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Characterization of the Euler gamma function
with the aid of an arbitrary mean

By JANUSZ MATKOWSKI (Zielona Góra)

Abstract. We prove that a continuous function f : (0,∞)→ (0,∞) satisfying the

functional equation

f (x + 1) = xf (x) , x > 0, f (1) = 1,

is the Euler gamma function iff for some a > 0 and a strict and continuous mean

M : (a,∞)2 → (a,∞), the following inequality holds:

f (M (x, y)) f

(
xy

M (x, y)

)
≤ f (x) f (y) , x, y ∈ (a,∞) .

Taking for M the geometric mean G (x, y) =
√
xy, we obtain the result of [2]

generalizing the classical Bohr–Mollerup theorem [1]. For M = A, where A (x, y) =
x+y

2
is the arithmetic mean, the assumed inequality reduces to f (A (x, y)) f (H (x, y)) ≤

f (x) f (y) for all x, y > a, where H is the harmonic mean, and the result gives a new

characterization of the gamma function, involving the arithmetic and harmonic means.

1. Introduction

According to the celebrated result of Bohr and Mollerup [1], the Euler

gamma function Γ is the only function f : (0,∞) → (0,∞) satisfying the func-

tional equation

f (x + 1) = xf (x) for all x > 0, f (1) = 1, (1)

and such that log ◦f is convex.
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This theorem has been improved in [2], where it is shown that Γ is the

only function f : (0,∞) → (0,∞) satisfying (1) and such that log ◦f ◦ exp is

convex in a vicinity of ∞. Interpreting this result, note that [2], for a positive

real function f defined in an interval I ⊂ (0,∞) and continuous at least at one

point, the function log ◦f ◦ exp is convex in the interval log (I), iff f is Jensen

geometrically convex in I, i.e., iff

f (G (x, y)) ≤ G (f (x) f (y)) , x, y ∈ I,

where G (x, y) :=
√
xy is the geometric mean.

In the present paper, we show that any two-variable strict and continu-

ous mean defined in a vicinity of ∞ can be used in a characterization of the

Euler gamma function. The main results imply that: a continuous function

f : (0,∞)→ (0,∞) satisfying (1) is the Euler gamma function iff there is an a > 0

and a strict continuous mean M : (a,∞)
2 → (a,∞) such that, for all x, y > a,

f (M (x, y)) f

(
xy

M (x, y)

)
≤ f (x) f (y) .

Taking M = G, one gets the result of [2]; taking M = A, where A is the

arithmetic mean, we obtain the following characterization of the gamma function:

a continuous function f : (0,∞) → (0,∞) satisfying (1) is the Euler gamma

function, if and only if there is an a > 0 such that

f (A (x, y)) f (H (x, y)) ≤ f (x) f (y) , x, y ∈ (a,∞) ,

where H is the harmonic mean.

2. Auxiliary results

Let I ⊂ R be an interval. A function M : I × I → I is called a bivariable

mean in I if

min (x, y) ≤M (x, y) ≤ max (x, y) , x, y ∈ I, (2)

and the mean M is called strict, if these inequalities are sharp for all distinct

x, y ∈ I.

We shall need the following:
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Lemma 1 ([5, Theorem 1]). Let M : I2 → I and N : I2 → I be continuous

means in I. If, for all x, y ∈ I, x 6= y,

max (M (x, y) , N (x, y))−min (M (x, y) , N (x, y)) < max (x, y)−min (x, y) , (3)

then there exists a unique mean K : I2 → I that is invariant with respect to the

mean-type mapping (M,N) : I2 → I2, i.e., such that

K (M (x, y) , N (x, y)) = K (x, y) , x, y ∈ I;

moreover, the sequence ((M,N)
n
)n∈N of iterates of the mapping (M,N) converges

pointwise in I2 and

lim
n→∞

(M,N)
n

(x, y) = (K (x, y) ,K (x, y)) , (x, y) ∈ I2.

Remark 1. It is obvious that condition (3) is satisfied if one of the means M

or N is strict.

From Lemma 1, we obtain

Lemma 2. Let I ⊆ (0,∞) be an interval, M : I2 → I be a (strict) mean,

and let N : I2 → I be given by

N (x, y) :=
xy

M (x, y)
, x, y ∈ I.

