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On a semiring variety satisfying xn ≈ x

By AIFA WANG (Xi’an) and YONG SHAO (Xi’an)

Abstract. In this paper, we study the semiring variety determined by the addi-

tional identities xn ≈ x and x + (2n − 2)xyx ≈ x. We give a decomposition theorem

of semirings in this variety. Moreover, we characterize all subdirectly irreducible rings

in this variety, and show that each subvariety of this variety is finitely based. This

generalizes and extends the results of [1], [6], [7], [9], [13], [17] and [19].

1. Introduction and preliminaries

By a semiring we mean an algebra (S,+, ·) such that

• (S,+) is a commutative semigroup;

• (S, ·) is a semigroup;

• the distributive laws x(y + z) ≈ xy + xz and (y + z)x ≈ yx+ zx hold in S.

A semiring S is called multiplicatively idempotent (resp., additively idempotent)

if the identity x · x ≈ x (resp., x+ x ≈ x) holds in S. A semiring S is said to be

idempotent if it is both multiplicatively idempotent and additively idempotent.

We say that a semiring S is commutative if the identity xy ≈ yx holds in S.

A variety of algebras is a class of algebras of the same type that is closed

under the formation of subalgebras, homomorphic images and direct products.

It is well known (Birkhoff’s theorem) that a class of algebras of the same type
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is a variety if and only if it is an equational class. Let V be a variety, and X

a fixed countably infinite set of variables. We denote by IdV(X) the set of all

identities over X holding in V. If there exists a finite subset Σ of IdV(X) such

that var(Σ) = V, then V is said to be finitely based, where var(Σ) denotes the

variety determined by Σ. In other words, V is finitely based if there exists a finite

subset Σ of IdV(X) such that every identity in IdV(X) can be derived from Σ.

Otherwise, we say that V is nonfinitely based. An algebra A is said to be finitely

based (resp., nonfinitely based) if the variety HSP(A) generated by A is finitely

based (resp., nonfinitely based).

The finite basis problem for finite algebras can be posed as follows: is there an

algorithm that when given an effective description of a finite algebra A decides if

A is finitely based or not? Over the last decades, several authors have considered

the finite basis problem for various semiring (ring) varieties generated by finitely

many finite semirings (rings). Kruse [14] and L’vov [15] proved that the variety

generated by a finite ring is finitely based. Burris and Lawrence [1], and later

Kelarev [13] studied the ring varieties generated by a finite number of finite

fields with pairwise distinct characteristics, and proved that such varieties are

finitely based. Guzmán [9] proved that the semiring variety generated by two-

element distributive lattice D2 and two-element finite field Z2 is finitely based.

Ghosh, Pastijn and Zhao [8] studied the variety
+

S` of idempotent semirings

which is generated by two specific semirings of order four. They showed that
+

S` has 78 subvarieties and every subvariety of
+

S` is finitely based. Shao and

Ren [18] investigated the variety generated by all additively idempotent semirings

of order two, and proved that every subvariety of this variety is finitely based.

Shao, Crvenković and Mitrović [17] studied the variety generated by two-

element distributive lattice D2 and any finite number of finite fields. They showed

that this variety is finitely based. Vechtomov and Petrov [19] proved that

the variety generated by all commutative multiplicatively idempotent semirings

of order two is finitely based. Recently, Chajda and Länger [3] proved that

the variety generated by a multiplicatively idempotent semiring of order three is

finitely based.

From Birkhoff’s theorem [2, Chapter 2, Theorem 8.6], every member of a va-

riety is isomorphic to the subdirect product of its subdirectly irreducible members.

Therefore, it is also one of the important research contents of the semiring vari-

eties to characterize subdirectly irreducible semirings in a given semiring variety.

Guzmán [9] proved that two-element distributive lattice D2 and two-element fi-

nite field Z2 are the only subdirectly irreducible members in the Boolean semiring
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variety. Chajda and Länger [4] gave a complete description of all subdirectly

irreducible members of the commutative multiplicatively idempotent semiring va-

riety. Vechtomov and Petrov [19] provided necessary conditions under which

semirings from the variety generated by all commutative multiplicatively idem-

potent semirings of order two are subdirectly irreducible.

