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New results on the value of a certain arithmetical determinant

By SIAO HONG (Tianjin) and ZONGBING LIN (Panzhihua)

Abstract. Let m and n be integers such that 1 ≤ m ≤ n. By

Gm,n = (gcd(i, j))m≤i,j≤n

we denote the (n−m+ 1)× (n−m+ 1) matrix having gcd(i, j) as its i, j-entry for all

integers i and j between m and n. Smith showed in 1875 that det(G1,n) =
n∏

k=1

ϕ(k),

where ϕ is the Euler’s totient function. In 2016, Hong, Hu and Lin proved that if n ≥ 2

is an integer, then det(G2,n) =
( n∏

k=1

ϕ(k)
) n∑

k=1
k is squarefree

1
ϕ(k)

. In this paper, we show that

if n ≥ 3 is an integer, then det(G3,n) =
(
σ0σ1 + 1

2
σ1σ2 + 1

2
σ0σ2

) n∏
k=1

ϕ(k), where for

i = 0, 1 and 2, one has σi :=

b n
2i
c∑

k=1
k is odd squarefree

1
ϕ(k)

. Further, we calculate the determinants

of the matrices (f(gcd(xi, xj)))1≤i,j≤n and (f(lcm(xi, xj)))1≤i,j≤n having f evaluated

at gcd(xi, xj) and lcm(xi, xj) as their (i, j)-entries, respectively, where S = {x1, ..., xn}
is a set of distinct positive integers such that xi > 1 for any integer i with 1 ≤ i ≤ n,

and S ∪ {1, p} is factor closed (that is, S ∪ {1, p} contains every divisor of x for any

x ∈ S ∪ {1, p}), where p /∈ S is a prime number. Our result answers partially an open

problem raised by Ligh in 1988.
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1. Introduction

In 1875, Professor H. J. S. Smith at the University of Oxford pub-

lished [22], a renowned result that states that if n is a positive integer, then

the determinant of the n × n matrix (gcd(i, j))1≤i,j≤n having the greatest com-

mon divisor gcd(i, j) of i and j as the i, j-entry for all integers i and j between 1

and n is equal to
∏n
k=1 ϕ(k), where ϕ is the Euler’s totient function. Let f be

an arithmetic function, and S = {x1, · · · , xn} be a set of n distinct positive in-

tegers. Denote by (f(gcd(xi, xj)))1≤i,j≤n and (f(lcm(xi, xj)))1≤i,j≤n the n × n
matrices having f evaluated at the greatest common divisor gcd(xi, xj), and the

least common multiple lcm(xi, xj) of xi and xj as their (i, j)-entries, respectively.

Smith [22] showed also that

det(lcm(xi, xj))1≤i,j≤n =

n∏
i=1

ϕ(xi)π(xi)

and

det(f(gcd(xi, xj)))1≤i,j≤n =

n∏
i=1

(f ∗ µ)(xi)

if S is factor closed (i.e., d ∈ S if x ∈ S and d|x), where f ∗ µ is the Dirichlet

convolution of f and the Möbius function µ, and π is the multiplicative function

defined for any prime power pr by π(pr) := −p. In 1995, Bourque and Ligh [5]

showed that if S is factor closed and f is a multiplicative function such that

f(x) 6= 0 for all x ∈ S, then

det(f(lcm(xi, xj)))1≤i,j≤n =

n∏
i=1

(f(xi))
2

(
1

f
∗ µ
)

(xi),

where 1
f (x) := 1

f(x) if f(x) 6= 0, and 0 otherwise. After Smith’s paper was

published, this and relevant topics received a lot of attention from many authors

and their study particularly became extremely active in the past decades (see, for

example, [1]–[20] and [23]–[24]).

In 2016, Hong, Hu and Lin [10] calculated the determinant of the (n− 1)×
(n− 1) matrix having gcd(i, j) as its i, j-entry for all integers i and j between 2

and n. In this paper, we address the problem of calculating the determinants of

the (n−2)× (n−2) matrices (gcd(i, j))3≤i,j≤n and (lcm(i, j))3≤i,j≤n. Recall that

a positive integer is called squarefree if it is divisible by no other perfect square

than 1. For any real number x, bxc stands for the largest integer no more than x.

