Publ. Math. Debrecen 93/1-2 (2018), 163–170 DOI: 10.5486/PMD.2018.8125

Characterization of the Euler gamma function with the aid of an arbitrary mean

By JANUSZ MATKOWSKI (Zielona Góra)

Abstract. We prove that a continuous function $f: (0, \infty) \to (0, \infty)$ satisfying the functional equation

$$f(x+1) = xf(x), \quad x > 0, \quad f(1) = 1,$$

is the Euler gamma function iff for some a > 0 and a strict and continuous mean $M: (a, \infty)^2 \to (a, \infty)$, the following inequality holds:

$$f(M(x,y)) f\left(\frac{xy}{M(x,y)}\right) \le f(x) f(y), \quad x, y \in (a,\infty).$$

Taking for M the geometric mean $G(x, y) = \sqrt{xy}$, we obtain the result of [2] generalizing the classical BOHR–MOLLERUP theorem [1]. For M = A, where $A(x, y) = \frac{x+y}{2}$ is the arithmetic mean, the assumed inequality reduces to $f(A(x, y)) f(H(x, y)) \leq f(x) f(y)$ for all x, y > a, where H is the harmonic mean, and the result gives a new characterization of the gamma function, involving the arithmetic and harmonic means.

1. Introduction

According to the celebrated result of BOHR and MOLLERUP [1], the Euler gamma function Γ is the only function $f: (0,\infty) \to (0,\infty)$ satisfying the functional equation

$$f(x+1) = xf(x)$$
 for all $x > 0, f(1) = 1,$ (1)

and such that $\log \circ f$ is convex.

Mathematics Subject Classification: Primary: 33B15, 26E30; Secondary: 39B12. Key words and phrases: gamma function, mean, convexity, iteration, functional equation.

Janusz Matkowski

This theorem has been improved in [2], where it is shown that Γ is the only function $f: (0,\infty) \to (0,\infty)$ satisfying (1) and such that $\log \circ f \circ \exp$ is convex in a vicinity of ∞ . Interpreting this result, note that [2], for a positive real function f defined in an interval $I \subset (0,\infty)$ and continuous at least at one point, the function $\log \circ f \circ \exp$ is convex in the interval $\log (I)$, iff f is Jensen geometrically convex in I, i.e., iff

$$f(G(x,y)) \le G(f(x)f(y)), \quad x, y \in I,$$

where $G(x, y) := \sqrt{xy}$ is the geometric mean.

In the present paper, we show that any two-variable strict and continuous mean defined in a vicinity of ∞ can be used in a characterization of the Euler gamma function. The main results imply that: a continuous function $f: (0, \infty) \to (0, \infty)$ satisfying (1) is the Euler gamma function iff there is an a > 0and a strict continuous mean $M: (a, \infty)^2 \to (a, \infty)$ such that, for all x, y > a,

$$f(M(x,y)) f\left(\frac{xy}{M(x,y)}\right) \le f(x) f(y)$$

Taking M = G, one gets the result of [2]; taking M = A, where A is the arithmetic mean, we obtain the following characterization of the gamma function: a continuous function $f : (0, \infty) \to (0, \infty)$ satisfying (1) is the Euler gamma function, if and only if there is an a > 0 such that

$$f(A(x,y)) f(H(x,y)) \le f(x) f(y), \quad x, y \in (a,\infty),$$

where H is the harmonic mean.

2. Auxiliary results

Let $I \subset \mathbb{R}$ be an interval. A function $M: I \times I \to I$ is called a *bivariable mean in I* if

$$\min(x, y) \le M(x, y) \le \max(x, y), \quad x, y \in I,$$
(2)

and the mean M is called $\mathit{strict},$ if these inequalities are sharp for all distinct $x,y\in I.$

We shall need the following:

