)/2, p < q.

e2 (3e2 − 1)/2 = pq op(2) oq(2) op(5) oq(5)

9 13× 757 12 756 4 756

11 23× 3851 11 3850 22 1925

17 1871× 34511 935 595 935 3451

19 1597× 363889 532 181944 532 22743

23 47× 1001523179 23 (46) 46 (1073)

37 13097927× P12 (9731) 8594564351 (74) (74)

43 431× P18 43 215 (22) (22)

59 14425532687× P18 (3953) (118) (106) (10679)

61 603901× P24 201300 (12) 150975 (145)

223 P26× P81 (446) (12) (6) (446)

Table 5. The residual orders of 2, 3 modulo p for p = (5e3 − 1)/4.

e3 op(2) op(3)

3 5 30

7 6510 6510

11 1220703 369910

13 61035156 1211015

47 (94) (6)

127 (18) (18)

149 (10) (6)

181 (12) (15)

Table 6. The residual orders of 2, 3 modulo p, q for pq = (5e3 − 1)/4, p < q.

e3 (5e3 − 1)/4 = pq op(2) oq(2) op(3) oq(3)

2 2× 3 N/A 2 1 N/A

5 11× 71 10 35 5 35

17 409× 466344409 204 3429003 204 116586102

23 8971× P12 8970 (8) 8970 2306995565

31 1861× P18 1860 (15) 310 (6)

41 2238236249× P19 279779531 (8) (8) (8)

43 1644512641× P21 (8) (15) (8) (10)

59 P17× P25 (12) (9) (6) (118)

71 569× P47 284 (142) 568 (452610863706241)



On some simultaneous equations 71

References

[1] A. S. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 4 (1886), 70–80 and 130–137.

[2] Y. Bugeaud, G. Hanrot and M. Mignotte, Sur l’équation diophantienne xn−1
x−1

= yq .

III, Proc. London Math. Soc. (3) 84 (2002), 59–78.

[3] Y. Bugeaud and M. Mignotte, On integers with identical digits, Mathematika 46 (1999),

411–417.
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