We can now state our main results.
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Theorem 1.1. Let n ≥ 3 be an integer. Then

det(gcd(i, j))3≤i,j≤n =

(
σ0σ1 +

1

2
σ0σ2 +

1

2
σ1σ2

) n∏
k=1

ϕ(k)

and

det(lcm(i, j))3≤i,j≤n =

(
2σ̄1σ̄2 −

1

2
σ̄0σ̄1 − σ̄0σ̄2

) n∏
k=1

ϕ(k)π(k),

where for i = 0, 1 and 2, one has

σi :=

b n

2i
c∑

x=1
x is odd squarefree

1

ϕ(x)

and

σ̄i :=

b n

2i
c∑

x=1
x is odd squarefree

µ(x)x

ϕ(x)
.

Clearly, Theorem 1.1 answers partially Ligh’s problem [17]. It also gives

a partial answer to Problem 1 in [10].

For any prime number p and integer m, by vp(m) we denote the largest

nonnegative integer r such that pr divides m. Furthermore, we have the following

general result.

Theorem 1.2. Let n ≥ 1 be an integer, and f be an arithmetic function.

Let S = {x1, . . . , xn} be a set of n distinct positive integers such that xi > 1 for

any integer i with 1 ≤ i ≤ n, and there exists a prime number p /∈ S such that

S ∪ {1, p} is factor closed. Then

det(f(gcd(xi, xj)))1≤i,j≤n

=
∏
x∈S

(f ∗ µ)(x) + f(1)
∑

x∈S,p-x
x is squarefree

∏
y∈S\{x}

(f ∗ µ)(y) + (f(p)− f(1))

×
∑

x∈S,vp(x)=1
x
p

is squarefree

∏
y∈S\{x}

(f ∗ µ)(y) + f(p)
∑

x∈S,vp(x)=2
x
p

is squarefree

∏
y∈S\{x}

(f ∗ µ)(y)

+ f(1)(f(p)− f(1))
∑

x,y∈S,x<y,0≤vp(x) 6=vp(y)≤2
x

p
vp(x)

and
y

p
vp(y)

are squarefree

∏
z∈S\{x,y}

(f ∗ µ)(z).
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Moreover, if f is a nonzero multiplicative function such that f(p) 6= 0 and f(x) 6= 0

for all x ∈ S, then

det(f(lcm(xi, xj)))1≤i,j≤n

=

(∏
x∈S

f(x)2

)(∏
x∈S

(
1

f
∗ µ
)

(x) +
∑

x∈S,p-x
x is squarefree

∏
y∈S\{x}

(
1

f
∗ µ
)

(y)

+
1− f(p)

f(p)

∑
x∈S,vp(x)=1
x
p

is squarefree

∏
y∈S\{x}

(
1

f
∗ µ
)

(y)+
1

f(p)

∑
x∈S,vp(x)=2
x
p

is squarefree

∏
y∈S\{x}

(
1

f
∗ µ
)

(y)

+
1− f(p)

f(p)

∑
x,y∈S,x<y,0≤vp(x)6=vp(y)≤2
x

p
vp(x)

and
y

p
vp(y)

are squarefree

∏
z∈S\{x,y}

(
1

f
∗ µ
)

(z)

)
.

The proof of Theorem 1.2 is similar to that of Smith [22] and that of [10] in

character, but much more complicated than them.

We organize this paper as follows. In Section 2, we present four lemmas which

are needed in the proof of Theorem 1.2, with two of them being new and the other

two being given in [10]. In Section 3, we first give the proof of Theorem 1.2, and

then apply Theorem 1.2 to show Theorem 1.1.

2. Preliminary lemmas

In this section, we present four lemmas that are needed in the next section.

The first lemma is about the property of factor-closed sets.

Lemma 2.1. Let n ≥ 3 be an integer, and S = {x1, . . . , xn} be a set of n

distinct positive integers such that x1 < · · · < xn. If S is factor closed, then each

of the following is true:

(i) x1 = 1;

(ii) x2 is a prime number;

(iii) x3 is either a prime number greater than x2, or x22.

Proof. (i) This is clearly true.

(ii) We assume that x2 is not a prime. Then x2 should be a composite number

since x2 > 1. So there is a prime number, called q, such that q|x2 and q < x2.

But S is factor closed. Hence one must have q ∈ S. This contradicts with that
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x2 is the second minimal element of S. Therefore x2 is a prime as one desires.

Part (ii) is proved.

(iii) By part (ii), we know that x2 is a prime number. So there are the

following two cases needed to consider.

Case 1. x3 is coprime to x2. In this case, x3 should be a prime. Otherwise,

x3 is a composite number. Then it holds a prime divisor p′ which belongs to S and

1 < p′ < x3. It infers that p′ = x2. This is impossible since x3 is coprime to x2.