Gamma function and means

165

Lemma 1 ([5, Theorem 1]). Let $M: I^2 \to I$ and $N: I^2 \to I$ be continuous means in I. If, for all $x, y \in I$, $x \neq y$,

$$\max(M(x,y), N(x,y)) - \min(M(x,y), N(x,y)) < \max(x,y) - \min(x,y), (3)$$

then there exists a unique mean $K: I^2 \to I$ that is invariant with respect to the mean-type mapping $(M, N): I^2 \to I^2$, i.e., such that

$$K\left(M\left(x,y\right),N\left(x,y\right)\right)=K\left(x,y\right),\quad x,y\in I;$$

moreover, the sequence $\left(\left(M,N\right)^n\right)_{n\in\mathbb{N}}$ of iterates of the mapping (M,N) converges pointwise in I^2 and

$$\lim_{n \to \infty} \left(M, N \right)^n \left(x, y \right) = \left(K \left(x, y \right), K \left(x, y \right) \right), \quad (x, y) \in I^2.$$

Remark 1. It is obvious that condition (3) is satisfied if one of the means M or N is strict.

From Lemma 1, we obtain

Lemma 2. Let $I \subseteq (0,\infty)$ be an interval, $M: I^2 \to I$ be a (strict) mean, and let $N: I^2 \to I$ be given by

$$N(x,y) := \frac{xy}{M(x,y)}, \quad x, y \in I.$$

Then

- (i) the function N is a (strict) mean in I;
- (ii) the geometric mean G is invariant with respect the mean-type mapping (M, N), i.e., $G \circ (M, N) = G$;
- (iii) for every $n \in \mathbb{N}$, the mapping $(M, N)^n$, the *n*-th iterate of (M, N), is a meantype mapping;
- (iv) if M is a continuous and strict mean, then the sequence $((M,N)^n)_{n\in\mathbb{N}}$ of iterates of (M,N) converges pointwise in I^2 and

$$\lim_{n \to \infty} (M, N)^n (x, y) = (\sqrt{xy}, \sqrt{xy}), \quad (x, y) \in I^2.$$

PROOF. To prove (i), it is enough to observe that condition (2) is equivalent to

$$\min(x, y) \le \frac{xy}{M(x, y)} \le \max(x, y), \quad x, y \in I,$$

and these inequalities are sharp iff so are inequalities (2).

Janusz Matkowski

To verify (ii), note that for all $x, y \in I$, we have

$$G \circ \left(M\left(x, y\right), N\left(x, y\right)\right) = \sqrt{M\left(x, y\right) \frac{xy}{M\left(x, y\right)}} = \sqrt{xy} = G\left(x, y\right).$$

Part (iii) is an obvious consequence of the definition of mean. Part (iv) follows from (ii) and Lemma 1. $\hfill \Box$

Remark 2. In [4], the mean N such that $G \circ (M, N) = G$ is referred to as the complementary to M with respect to M.

Let us also quote

Lemma 3 ([2, Corollary 1]). If a function $f : (0, \infty) \to (0, \infty)$ satisfying (1) is continuous at a point (or bounded above at a point) and there is a > 0 such that f is Jensen geometrically convex in the interval $(a.\infty)$, i.e.,

$$f\left(G\left(x,y\right)\right) \leq G\left(f\left(x\right),f\left(y\right)\right), \quad x,y > a,$$

then $f = \Gamma$.

In view of the Bernstein–Doetsch theorem, if f is bounded from above in a neighborhood of a point ([3, KUCZMA, p. 145]), the function $\log \circ f \circ \exp$ is Jensen convex in the interval $\log (I)$ iff

$$f\left(x^{t}y^{1-t}\right) \leq \left[f\left(x\right)\right]^{t}\left[f\left(y\right)\right]^{1-t} \quad \text{for all } x, y \in I, \quad t \in \left(0, 1\right),$$

that is, iff f is convex with respect to the family of weighted geometric means I, and referred to as the *geometric convexity* of f ([2]).

3. Main results

Theorem 1. Let a function $f:(0,\infty) \to (0,\infty)$ be continuous and such that

$$f(x+1) = xf(x), \quad x > 0, f(1) = 1.$$

If there is an a > 0 and a strict continuous mean $M : (a, \infty)^2 \to (a, \infty)$ such that

$$f(M(x,y)) f\left(\frac{xy}{M(x,y)}\right) \le f(x) f(y), \quad x, y \in (a,\infty),$$
(4)

then f is the Euler gamma function.