The class of all rings satisfying the identity xn ≈ x is denoted by Rn. Thus,

R2 denotes the class of all Boolean rings. It is easy to check that Rn is the

semiring variety determined by the additional identities xn ≈ x, (2n − 1)x ≈ x

and (2n − 2)x ≈ (2n − 2)y. Let
·

ReB∩
+

S` be the subvariety of
+

S` determined by

the additional identity x ≈ xyx and N∩
+

S` the subvariety of
+

S` determined by

the additional identity x ≈ x+ xyx. Obviously, the distributive lattice variety D

is a proper subvariety of N∩
+

S` and D = HSP(D2). It is shown [8] that the

lattice of all subvarieties of N∩
+

S` is as follows:
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where L2 is the two-element semiring with the following addition and multiplica-

tion tables:

+ 0 1

0 0 1

1 1 1

and

. 0 1

0 0 0

1 1 1

;

and R2 is the (multiplicative) left-right dual of L2. For L2 [R2] we denote by
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L0
2 [R0

2] the semiring obtained from L2 [R2], by adding an element 0, where a =

0 + a = a+ 0, 0 = 0a = a0 for every a ∈ L0
2 [R0

2].

The Mal’cev product of two classes V and W of semirings, denoted by V◦W,

is the class of all semirings S on which there exists a congruence ρ such that S/ρ ∈
W and every ρ-class that is a subsemiring of S belongs to V. Thus, in this way,

some classes of semirings can be constructed by considering the Mal’cev products

of some given classes of semirings. In general, a semiring in the Mal’cev product

of two semiring varieties V and W is not necessarily isomorphic to the subdirect

product of a semiring in V and a semiring in W. For example, the quotient

semiring L0
2/
·
D by the Green D-relation belongs to D (see [8, Theorem 4.5]).

It is easy to check that every
·
D-class of L0

2 is a semiring in
·

ReB ∩
+

S`. Thus,

L0
2 ∈ (

·
ReB ∩

+

S`) ◦D. By [8, Theorem 4.5], L0
2 /∈ (

·
ReB ∩

+

S`) ∨D. Therefore,

L0
2 is not isomorphic to the subdirect product of a semiring in

·
ReB ∩

+

S` and a

semiring in D. Galbiati, Veronesi [6] and Ghosh [7] proved that each member

in R2 ◦D is isomorphic to the subdirect product of a ring in R2 and a semiring

in D, which implies that R2∨D = R2◦D. Vechtomov and Petrov proved that

the multiplicatively idempotent semiring variety determined by the additional

identity x+ 2xyx ≈ x is equal to R2 ◦ (N∩
+

S`) (see [19, Theorem 2.1]).

In this paper, we give a decomposition theorem of semirings in the Mal’cev

product Rn ◦ (N∩
+

S`). Furthermore, we prove that Rn ◦ (N∩
+

S`) is a finitely

based semiring variety, and Rn ◦ (N∩
+

S`) = Rn ∨ (N∩
+

S`). We also characterize

all subdirectly irreducible rings in this variety, and prove that every subvariety of

Rn ◦ (N∩
+

S`) is finitely based.

For other notation and terminology we use in this paper, the reader is referred

to [2], [10] and [11].

2. On the semiring variety Rn ◦ (N∩
+

S`)

Let n (n > 2) be a positive integer. If S ∈ Rn ◦ (N∩
+

S`), then there exists

a congruence ρ on S such that S/ρ ∈ N∩
+

S` and every ρ-class belongs to Rn.

That is to say, for any a ∈ S, the ρ-class ρa containing a is a ring in Rn. Thus,

(ρa, +) is a commutative group. From S/ρ ∈ N∩
+

S` it follows that (S/ρ, +) is

a semilattice, which means that the additive reduct (S, +) of S is a semilattice

of commutative groups. Hence, by [11, Theorem 4.2.1], (S, +) is a commutative
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Clifford semigroup. From ρa ∈ Rn it follows that an = a, and so S satisfies the

identity

xn ≈ x. (1)

By identity (1), we have a + a = (a + a)n = 2n · a. Since (S, +) is completely

regular, (2n − 1) · a = a. Thus, S satisfies the identity

(2n − 1)x ≈ x. (2)