So x3 is a prime in this case.

Case 2. x3 is not coprime to x2. Then x2|x3. Suppose that x3 is not a power

of x2. Then x3 has another prime divisor, says p′′. So p′′ < x3, and by the

assumption that S is factor closed, one has p′′ ∈ S. This is a contradiction.

Hence x3 contains only one prime divisor and is a power of x2. One may let

x3 = xl2 for an integer l ≥ 2. Since S is factor closed, one has x22 ∈ S. Hence we

must have x3 = x22 as one desires. Part (iii) is proved.

This completes the proof of Lemma 2.1. �

In what follows, we let ω(x) denote the number of distinct prime factors of

the positive integer x. The following two lemmas are given in [10].

Lemma 2.2 ([10]). Let m ≥ 2 be a given integer. Define the arithmetic

function Fm for any positive integer n by

Fm(n) :=
∑
d|n

µ
(n
d

)
f(gcd(m, d)).

Then

Fm(n) =

{
(f ∗ µ)(n), if n | m,
0, otherwise.

Lemma 2.3 ([10]). Let m and n be positive integers with m dividing n and

m < n. Then∑
m|d|n
d≥2

µ
(n
d

)
=

{
(−1)ω(n)+1, if m = 1 and n is squarefree,

0, otherwise.

We also need another result. To state it, for any given prime number p,

we define the arithmetic function up for any positive integer x by

up(x) :=

µ
(
x
p

)
, if p|x,

0, otherwise,
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and define the two-variable arithmetic function Mp for all positive integers x and

y by

Mp(x, y) := µ(x)up(y)− µ(y)up(x).

Then we have the following result.

Lemma 2.4. Let p be a prime, and let x and y be positive integers. Then

Mp(x, y) = ±1 if 0 ≤ vp(x) 6= vp(y) ≤ 2, and both of x
pvp(x) and y

pvp(y) are

squarefree, and Mp(x, y) = 0 otherwise.

Proof. If vp(x) ≥ 3 or x
pvp(x) is not squarefree, then both of x and x

pmin(1,vp(x))

are not squarefree. Hence µ(x) = 0 and up(x) = 0, and so Mp(x, y) = 0. Likewise,

if vp(y) ≥ 3 or y

pvp(y) is not squarefree, then we have Mp(x, y) = 0.

Now let 0 ≤ vp(x), vp(y) ≤ 2 and that both of x
pvp(x) and y

pvp(y) are squarefree.

In the following, we show that Mp(x, y) = ±1 if vp(x) 6= vp(y), and Mp(x, y) = 0

otherwise.

First of all, we let vp(x) = vp(y) := V . Then V ∈ {0, 1, 2}. If V = 0,

then up(x) = up(y) = 0, and so we have Mp(x, y) = 0 as required. If V = 1, then

up(x) = µ(xp ) = −µ(x) and up(y) = µ(yp ) = −µ(y). Hence Mp(x, y) = 0. If V = 2,

then both of x and y are not squarefree, and therefore µ(x) = µ(y) = 0. One

then concludes that Mp(x, y) = 0 if 0 ≤ vp(x) = vp(y) ≤ 2.

Finally, we let vp(x) 6= vp(y). Since 0 ≤ vp(x), vp(y) ≤ 2, it follows that

(vp(x), vp(y)) = (0, 1), (0, 2), (1, 2), (1, 0), (2, 0) or (2, 1).

If (vp(x), vp(y)) = (0, 1) or (0, 2), then we have up(x) = 0 and p|y. So one

gets that

Mp(x, y) = µ(x)up(y) = µ(x)µ

(
y

p

)
. (2.1)

Since x
pvp(x) and y

pvp(y) are squarefree, one knows that x and y
p are squarefree.

It then follows from (2.1) that Mp(x, y) = ±1 as desired.

If (vp(x), vp(y)) = (1, 2), then µ(y) = 0, and so (2.1) still holds in this case.

Noticing that

x = p · x

pvp(x)
and

y

p
= p · y

pvp(y)

are squarefree, the desired result Mp(x, y) = ±1 follows immediately.

Likewise, for the remaining cases (vp(x), vp(y)) = (1, 0), (2, 0) and (2, 1), we

have Mp(x, y) = −µ(y)µ
(
x
p

)
. Then it follows from the hypothesis that Mp(x, y) =

±1 as one desires.

