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Characterization of the Euler gamma function
with the aid of an arbitrary mean

By JANUSZ MATKOWSKI (Zielona Géra)

Abstract. We prove that a continuous function f : (0,00) — (0, 00) satisfying the
functional equation

fl+l)=zf(z), >0, f(1)=1,

is the Euler gamma function iff for some a > 0 and a strict and continuous mean
M : (a,00)® = (a,0), the following inequality holds:

Fore (s ) <@ W, aye @),

Taking for M the geometric mean G (z,y) = /Ty, we obtain the result of [2]
generalizing the classical BOHR-MOLLERUP theorem [1]. For M = A, where A (z,y) =
1Y is the arithmetic mean, the assumed inequality reduces to f (A (z,y)) f (H (z,y)) <
f(z) f(y) for all x,y > a, where H is the harmonic mean, and the result gives a new

characterization of the gamma function, involving the arithmetic and harmonic means.

1. Introduction

According to the celebrated result of BOHR and MOLLERUP [1], the Euler
gamma function I' is the only function f : (0,00) — (0, 00) satisfying the func-

tional equation
fle+1l)=zf(x) forallz>0, f(1)=1, (1)

and such that logof is convex.
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This theorem has been improved in [2], where it is shown that T' is the
only function f : (0,00) — (0,00) satisfying (1) and such that logof o exp is
convez in a vicinity of oo. Interpreting this result, note that [2], for a positive
real function f defined in an interval I C (0,00) and continuous at least at one
point, the function logof o exp is convex in the interval log (I), iff f is Jensen
geometrically conver in I, i.e., iff

f(G () <G(f(2) fy), zyel,

where G (x,y) := \/xy is the geometric mean.

In the present paper, we show that any two-variable strict and continu-
ous mean defined in a vicinity of oo can be used in a characterization of the
Euler gamma function. The main results imply that: a continuous function
f:(0,00) = (0,00) satisfying (1) is the Euler gamma function iff there is an a > 0
and a strict continuous mean M : (a, 00)2 — (a,00) such that, for all z,y > a,

For ) () < 5@ 1.

Taking M = G, one gets the result of [2]; taking M = A, where A is the
arithmetic mean, we obtain the following characterization of the gamma function:
a continuous function f : (0,00) — (0,00) satisfying (1) is the Euler gamma
function, if and only if there is an a > 0 such that

f(A(,y) f(H (z,y) < f(2) fy), xy€(a00),

where H s the harmonic mean.

2. Auxiliary results

Let I C R be an interval. A function M : I x I — I is called a bivariable
mean in I if

min (z,y) < M (z,y) < max(z,y), z,yel, (2)

and the mean M is called strict, if these inequalities are sharp for all distinct
z,y € 1.
We shall need the following:
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Lemma 1 ([5, Theorem 1]). Let M : I*> — I and N : I? — I be continuous
means in 1. If, for all x,y € I, x # v,

max (M (z,y),N (x,y)) —min (M (z,y), N (z,y)) < max (x,y) —min (z,y), (3)

then there exists a unique mean K : I?> — I that is invariant with respect to the
mean-type mapping (M, N) : I? — I?, i.e., such that

K(M({L‘,y),N(LL',y)):K(LL',y), x,y €I

moreover, the sequence ((M, N)")nGN of iterates of the mapping (M, N) converges
pointwise in I? and

lim (M,N)n(x,y):(K(z,y),K(x,y)), (I,y)612.

n— oo

Remark 1. Tt is obvious that condition (3) is satisfied if one of the means M
or N is strict.

From Lemma 1, we obtain

Lemma 2. Let I C (0,00) be an interval, M : I? — I be a (strict) mean,
and let N : I? — I be given by

Ty

N (z,y) = m,

z,y € 1.
Then
(i) the function N is a (strict) mean in I;

(ii) the geometric mean G is invariant with respect the mean-type mapping
(M,N), ie., Go(M,N) =G;

(iii) for every n € N, the mapping (M, N)", the n-th iterate of (M, N), is a mean-
type mapping;

(iv) if M is a continuous and strict mean, then the sequence ((M,N)"), .y of
iterates of (M, N) converges pointwise in I? and

lim (M7N)n(zay):(ﬁ7@)’ (Ivy)GIQ'

n—oo

Proor. To prove (i), it is enough to observe that condition (2) is equiva-

lent to
Ty

7§H1&X(.T,y), 1'7y€[a
M (z,y)

min (z,y) <

and these inequalities are sharp iff so are inequalities (2).
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To verify (ii), note that for all z,y € I, we have

G o (M (2,9), N (#.9) = \[M (0.4) 37 (s = VAT =G (2,9).

Part (iii) is an obvious consequence of the definition of mean. Part (iv) follows
from (ii) and Lemma 1. O

Remark 2. In [4], the mean N such that G o (M, N) = G is referred to as
the complementary to M with respect to M.

Let us also quote

Lemma 3 ([2, Corollary 1]). If a function f : (0,00) — (0, 00) satisfying (1)
is continuous at a point (or bounded above at a point) and there is a > 0 such
that f is Jensen geometrically convex in the interval (a.c0), i.e.,

F(G(xy) <G (f(x), f W), =y>a,

then f=T.