Then

(i) the function N is a (strict) mean in I;

(ii) the geometric mean G is invariant with respect the mean-type mapping

(M,N), i.e., G ◦ (M,N) = G;

(iii) for every n ∈ N, the mapping (M,N)
n
, the n-th iterate of (M,N), is a mean-

type mapping;

(iv) if M is a continuous and strict mean, then the sequence ((M,N)
n
)n∈N of

iterates of (M,N) converges pointwise in I2 and

lim
n→∞

(M,N)
n

(x, y) = (
√
xy,
√
xy) , (x, y) ∈ I2.

Proof. To prove (i), it is enough to observe that condition (2) is equiva-

lent to

min (x, y) ≤ xy

M (x, y)
≤ max (x, y) , x, y ∈ I,

and these inequalities are sharp iff so are inequalities (2).



166 Janusz Matkowski

To verify (ii), note that for all x, y ∈ I, we have

G ◦ (M (x, y) , N (x, y)) =

√
M (x, y)

xy

M (x, y)
=
√
xy = G (x, y) .

Part (iii) is an obvious consequence of the definition of mean. Part (iv) follows

from (ii) and Lemma 1. �

Remark 2. In [4], the mean N such that G ◦ (M,N) = G is referred to as

the complementary to M with respect to M .

Let us also quote

Lemma 3 ([2, Corollary 1]). If a function f : (0,∞)→ (0,∞) satisfying (1)

is continuous at a point (or bounded above at a point) and there is a > 0 such

that f is Jensen geometrically convex in the interval (a.∞), i.e.,

f (G (x, y)) ≤ G (f (x) , f (y)) , x, y > a,

then f = Γ.

In view of the Bernstein–Doetsch theorem, if f is bounded from above in

a neighborhood of a point ([3, Kuczma, p. 145]), the function log ◦f ◦ exp is

Jensen convex in the interval log (I) iff

f
(
xty1−t

)
≤ [f (x)]

t
[f (y)]

1−t
for all x, y ∈ I, t ∈ (0, 1) ,

that is, iff f is convex with respect to the family of weighted geometric means I,

and referred to as the geometric convexity of f ([2]).

3. Main results

Theorem 1. Let a function f : (0,∞) → (0,∞) be continuous and such

that

f (x + 1) = xf (x) , x > 0, f (1) = 1.

If there is an a > 0 and a strict continuous mean M : (a,∞)
2 → (a,∞) such

that

f (M (x, y)) f

(
xy

M (x, y)

)
≤ f (x) f (y) , x, y ∈ (a,∞) , (4)

then f is the Euler gamma function.
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Proof. In view of Lemma 2, the function N : (a,∞)
2 → (a,∞) defined by

N (x, y) :=
xy

M (x, y)
, x, y ∈ (a,∞) , (5)

is a continuous and strict mean. Since

M (x, y)N (x, y) = xy, x, y ∈ (a,∞) ,

taking the square root of both sides, we get

G ◦ (M,N) = G,

where G : (0,∞)
2 → (0,∞), G (x, y) =

√
xy, x, y > 0, is the geometric mean.

Thus the geometric mean G is invariant with respect to the mean-type mapping

(M,N) : (0,∞)
2 → (0,∞)

2
.

For every n ∈ N, denote by (Mn, Nn) the n-th iterate (M,N)
n

of the mean-

type mapping (M,N).

From (4), we have

f (M (x, y)) f (N (x, y)) ≤ f (x) f (y) , x, y ∈ (a,∞) .

Replacing here x by M (x, y) and y by N (x, y), we have

f (M (M (x, y) , N (x, y))) f (N (M (x, y) , N (x, y))) ≤ f (M (x, y)) f (N (x, y))

for all x, y ∈ (a,∞), that is,

f (M2 ((x, y))) f (N2 ((x, y))) ≤ f (M (x, y)) f (N (x, y)) ≤ f (x) f (y)

for x, y ∈ (a,∞), whence

f (M2 ((x, y))) f (N2 ((x, y))) ≤ f (x) f (y) , x, y ∈ (a,∞) .