For a semiring (S, +, ·), we denote Green’s H relation on the additive reduct

(S, +) by H+. By Theorem II.1.4 and Corollary II.1.5 in [16], H+ is the least

semilattice congruence of the additive reduct (S, +) of S, moreover, every H+-

class is a maximal subgroup of (S, +). For any a ∈ S, we denote by H+
a the

H+-class containing a, and 0a the identity of H+
a , respectively. It is easily seen

that 0a = (2n − 2)a and aH+b if and only if (2n − 2)a = (2n − 2)b for any

a, b ∈ S. Let E+(S) denote the set of all idempotents of (S, +), i.e., E+(S) =

{e ∈ S | e + e = e}. Since E+(S) is a semilattice, by identity (2), we have

E+(S) = {(2n − 2)a | a ∈ S }. For a commutative Clifford semigroup (C, +),

we say that (C, +) is E-unitary (see [11]) if for any e ∈ E+(C) and a ∈ C,

e+ a ∈ E+(C)⇒ a ∈ E+(C).

A commutative Clifford semigroup (C, +) is an E-unitary commutative Clifford

semigroup if (C, +) is E-unitary.

Define a binary relation σ on S as follows:

(∀a, b ∈ S) aσb⇔ (∃e ∈ E+(S)) a+ e = b+ e.

It follows from [11, Proposition 5.3.1] that σ is the least group congruence on the

additive reduct (S,+) of S. Assume that a, b ∈ S and aσb. Then there exists

e ∈ E+(S) such that a + e = b + e. For any c ∈ S, we have ca + ce = cb + ce.

Since ce+ ce = c(e+ e) = ce, ce ∈ E+(S), and so ca σcb. Dually, we have ac σbc.

This shows that σ is a semiring congruence on S. In the following, we shall give

a decomposition theorem of semirings in Rn ◦ (N∩
+

S`).

Theorem 2.1. If S is a semiring in Rn ◦ (N∩
+

S`), then S is isomorphic

to the subdirect product of the member S/σ of Rn and the member S/H+ of

N∩
+

S`.
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Proof. Let S be a semiring. If S ∈ Rn ◦ (N∩
+

S`), then there exists a con-

gruence ρ on S such that S/ρ ∈ N∩
+

S` and every ρ-class belongs to Rn. It follows

that (S/ρ,+) is a semilattice, and so H+ ⊆ ρ, since H+ is the least semilattice

congruence on (S, +). On the other hand, since ρu (the ρ-class containing u)

belongs to Rn for any u ∈ S, the additive reduct of ρu is an abelian subgroup of

(S, +). Thus, ρu ⊆ H+
u , which implies that ρ ⊆ H+. Therefore, ρ = H+, and so

S/H+ ∈ N∩
+

S`. It is easy to check that S/σ ∈ Rn, since S satisfies identity (1)

and σ is a semiring congruence on S.

Let a ∈ S, e ∈ E+(S). If a + e ∈ E+(S), then there exists f ∈ E+(S) such

that a+ e = f . It follows that a+ (e+ f) = e+ f , and so

a3 + a(e+ f)a = a(e+ f)a.

Thus, a3 + a+ a(e+ f)a = a+ a(e+ f)a, furthermore,

a3 + a+ (2n − 2)a(e+ f)a = a+ (2n − 2)a(e+ f)a. (3)

Since E+(S) = {(2n−2)a | a ∈ S}, we can define a mapping from E+(S) to S/H+

as follows:

ϕ((2n − 2)a) = H+
(2n−2)a.

It is routine to verify that ϕ is an isomorphism. Thus, by S/H+ ∈ N∩
+

S`, E+(S)

satisfies the identity x+ xyx ≈ x. From (2n − 2)a, e+ f ∈ E+(S), we have

(2n − 2)a+ (2n − 2)a · (e+ f) · (2n − 2)a = (2n − 2)a,

and so (2n − 2)a+ (2n − 2)a(e+ f)a = (2n − 2)a. Thus,

a+ (2n − 2)a+ (2n − 2)a(e+ f)a = a+ (2n − 2)a. (4)

By identities (2), (3) and (4), we can deduce that a3+a = a. From a3+a(e+f)a =

a(e+ f)a, we also have

a4 + a(e+ f)a2 = a(e+ f)a2.