The proof of Lemma 2.4 is complete. �
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3. Proofs of Theorems 1.1 and 1.2

In this section, we show Theorems 1.1 and 1.2. We begin with the proof of

Theorem 1.2.

Proof of Theorem 1.2. Let x−1 := 1, x0 := p. Without loss of any

generality, we assume that x1 < x2 < · · · < xn. Let S̄ := {x−1, x0, x1, . . . , xn}.
Then S̄ = S ∪ {1, p} is factor closed. We define the (n + 2) × (n + 2) matrix

A = (aij) as follows: a11 = a22 := 1, ai1 := 0 if i 6= 1, ai2 := 0 if i 6= 2

and aij := f(gcd(xi−2, xj−2)) for all integers i and j with 1 ≤ i ≤ n + 2 and

3 ≤ j ≤ n+ 2. For each integer r between 0 and n, we define two sets Rr and Tr
of positive integers as follows:

Rr := {xd : xd|xr,−1 ≤ d < r}, Tr := Rr \ {1, p}.

Then 1 ∈ Rr and Tr may be empty.

First of all, for each integer r with 0 ≤ r ≤ n and each integer d with xd ∈ Rr,
we multiply the (d+2)-th row of A by µ(xr

xd
), and then add them to the (r+2)-th

row of A. We obtain a new (n + 2) × (n + 2) matrix, denoted by B := (bij).

We have the following result.

Lemma 3.1. For all integers i and j with 1 ≤ i, j ≤ n+ 2, we have

bij =


µ(xi−2), if j = 1,

up(xi−2), if j = 2 ,

(f ∗ µ)(xi−2), if j ≥ 3 and xi−2|xj−2,
0, if j ≥ 3 and xi−2 - xj−2.

Proof. Obviously, one has b11 = a11 = 1, b12 = a12 = 0 and

b1j = a1j = f(gcd(x−1, xj−2)) = f(1) = (f ∗ µ)(1)

for each integer j with 3 ≤ j ≤ n+ 2. In what follows, we let i be an integer with

2 ≤ i ≤ n+ 2.

For any j with 1 ≤ j ≤ n+ 2, we have

bij = aij +
∑

xd∈Ri−2

µ

(
xi−2
xd

)
ad+2,j =

∑
xd|xi−2

µ

(
xi−2
xd

)
ad+2,j . (3.1)

Since a11 = 1 and ak1 = 0 for any integer k between 2 to n+ 2, it follows that

bi1 =
∑

xd|xi−2

µ

(
xi−2
xd

)
ad+2,1 = µ(xi−2)a11 = µ(xi−2),

as required.
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Since a22 = 1 and ak2 = 0 for any integer k 6= 2 with 1 ≤ k ≤ n+ 2, one has

bi2 =
∑

xd|xi−2

µ
(xi−2
xd

)
ad+2,2 = up(xi−2)a22 = up(xi−2).

Now j be an integer such that 3 ≤ j ≤ n+ 2. Since S̄ = S ∪ {1, p} is factor

closed, and akj = f(gcd(xk−2, xj−2)) for any integer k with 1 ≤ k ≤ n + 2, one

can derive from Lemma 2.2 and (3.1) that

bij =
∑

xd|xi−2

µ

(
xi−2
xd

)
f(gcd(xj−2, xd)) =

∑
xd|xi−2

µ

(
xi−2
xd

)
f(gcd(xj−2, xd))

=

{
rl(f ∗ µ)(xi−2), if xi−2|xj−2, i ≥ 2, j ≥ 3,

0, if xi−2 - xj−2, i ≥ 2, j ≥ 3.

Therefore Lemma 3.1 is proved. �

Consequently, for each integer r between 1 to n, and for each integer d with

xd ∈ Tr (if Tr is nonempty), we multiply the (d + 2)-th column of B by µ(xr

xd
),

and then add them to the (r+ 2)-th column of B, we obtain the (n+ 2)× (n+ 2)

matrix C := (cij) with cij being the (i, j)-entry of C for all integers i and j with

1 ≤ i, j ≤ (n+ 2). Then one has the following lemma.

Lemma 3.2. For all integers i and j with 1 ≤ i, j ≤ n+ 2, we have

cij =



µ(xi−2), if j = 1,

up(xi−2), if j = 2,

−(µ(xj−2) + up(xj−2))f(1), if i = 1, j ≥ 3,

−up(xj−2)(f ∗ µ)(p), if i = 2, j ≥ 3,

(f ∗ µ)(xi−2), if 3 ≤ i = j ≤ n+ 2,

0, if 3 ≤ i 6= j ≤ n+ 2.