Gamma function and means

PROOF. In view of Lemma 2, the function $N: (a, \infty)^2 \to (a, \infty)$ defined by

$$N(x,y) := \frac{x}{M(x,y)}, \quad x, y \in (a,\infty),$$
(5)

is a continuous and strict mean. Since

 $M(x, y) N(x, y) = xy, \quad x, y \in (a, \infty),$

taking the square root of both sides, we get

$$G \circ (M, N) = G,$$

where $G: (0,\infty)^2 \to (0,\infty)$, $G(x,y) = \sqrt{xy}$, x, y > 0, is the geometric mean. Thus the geometric mean G is invariant with respect to the mean-type mapping $(M,N): (0,\infty)^2 \to (0,\infty)^2$.

For every $n \in \mathbb{N}$, denote by (M_n, N_n) the *n*-th iterate $(M, N)^n$ of the mean-type mapping (M, N).

From (4), we have

$$f(M(x,y)) f(N(x,y)) \le f(x) f(y), \quad x, y \in (a,\infty).$$

Replacing here x by M(x, y) and y by N(x, y), we have

 $f\left(M\left(M\left(x,y\right),N\left(x,y\right)\right)\right)f\left(N\left(M\left(x,y\right),N\left(x,y\right)\right)\right) \leq f\left(M\left(x,y\right)\right)f\left(N\left(x,y\right)\right)$

for all $x, y \in (a, \infty)$, that is,

$$f(M_2((x,y))) f(N_2((x,y))) \le f(M(x,y)) f(N(x,y)) \le f(x) f(y)$$

for $x, y \in (a, \infty)$, whence

$$f(M_2((x,y))) f(N_2((x,y))) \le f(x) f(y), \quad x, y \in (a,\infty).$$

Similarly, applying the induction, we obtain

$$f(M_n(x,y)) f(N_n(x,y)) \le f(x) f(y), \quad n \in \mathbb{N}, \, x, y \in (a,\infty).$$
(6)

The invariance of G with respect to the mean-type mapping (M,N) and Lemma 2 imply that

$$\lim_{n \to \infty} M_n\left(x,y\right) = G\left(x,y\right) = \lim_{n \to \infty} N_n\left(x,y\right), \quad x,y \in (a,\infty)\,.$$

Therefore, letting $n \to \infty$ in (6), and making use of the continuity of f, we obtain

$$\left[f\left(G\left(x,y\right)\right)\right]^{2} \leq f\left(x\right)f\left(y\right), \quad x,y \in (a,\infty),$$

or, equivalently,

$$f\left(G\left(x,y\right)\right) \leq G\left(f\left(x\right)f\left(y\right)\right), \quad x,y \in \left(a,\infty\right),$$

which proves that f is Jensen geometrically convex in (a, ∞) . Applying Lemma 3, we conclude that $f = \Gamma$.

Janusz Matkowski

Theorem 2. For every $a > a_0 := 1.462$ and every strict mean $M : (a, \infty)^2 \to (a, \infty)$, the Euler gamma function satisfies the inequality

$$\Gamma(M(x,y))\Gamma\left(\frac{xy}{M(x,y)}\right) \leq \Gamma(x)\Gamma(y), \quad x,y \in (a,\infty).$$

PROOF. Since Γ is logarithmically convex and increasing in (a_0, ∞) , where $a_0 = 1.462$, it is geometrically convex in every interval (a, ∞) with $a > a_0$. Thus, for an arbitrarily fixed $a > a_0$, and for all $x, y \in (a, \infty)$ and $t \in (0, 1)$, we have

$$\Gamma\left(x^{t}y^{1-t}\right) \leq \left[\Gamma\left(x\right)\right]^{t}\left[\Gamma\left(y\right)\right]^{1+t}.$$
(7)