Thus, a4 + a+ a(e+ f)a2 = a+ a(e+ f)a2, furthermore,

a4 + a+ (2n − 2)a(e+ f)a2 = a+ (2n − 2)a(e+ f)a2,

which implies that a4 + a = a. By induction, we can show that ak + a = a for

any k ≥ 3. In particular, we have an + a = a, i.e., a + a = a. This shows that

a ∈ E+(S). Therefore, (S,+) is an E-unitary commutative Clifford semigroup.

It follows from [11, Proposition 5.9.1] that H+∩σ = ıS . Thus, by [2, Lemma 8.2],

S is isomorphic to the subdirect product of S/H+ and S/σ. �
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Theorem 2.1 tells us that if S ∈ Rn ◦ (N∩
+

S`), then S is isomorphic to the

subdirect product of S/σ and S/H+, that is, S is isomorphic to a subsemiring of

S/σ×S/H+. Since Rn∨(N∩
+

S`) is the smallest variety containing Rn and N∩
+

S`,

we have that S ∈ Rn∨(N∩
+

S`) and so Rn◦(N∩
+

S`) ⊆ Rn∨(N∩
+

S`). It is obvious

that Rn∨(N∩
+

S`)⊆Rn◦(N∩
+

S`). This shows that Rn◦(N∩
+

S`) = Rn∨(N∩
+

S`).

If S satisfies identity (1) and

x+ (2n − 2)xyx ≈ x, (5)

then, by the proof of the Theorem 2.1, S ∈ Rn∨ (N∩
+

S`). It is easy to check that

both Rn and N∩
+

S` satisfy identities (1) and (5), which implies that Rn∨(N∩
+

S`)

also satisfies identities (1) and (5). Thus we have

Theorem 2.2. The Mal’cev product Rn ◦ (N∩
+

S`) is a semiring variety

determined by identities (1) and (5), and Rn ◦ (N∩
+

S`) = Rn ∨ (N∩
+

S`).

Since Rn ◦ (N∩
+

S`) is a semiring variety, it follows from [2, Theorem 9.6]

that every semiring in Rn ◦ (N∩
+

S`) is isomorphic to a subdirect product of

subdirectly irreducible semirings in this variety. By Theorem 2.1, we need only

to study subdirectly irreducible idempotent semirings in N∩
+

S` and subdirectly

irreducible rings in Rn. In the following, we shall characterize all subdirectly

irreducible rings in Rn ◦ (N∩
+

S`).

Theorem 2.3. Let S be a ring in Rn ◦ (N∩
+

S`). If S is subdirectly irre-

ducible, then S is a finite field.

Proof. Assume that S is a subdirectly irreducible ring in Rn. Then S has

the unique minimal nontrivial ideal J . From [12, Theorem 11], we have that (S, ·)
is commutative since S satisfies identity (1). For any a 6= 0, if a2 = 0, then an =

a = 0. This implies that a2 6= 0, and so {0} & aJ . Since (aJ)R = a(JR) ⊆ aJ ,

it follows that aJ is an ideal of S. Thus, aJ = J , since J is the unique minimal

nontrivial ideal.

For any a, b ∈ J \{0}, we have aJ = bJ = J . Thus, there exists c, d ∈ J \{0}
such that a = bc, b = ad. Hence,

an−1 = (bc)n−1 = bn−1cn−1, bn−1 = (ad)n−1 = an−1dn−1.
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It follows that

bn−1an−1 = bn−1bn−1cn−1 = bn−1cn−1 = an−1,

an−1bn−1 = an−1an−1dn−1 = an−1dn−1 = bn−1,

and so an−1 = bn−1. It is also easy to check that ab ∈ J \ {0}, and so (J \ {0}, ·)
is a subsemigroup of J . Moreover, by identity (1), we have a ·an−1 = an−1 ·a = a

and a · an−2 = an−2 · a = an−1. This implies that (J \ {0}, ·) is a group, and so

(J,+, ·) is a field.