In view of the Bernstein—Doetsch theorem, if f is bounded from above in
a neighborhood of a point ([3, KuczMa, p. 145]), the function logof o exp is
Jensen convex in the interval log (I) iff

FEy ™) <@ [f)]'" foralla,yel, te(0,1),

that is, iff f is convex with respect to the family of weighted geometric means I,
and referred to as the geometric convexity of f ([2]).

3. Main results

Theorem 1. Let a function f : (0,00) — (0,00) be continuous and such
that

fle+)=af(x), >0, f(1)=1.

If there is an a > 0 and a strict continuous mean M : (a,00)* — (a,00) such
that

e (s ) 1@, avelas). @)

then f is the Euler gamma function.



Gamma function and means 167

PROOF. In view of Lemma 2, the function N : (a,00)* — (a,c0) defined by
Y
M (z,y)’

is a continuous and strict mean. Since

N(I,y) = T,y € (a,oo), (5)

M (z,y) N (z,y) = zy, =,y € (a,00),
taking the square root of both sides, we get
Go(M,N)=aG,

where G : (0,00)2 — (0,00), G (z,y) = \/zy, z,y > 0, is the geometric mean.
Thus the geometric mean G is invariant with respect to the mean-type mapping
(M,N) : (0,00)* = (0,00)>

For every n € N, denote by (M,,, N,,) the n-th iterate (M, N)" of the mean-
type mapping (M, N).

From (4), we have

fM (z,9) f(N(z,y) < f(z)fy), zy¢€(a,00).
Replacing here x by M (x,y) and y by N (z,y), we have
f M (M (2,y) N (z,9)) f (N (M (z,y),N (z,9))) < f (M (z,y)) f (N (2,9))
for all z,y € (a,00), that is,
f (M2 ((z, ) f (N2 ((2,9)) < f (M (z,9)) f (N (2,9) < f(2)f(y)
for z,y € (a,00), whence
f (M2 ((x,y))) f (N2 ((.Z‘, y))) < f (l‘) f (y) y L,y E (a7 OO) :
Similarly, applying the induction, we obtain
My (z,y)) f (N (z,y)) < f(2) f(y), neN, zye (a,00). (6)

The invariance of G with respect to the mean-type mapping (M, N) and Lemma 2
imply that

lim M, (z,y) = G(z,y) = lim N, (z,y), x,y € (a,00).
n— 00 n—oo
Therefore, letting n — oo in (6), and making use of the continuity of f, we obtain

[f (G ) < fla)f(y), zy€ (a,00),

or, equivalently,

f(G(,y) <G(f (@) f(y), € (a,00),

which proves that f is Jensen geometrically convex in (a, 00). Applying Lemma 3,
we conclude that f=T. |
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Theorem 2. For every a > ag := 1.462 and every strict mean M : (a,00)” —
(a,0), the Euler gamma function satisfies the inequality

rOr )T (5

L) ST@I0). nyE o).

PrOOF. Since I is logarithmically convex and increasing in (ag, 00), where
ap = 1.462, it is geometrically convex in every interval (a,c0) with a > ag. Thus,
for an arbitrarily fixed a > ag, and for all z,y € (a,00) and ¢ € (0,1), we have

T (2'y'~") < [T ()] [T ()] (7)

Let M : (a, 00)2 — (a, 00) be a strict mean. Taking arbitrary z,y € (a,00), © # y,
and putting
_ log M (x,y) —logy

t=t =
(z,9) gz _logy

we have
0<t (1.7 y) < ]-7 M (l’,y) = xt(wvy)yl—t(w,y)

and, by (5),
N (z,y) = a'~H@v)yt@y),

Hence, applying (7), we get
I'(M(z,y)) =T (xt(x,y)yl—t(x,w) < [0 (@)@ [T ()] 1)

and

['(N(z,y)) =T (xl’t(m*y)yt(mﬂy)) < [T (@)1 [T ()=
whence, multiplying the respective sides of these inequalities, we obtain

L (M (2,9)) T (N (,9)) < ([0 @) [0 )]~ ) (I0 @) O [ @) )

that is, for all x,y € (a,00),  # y,

PO )T (577 ) ST@T ).

Since this inequality is obvious for all z,y € (a, c0) such that z = y, the proof is
completed. 0
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Remark 8. Theorem 1 with M = G reduces to the main result of [2].

Indeed, taking M = @ in inequality (4), we get [f (G (z,9))]* < f (z) f (y)
or, equivalently, f (G (z,y)) < G(f (z) f (y)) for all z,y € (a,0), which means
that f is Jensen geometrically convex.

Finally note that the arithmetic and harmonic means can be used for a char-
acterization of the gamma function. Namely, we have the following:

Theorem 3. A continuous function f : (0,00) — (0, 00) satisfying the func-
tional equation

flea+)=zf(x), >0, [f(1)=1,

is the Euler gamma function I', if and only if, there is an a > 0 such that

f(A@@,y) f(H (z,y) < f(2) f(y), zy¢€(a,00),

where A (z,y) = “¥ is the arithmetic mean and H (z,y) = % is the harmonic
mean.
PROOF. Define M : (0,00)° — (0,00) by

M(,9) = Ale,y) = 52, 2y >0

Then g
Y Y
= =H(z,y), z,y>0,

M(z,y)  x+y () /

therefore the result is a consequence of Theorem 1 and Theorem 2. O
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