Proof. Evidently, one has ci1 = bi1 and ci2 = bi2 for any integer i with

1 ≤ i ≤ n+ 2. So ci1 = µ(xi−2) and ci2 = up(xi−2). In what follows, we let j be

an integer with 3 ≤ j ≤ n+ 2.

For any integer i with 1 ≤ i ≤ n+ 2, we have

cij = bij +
∑

xd−2∈Tj−2

µ

(
xj−2
xd−2

)
bid =

∑
xd−2|xj−2

d≥3

µ

(
xj−2
xd−2

)
bid. (3.2)
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Since b1k = f(1) for any integer k with 3 ≤ k ≤ n+ 2 and noticing that S̄ being

factor-closed and
∑
d|n µ(d) = 0 for any integer n ≥ 2, by (3.2) we can deduce

that

c1j =

( ∑
xd−2|xj−2

µ

(
xj−2
xd−2

)
− µ

(
xj−2
x−1

)
− ux0

(xj−2)

)
f(1)

= −(µ(xj−2) + up(xj−2))f(1),

as expected.

Now by (3.2) and Lemma 2.3, we obtain that

c2j =
∑

p|xd−2|xj−2,d≥3

µ

(
xj−2
xd−2

)
(f ∗ µ)(p)

=

( ∑
p|xd−2|xj−2,d≥2

µ

(
xj−2
xd−2

)
− ux0(xj−2)

)
(f ∗ µ)(p) = −up(xj−2)(f ∗ µ)(p),

as desired. On the other hand, by (3.2) and Lemma 3.1, one has

cjj =
∑

xd−2|xj−2
xj−2|xd−2,d≥3

µ

(
xj−2
xd−2

)
(f ∗ µ)(xj−2) = (f ∗ µ)(xj−2),

as desired.

Now let i be an integer such that 3 ≤ i ≤ n+2 and i 6= j. First let j < i. Let

d be an integer with 3 ≤ d ≤ j and xd−2|xj−2. Assume that bid 6= 0. Then we

must have xi−2|xd−2 which implies that i ≤ d, and so i ≤ j. It is a contradiction.

Thus bid = 0, and then by (3.2), we deduce that cij = 0.

Finally, we let i < j with i ≥ 3. We claim that cij = 0, which will be proved

in what follows.

If xi−2 - xj−2, then Lemma 3.1 tells us that bij = 0, and that bid = 0 if

xd−2|xj−2 since we must have xi−2 - xd−2, otherwise, one deduces from xi−2|xd−2
and xd−2|xj−2 that xi−2|xj−2, a contradiction. Hence by (3.2), one gets that

cij = 0.

If xi−2|xj−2, then it follows from Lemma 3.1 that bij = (f ∗ µ)(xi−2), bid =

(f ∗ µ)(xi−2) if xi−2|xd−2, and bid = 0 otherwise. Since i ≥ 3, implying that

xi−2 - x0 and S̄ is factor closed, by (3.2) and Lemma 2.3, one derives that

cij=(f ∗ µ)(xi−2)
∑

xi−2|xd−2|xj−2
d≥3

µ

(
xj−2
xd−2

)
=(f ∗ µ)(xi−2)

∑
xi−2|xd−2|xj−2

d≥2

µ

(
xj−2
xd−2

)
=0,

as one desires. Thus Lemma 3.2 is proved. �
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Evidently, by Laplace’s expansion theorem we have

det(f(gcd(xi, xj)))1≤i,j≤n = det(A).

But the definitions of the matrices A,B and C tell us that det(A) = det(B) =

det(C). Therefore

det(f(gcd(xi, xj)))1≤i,j≤n = det(C).

It remains to compute det(C). For this purpose, for all integers a and b with

1 ≤ a < b ≤ n+ 2, we let

Mab := det

(
ca1 ca2
cb1 cb2

)
,

and let Nab be the cofactor of Mab. Then by Laplace’s expansion theorem, one

has

det(C)=
∑

1≤a<b≤n+2

(−1)(a+b)+(1+2)MabNab=
∑

1≤a<b≤n+2

(−1)a+b+1MabNab. (3.3)

By Lemma 3.2, we know that ci1 = µ(xi−2) and ci2 = up(xi−2) for any

integer i with 1 ≤ i ≤ n+ 2. Then

Mab = µ(xa−2)up(xb−2)− µ(xb−2)up(xa−2). (3.4)

Therefore Lemma 2.4 tells us that Mab = ±1 if 0 ≤ vp(xa−2) 6= vp(xb−2) ≤ 2, and

both of xa−2

pvp(xa−2) and xb−2

pvp(xb−2) are squarefree, and Mab = 0 otherwise. In what

follows, we compute Nab.