Without loss of generality, we let e = an−1 = bn−1 be the identity of (J \
{0}, ·). Consider the set I = {a | ae = 0}. It is easy to verify that I is also

an ideal of S. If I is nontrivial, then J ⊆ I. Hence, for any a ∈ I ∩ J and a 6= 0,

ea = an−1a = a = 0, a contradiction. Thus, I = {0}. For any r ∈ S, from

e(r − er) = (r − er)e = 0 we have r − er = 0, and so r = er. Since J is an ideal

and e ∈ J , it follows that r = er ∈ J . This shows that S is a field.

It is easily seen that every element of S is a root of the polynomial xn − x.

Since xn − x has at most n roots in a field, |S| ≤ n. This shows that S is a finite

field. �

Corollary 2.4. A finite field F with q elements is in Rn ◦ (N∩
+

S`) if and

only if there exist a prime p and a positive integer t such that q = pt, p | 2n − 2

and pt − 1 |n − 1. Furthermore, there exist, up to isomorphism, finitely many

finite fields in Rn ◦ (N∩
+

S`).

Proof. Let F be a finite field in Rn◦(N∩
+

S`). By identity (1), we have that

F satisfies (2n− 2)x ≈ 0. This implies that the characteristic of F divides 2n− 2,

and so the characteristic of F is some prime divisor p of 2n − 2. Hence, there

exists a positive integer t such that the size of F is equal to pt, i.e., F satisfies

xp
t ≈ x. Clearly, F satisfies identity (1), thus, pt − 1 divides n − 1. Since both

2n − 2 and n− 1 have finitely many divisors, it follows that, up to isomorphism,

there are finitely many finite fields in Rn ◦ (N∩
+

S`).

Conversely, if there exist a prime p and a positive integer t such that q =

pt, p | 2n − 2 and pt − 1 |n − 1, then F satisfies identities (1) and (5). Thus,

by Theorem 2.2, F ∈ Rn ◦ (N∩
+

S`). �

Suppose that (S, +, ·) is a semiring in Rn ◦ (N∩
+

S`). Then, for each a ∈ S
we have a = aan−1a, an = aan−1 = an−1a, which means that a is a completely

regular element in the multiplicative reduct (S, ·) of S. That is to say, (S, ·) is
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a completely regular semigroup. Let H· denote the Green-H relation on (S, ·).
It follows that every H· class is a maximal subgroup of (S, ·). We use E·(S) to

represent the set of all idempotents of (S, ·). Then E·(S) = {bn−1 | b ∈ S}. Recall

that a cryptogroup is a completely regular semigroup in which H· is a congruence.

A cryptogroup (S, ·) is called a normal orthocryptogroup if S/H· is a normal band,

and E·(S) is a normal band (see [16]). In the following, we shall characterize the

multiplicative reduct (S, ·) of S.

Corollary 2.5. If S ∈ Rn ◦ (N∩
+

S`), then (S, ·) is a normal orthocryp-

togroup, and every maximal subgroup of (S, ·) is commutative.

Proof. Suppose that S belongs to Rn ◦ (N∩
+

S`). Since both Rn and

(N∩
+

S`) satisfy the identities (xy)n−1 ≈ xn−1yn−1 and xn−1yn−1zn−1xn−1 ≈
xn−1zn−1yn−1xn−1, it follows from Theorem 2.1 that S satisfies the identities

(xy)n−1 ≈ xn−1yn−1 and xn−1yn−1zn−1xn−1 ≈ xn−1zn−1yn−1xn−1. This im-

plies that E·(S) is a normal band and H· is a congruence on (S, ·). By [16,

Theorem IV.2.7], (S, ·) is a normal orthocryptogroup.