Let $M: (a, \infty)^2 \to (a, \infty)$ be a strict mean. Taking arbitrary $x, y \in (a, \infty), x \neq y$, and putting

$$t = t(x, y) := \frac{\log M(x, y) - \log y}{\log x - \log y}$$

we have

$$0 < t\left(x,y\right) < 1, \quad M\left(x,y\right) = x^{t\left(x,y\right)}y^{1-t\left(x,y\right)}$$

and, by (5),

$$N(x,y) = x^{1-t(x,y)}y^{t(x,y)}.$$

Hence, applying (7), we get

$$\Gamma\left(M\left(x,y\right)\right) = \Gamma\left(x^{t(x,y)}y^{1-t(x,y)}\right) \le \left[\Gamma\left(x\right)\right]^{t(x,y)}\left[\Gamma\left(y\right)\right]^{1-t(x,y)}$$

and

$$\Gamma\left(N\left(x,y\right)\right) = \Gamma\left(x^{1-t\left(x,y\right)}y^{t\left(x,y\right)}\right) \le \left[\Gamma\left(x\right)\right]^{1-t\left(x,y\right)}\left[\Gamma\left(y\right)\right]^{t\left(x,y\right)},$$

whence, multiplying the respective sides of these inequalities, we obtain

$$\Gamma\left(M\left(x,y\right)\right)\Gamma\left(N\left(x,y\right)\right) \leq \left(\left[\Gamma\left(x\right)\right]^{t\left(x,y\right)}\left[\Gamma\left(y\right)\right]^{1-t\left(x,y\right)}\right)\left(\left[\Gamma\left(x\right)\right]^{1-t\left(x,y\right)}\left[\Gamma\left(y\right)\right]^{t\left(x,y\right)}\right)$$
$$= \Gamma\left(x\right)\Gamma\left(y\right),$$

that is, for all $x, y \in (a, \infty), x \neq y$,

$$\Gamma(M(x,y))\Gamma\left(\frac{xy}{M(x,y)}\right) \leq \Gamma(x)\Gamma(y).$$

Since this inequality is obvious for all $x, y \in (a, \infty)$ such that x = y, the proof is completed. \Box

Gamma function and means

Remark 3. Theorem 1 with M = G reduces to the main result of [2].

Indeed, taking M = G in inequality (4), we get $[f(G(x,y))]^2 \leq f(x) f(y)$ or, equivalently, $f(G(x,y)) \leq G(f(x) f(y))$ for all $x, y \in (a, \infty)$, which means that f is Jensen geometrically convex.

Finally note that the arithmetic and harmonic means can be used for a characterization of the gamma function. Namely, we have the following:

Theorem 3. A continuous function $f : (0, \infty) \to (0, \infty)$ satisfying the functional equation

$$f(x+1) = xf(x), \quad x > 0, \quad f(1) = 1,$$

is the Euler gamma function Γ , if and only if, there is an a > 0 such that

$$f\left(A\left(x,y\right)\right)f\left(H\left(x,y\right)\right) \leq f\left(x\right)f\left(y\right), \quad x,y \in (a,\infty),$$

where $A(x,y) = \frac{x+y}{2}$ is the arithmetic mean and $H(x,y) = \frac{2xy}{x+y}$ is the harmonic mean.

PROOF. Define $M: (0,\infty)^2 \to (0,\infty)$ by

$$M(x,y) := A(x,y) = \frac{x+y}{2}, \quad x,y > 0$$

Then

$$\frac{xy}{M\left(x,y\right)} = \frac{2xy}{x+y} = H\left(x,y\right), \quad x,y > 0,$$

therefore the result is a consequence of Theorem 1 and Theorem 2.

References

- H. BOHR and J. MOLLERUP, Lærebog i Matematisk Analyse III, Grænseprocesser, Jul. Gjellerup, København, 1922.
- [2] D. GRONAU and J. MATKOWSKI, Geometrical convexity and generalizations of the Bohr-Mollerup theorem on the gamma function, *Math. Pannon.* 4 (1993), 153–160.
- [3] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warszawa, 1985.
- [4] J. MATKOWSKI, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87–107.

170 J. Matkowski : Characterization of the Euler gamma function...

[5] J. MATKOWSKI, Iterations of the mean-type mappings, In: Iteration Theory (ECIT '08), Institut für Mathematik, Karl-Franzens-Universität Graz, Graz, 2009, 158–179.

JANUSZ MATKOWSKI FACULTY OF MATHEMATICS COMPUTER SCIENCE AND ECONOMETRICS UNIVERSITY OF ZIELONA GÓRA SZAFRANA 4A PL 65-516, ZIELONA GÓRA POLAND *E-mail:* J.Matkowski@wmie.uz.zgora.pl

5 F

(Received September 7, 2017; revised November 10, 2017)