Similarly, applying the induction, we obtain

f (Mn (x, y)) f (Nn (x, y)) ≤ f (x) f (y) , n ∈ N, x, y ∈ (a,∞) . (6)

The invariance of G with respect to the mean-type mapping (M,N) and Lemma 2

imply that

lim
n→∞

Mn (x, y) = G (x, y) = lim
n→∞

Nn (x, y) , x, y ∈ (a,∞) .

Therefore, letting n→∞ in (6), and making use of the continuity of f , we obtain

[f (G (x, y))]
2 ≤ f (x) f (y) , x, y ∈ (a,∞) ,

or, equivalently,

f (G (x, y)) ≤ G (f (x) f (y)) , x, y ∈ (a,∞) ,

which proves that f is Jensen geometrically convex in (a,∞). Applying Lemma 3,

we conclude that f = Γ. �
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Theorem 2. For every a > a0 := 1.462 and every strict mean M : (a,∞)
2 →

(a,∞), the Euler gamma function satisfies the inequality

Γ (M (x, y)) Γ

(
xy

M (x, y)

)
≤ Γ (x) Γ (y) , x, y ∈ (a,∞) .

Proof. Since Γ is logarithmically convex and increasing in (a0,∞), where

a0 = 1.462, it is geometrically convex in every interval (a,∞) with a > a0. Thus,

for an arbitrarily fixed a > a0, and for all x, y ∈ (a,∞) and t ∈ (0, 1), we have

Γ
(
xty1−t

)
≤ [Γ (x)]

t
[Γ (y)]

1+t
. (7)

Let M : (a,∞)
2 → (a,∞) be a strict mean. Taking arbitrary x, y ∈ (a,∞), x 6= y,

and putting

t = t (x, y) :=
logM (x, y)− log y

log x− log y
,

we have

0 < t (x, y) < 1, M (x, y) = xt(x,y)y1−t(x,y)

and, by (5),

N (x, y) = x1−t(x,y)yt(x,y).

Hence, applying (7), we get

Γ (M (x, y)) = Γ
(
xt(x,y)y1−t(x,y)

)
≤ [Γ (x)]

t(x,y)
[Γ (y)]

1−t(x,y)

and

Γ (N (x, y)) = Γ
(
x1−t(x,y)yt(x,y)

)
≤ [Γ (x)]

1−t(x,y)
[Γ (y)]

t(x,y)
,

whence, multiplying the respective sides of these inequalities, we obtain

Γ (M (x, y)) Γ (N (x, y)) ≤
(

[Γ (x)]
t(x,y)

[Γ (y)]
1−t(x,y)

)(
[Γ (x)]

1−t(x,y)
[Γ (y)]

t(x,y)
)

=Γ (x) Γ (y) ,

that is, for all x, y ∈ (a,∞), x 6= y,

Γ (M (x, y)) Γ

(
xy

M (x, y)

)
≤ Γ (x) Γ (y) .

Since this inequality is obvious for all x, y ∈ (a,∞) such that x = y, the proof is

completed. �
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Remark 3. Theorem 1 with M = G reduces to the main result of [2].

Indeed, taking M = G in inequality (4), we get [f (G (x, y))]
2 ≤ f (x) f (y)

or, equivalently, f (G (x, y)) ≤ G (f (x) f (y)) for all x, y ∈ (a,∞) , which means

that f is Jensen geometrically convex.

Finally note that the arithmetic and harmonic means can be used for a char-

acterization of the gamma function. Namely, we have the following:

Theorem 3. A continuous function f : (0,∞)→ (0,∞) satisfying the func-

tional equation

f (x + 1) = xf (x) , x > 0, f (1) = 1,

is the Euler gamma function Γ, if and only if, there is an a > 0 such that

f (A (x, y)) f (H (x, y)) ≤ f (x) f (y) , x, y ∈ (a,∞) ,

where A (x, y) = x+y
2 is the arithmetic mean and H (x, y) = 2xy

x+y is the harmonic

mean.

Proof. Define M : (0,∞)
2 → (0,∞) by

M (x, y) := A (x, y) =
x + y

2
, x, y > 0.

Then
xy

M (x, y)
=

2xy

x + y
= H (x, y) , x, y > 0,

therefore the result is a consequence of Theorem 1 and Theorem 2. �
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