Assume that a ∈ S. Since H+
a is a ring, we have aH+a2, and so (2n − 2)a =

(2n − 2)a2. By induction, we can show that (2n − 2)a = (2n − 2)ak for any

k ≥ 1. On the other hand, for any a, b ∈ S, if aH·b, then an−1 = bn−1, and so

(2n − 2)an−1 = (2n − 2)bn−1. Thus, (2n − 2)a = (2n − 2)b, and so aH+b. Since

every H+-class of S is a ring in Rn, by [12, Theorem 11], we have ab = ba. This

shows that every maximal subgroup of (S, ·) is commutative. �

3. On the subvarieties of Rn ◦ (N∩
+

S`)

For every subvariety V of Rn◦(N∩
+

S`), from Theorem 2.1 we have that V is

generated by some subdirectly irreducible rings in Rn and some subdirectly irre-

ducible idempotent semirings in N∩
+

S`. Now let SI(N∩
+

S`) denote the set of all

subdirectly irreducible semirings in N∩
+

S`. For any subset A of SI(N∩
+

S`),

from [8] we have that HSP(A) is equal to a semiring variety generated by some

subset of {D2, L2, R2, L
0
2, R

0
2} (denoted by A). On the other hand, we have that,

up to isomorphism, there are finitely many subdirectly irreducible rings (finite

fields) in Rn (see Theorem 2.3 and Corollary 2.4). Thus, every subvariety of

Rn ◦ (N∩
+

S`) can be generated by some members in A and some subdirectly irre-

ducible rings in Rn. Let T denote the set of all members in A and all subdirectly
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irreducible rings in Rn, and B denote the subset of T . To show that HSP(B) is

finitely based, we need only to consider the following four cases:

Case 1. B = ∅. It is clear that HSP(B) is the trivial variety.

Case 2. B 6= ∅, B ⊆ A. HSP(B) is finitely based (see the following Table 1

obtained in [8]).

Semiring variety Determined by additional identities

HSP(L2) x2 ≈ x, xy ≈ x
HSP(R2) x2 ≈ x, xy ≈ y
HSP(L2, R2) x2 ≈ x, xyx ≈ x
HSP(D2) x2 ≈ x, xy ≈ yx, x+ xy ≈ x
HSP(D2, L2) x2 ≈ x, xyz ≈ xzy, x ≈ x+ xy,

xy + z ≈ xy + z + xz

HSP(D2, R2) x2 ≈ x, xyz ≈ yxz, x ≈ x+ yx,

xy + z ≈ xy + z + zy

HSP(D2, L2, R2) x2 ≈ x, x+ xyx ≈ x, xy + z ≈ xy + z + xz,

xy + z ≈ xy + z + zy

HSP(L0
2) x2 ≈ x, xyz ≈ xzy, x+ xy ≈ x

HSP(L0
2, R2) x2 ≈ x, x+ xyx ≈ x, xy + z ≈ xy + z + zy

HSP(R0
2) x2 ≈ x, xyz ≈ yxz, x+ yx ≈ x

HSP(R0
2, L2) x2 ≈ x, x+ xyx ≈ x, xy + z ≈ xy + z + xz

HSP(L0
2, R

0
2) x2 ≈ x, x+ xyx ≈ x

Table 1

Case 3. B consists of the subdirectly irreducible idempotent semirings in A
and a finite number of subdirectly irreducible rings (finite fields) in Rn. Suppose

that A is a non-empty subset of A. Let VA = HSP(A). Since VA is finitely

based, there exists finite subset ΣA of IdVA
(X) such that each identity in IdVA

(X)

can be derived from ΣA.

For any i ∈ {1, 2, . . . , k}, let Fi be a finite field of characteristic pi in Rn ◦

(N∩
+

S`) and size qi = pni
i for some positive integer ni, and let d be the least

common multiple of p1, . . . , pk. Since Fi satisfies identities (1) and (2), pi is

a prime factor of 2n − 2 and pni
i − 1 is a factor of n− 1.

We need to consider the following two subcases:

Subcase 3.1. B1 = A ∪ {F1, . . . , Fk}, in which there exist at least two finite

fields in {F1, . . . , Fk} such that their characteristics are distinct.
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Subcase 3.2. B2 = A ∪ {F1, . . . , Fk}, in which F1, . . . , Fk have the same

characteristics.

We first consider Subcase 3.1. It is easy to verify that HSP(B1) satisfies

identities (1), (5), and the following

(d+ 1)x ≈ x, (6)

d

pi
· xqi ≈ d

pi
· x, (1 ≤ i ≤ k), (7)

d · u1 + · · ·+ d · um ≈ d · v1 + · · ·+ d · v`, (8)

where u1 + · · ·+ um ≈ v1 + · · ·+ v` ∈ ΣA.

We thus have

Theorem 3.1. Let B1 = A ∪ {F1, . . . , Fk}, in which there exist at least

two finite fields in {F1, . . . , Fk} such that their characteristics are distinct. Then

HSP(B1) is finitely based.

Proof. Let V∗ be the variety of semirings defined by additional identities

(1), (5), (6), (7) and (8). It is easy to see that V∗ is a subvariety of Rn ◦(N∩
+

S`),

and that HSP(B1) is a subvariety of V∗. In what follows, we shall prove that

HSP(B1) = V∗.

Suppose that S is a subdirectly irreducible semiring in V∗. It follows from

Theorems 2.1 and 2.3 that S, up to isomorphism, is a member of N∩
+

S` or a finite

field. If S is a finite field, then, by identity (6), the characteristic of S is equal to

some pi (1 6 i 6 k). Since S satisfies

d

pi
· xqi ≈ d

pi
· x,

S satisfies xqi ≈ x, and so the size of S divides qi. Thus, up to isomorphism, S is

a subfield of Fi. Since every subfield of Fi is in HSP(B1), we have that S belongs

to HSP(B1). If S is a subdirectly irreducible idempotent semiring in V∗, then,

by identity (8), S belongs to HSP(A), and so S ∈ HSP(B1). That is to say,

every subdirectly irreducible semiring of V∗ is in HSP(B1), which implies that

V∗ ⊆ HSP(B1). This shows that HSP(B1) is finitely based. �

Next, we shall discuss Subcase 3.2. Without loss of generality, assume that

there exists a prime p such that the characteristics of F1, . . . , Fk are equal to p.

Thus, there exist positive integers n1, . . . , nk such that |Fi| = pni (1 6 i 6 k).
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It is easy to verify that HSP(B2) satisfy identities (1), (5), and the following

(p+ 1) · x ≈ x, (9)

x+ (xp
n1

+ (p− 1) · x) · · · (xp
nk

+ (p− 1) · x) ≈ x, (10)

p · u1 + · · ·+ p · um ≈ p · v1 + · · ·+ p · v`, (11)

where u1 + · · ·+ um ≈ v1 + · · ·+ v` ∈ ΣA.

We thus have

Theorem 3.2. Let B2 = A ∪ {F1, . . . , Fk}, in which F1, . . . , Fk have the

same characteristics. Then HSP(B2) is finitely based.

Proof. We denote by V′ the semiring variety determined by additional

identities (1), (5), (9), (10) and (11). It is easy to see that HSP(B2) is a subvariety

of V′. In the following, we shall show that HSP(B2) = V′.

Suppose that S is a subdirectly irreducible semiring in V′. It follows from

Theorems 2.1 and 2.3 that S, up to isomorphism, is a number of N∩
+

S` or a finite

field. If S is a finite field, then, by identity (9), the characteristic of S is equal

to p. We denote by 0 and 1 the zero element and the identity of S, respectively.

Then (S \ {0}, ·) is a cyclic group of a finite order. Without loss of generality,

suppose that (S \ {0}, ·) can be generated by a, and that the order of (S \ {0}, ·)
is equal to q. From identity (10), we have

a+ (ap
n1

+ (p− 1) · a) · · · (ap
nk

+ (p− 1) · a) = a.

Furthermore,

(ap
n1

+ (p− 1) · a) · · · (ap
nk

+ (p− 1) · a) = 0,

since (S,+) is a group. Therefore, there exists 16j6k such that ap
nj

+(p−1)·a = 0,

and so

ap
nj

+ (p− 1) · a+ a = a.

That is to say, a = ap
nj

+ (p − 1) · a + a = ap
nj

+ p · a = ap
nj

, which implies

that ap
nj−1 = 1. This shows that the size q of (S \ {0}, ·) divides pnj − 1, and

so the size of S divides pnj . Thus, up to isomorphism, S is a subfield of Fj .

Since every subfield of F is in the variety HSP(B2), S belongs to HSP(B2). If S

is a subdirectly irreducible idempotent semiring in V′, then, by identity (11),

S belongs to HSP(A), and so S ∈ HSP(B2). This shows that every subdirectly

irreducible semiring of V′ is in HSP(B2), and so V′ = HSP(B2). It follows that

HSP(B2) is finitely based. �
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Case 4. B consists of a finite number of subdirectly irreducible rings (finite

fields). Let B3 = {F1, . . . , Fk}. It is obvious that HSP(B3) satisfies identities

(6), (7), and the following

d · x ≈ d · y. (12)

Furthermore, we have

Theorem 3.3. Let B3 = {F1, . . . , Fk}. Then HSP(B3) is finitely based.

Proof. Let V′′ be the subvariety of Rn ◦ (N∩
+

S`) determined by additional

identities (1), (5), (6), (7) and (12). It is easy to see that HSP(B3) ⊆ V′′.

In the following, we shall show that HSP(B3) = V′′.

Suppose that S is a subdirectly irreducible semiring in V′′. Since S satisfies

identity (12), it follows from Theorems 2.1 and 2.3 that S, up to isomorphism,

is a finite field. By identity (6), the characteristic of S is equal to pi (1 6 i 6 k).

Since S satisfies identity (7), the sizes of S is a factor of qi. Thus, by qi = pni
i ,

S is a subfield of Fi, and so S ∈ HSP(B3). This shows that HSP(B3) = V′′,

and so HSP(B3) is finitely based. �

Hence, for any non-empty subset B of T , by Theorems 3.1, 3.2 and 3.3,

HSP(B) is finitely based.

Recall that a variety is said to be hereditarily finitely based if every variety

contained in it is finitely based. From the above, it follows that every subvariety

of Rn ◦ (N∩
+

S`) is finitely based. We have now

Corollary 3.4. Rn ◦ (N∩
+

S`) is hereditarily finitely based.

Acknowledgements. The authors are particularly grateful to the referees

for an unusually careful reading of this paper and for proposing modifications

which led to the substantial improvement of this paper.

References

[1] S. Burris and J. Lawrence, Term rewrite rules for finite fields, Internat. J. Algebra
Comput. 1 (1991), 353–369.

[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag,

New York – Berlin, 1981.

[3] I. Chajda and H. Länger, On a variety of commutative multiplicatively idempotent semir-

ings, Semigroup Forum 94 (2017), 610–617.

[4] I. Chajda and H. Länger, Subdirectly irreducible commutative multiplicatively idempo-
tent semirings, Algebra Universalis 76 (2016), 327–337.



86 A. Wang and Y. Shao : On a semiring variety satisfying xn ≈ x

[5] I. Dolinka, A class of inherently nonfinitely based semirings, Algebra Universalis 60
(2009), 19–35.

[6] J. L. Galbiati and M. L. Veronesi, Sui semianelli di Boole, Istit. Lombardo Accad. Sci.
Lett. Rend. A 114 (1980), 73–88.

[7] S. Ghosh, A characterization of semirings which are subdirect product of a distributive

lattice and a ring, Semigroup Forum 59 (1999), 106–120.

[8] S. Ghosh, F. Pastijn and X. Z. Zhao, Varieties Generated by Ordered Bands. I, Order

22 (2005), 109–128.

[9] F. Guzmán, The variety of Boolean semirings, J. Pure Appl. Algebra 78 (1992), 253–270.

[10] U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Com-

puter Science, World Scientific, Singapore, 1998.

[11] J.M. Howie, Fundamentals of Semigroup Theory, The Clarendon Press, Oxford University

Press, New York, 1995.

[12] N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. of Math.
(2) 46 (1945), 695–707.

[13] A. V. Kelarev, Semigroup rings in semisimple varieties, Bull. Austral. Math. Soc. 57
(1998), 387–391.

[14] R. L. Kruse, Identities satisfied by a finite ring, J. Algebra 26 (1973), 298–318.

[15] I. V. L’vov, Varieties of associative rings. I, Algebra and Logic 12 (1973), 150–167.

[16] M. Petrich and N. R. Reilly, Completely Regular Semigroups, John Wiley & Sons, New
York, 1999.
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