Lemma 3.3. Let a and b be integers such that 1 ≤ a < b ≤ n + 2 and

Mab 6= 0. Then

Nab = (−1)a+b+1Mab

n+2∏
i=1

i6=a,i6=b

(f ∗ µ)(xi−2).

Proof. By Lemma 3.2, one has c1j = (−cj1−cj2)f(1), c2j = −cj2(f ∗µ)(p),

cjj = (f ∗µ)(xj−2) and cij = 0 if i 6= j for all integers i and j with 3 ≤ i, j ≤ n+2.

By Lemma 3.2 and (3.4), one deduces that M1b = cb2 and M2b = −cb1 − cb2.

In particular, M12 = 1. For integers i and j between 1 and n+ 2, we define

∆ij :=

n+2∏
k=1

k 6=i,k 6=j

(f ∗ µ)(xk−2).
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Then one has

N12 = det(diag((f ∗ µ)(x1), · · · , (f ∗ µ)(xn))) = ∆12 = (−1)1+2+1M12∆12.

In the following, we let b ≥ 3. Then all the elements of the (b− 2)-th column

of the determinants N1b and N2b are zero except that their first elements are

c2b = −cb2(f ∗ µ)(p) = −M1b(f ∗ µ)(p)

and

c1b = (−cb1 − cb2)f(1) = M2b(f ∗ µ)(1),

respectively. Thus we can use the Laplace theorem to get that

N1b = (−1)1+b−2c2b

n+2∏
i=1

i6=1,i 6=2,i 6=b

(f ∗ µ)(xi−2) = (−1)bM1b∆1b = (−1)1+b+1M1b∆1b

and

N2b = (−1)1+b−2c1b

n+2∏
i=1

i6=1,i 6=2,i 6=b

(f ∗ µ)(xi−2)=(−1)b−1M2b∆2b=(−1)2+b+1M2b∆2b.

Now let a ≥ 3. Since c1j = (−cj1 − cj2)f(1) and c2j = −cj2(f ∗ µ)(p) for

3 ≤ j ≤ n+ 2, we deduce that

det

(
c1a c1b
c2a c2b

)
= f(1)(f ∗ µ)(p) · det

(
−ca1 − ca2 −cb1 − cb2
−ca2 −cb2

)

= f(1)(f ∗ µ)(p) · det

(
ca1 cb1
ca2 cb2

)
=f(1)(f ∗ µ)(p)Mab. (3.5)

But all the elements of the (a − 2)-th column and the (b − 2)-th column of the

determinant Nab are zero except that their first two elements are c1a, c2a, c1b
and c2b. Then Laplace’s expansion theorem together with (3.5) gives us that

Nab = (−1)(1+2)+(a−2+b−2) det

(
c1a c1b
c2a c2b

)
·

n+2∏
i=3

i6=a,i 6=b

(f ∗ µ)(xi)

= (−1)a+b+1(f ∗ µ)(1)(f ∗ µ)(p)Mab

n+2∏
i=3

i6=a,i 6=b

(f ∗ µ)(xi)

= (−1)a+b+1Mab

n+2∏
i=1

i6=a,i 6=b

(f ∗ µ)(xi) = (−1)a+b+1Mab∆ab,

as required. This ends the proof of Lemma 3.3. �
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Let us continue the proof of Theorem 1.2. By (3.3), (3.4), Lemmas 2.4

and 3.3, one obtains that

det(C) =
∑

1≤a<b≤n+2

(−1)a+b+1MabNab

=
∑

1≤a<b≤n+2

(−1)2(a+b+1)M2
ab

n+2∏
i=1

i6=a,i 6=b

(f ∗ µ)(xi−2)

=
∑

1≤a<b≤n+2,0≤vp(xa−2)6=vp(xb−2)≤2
xa−2

p
vp(xa−2)

and
xb−2

p
vp(xb−2)

are squarefree

n+2∏
i=1

i6=a,i6=b

(f ∗ µ)(xi−2)

=
∑

x,y∈S̄,x<y,0≤vp(x)6=vp(y)≤2
x

p
vp(x)

and
y

p
vp(y)

are squarefree

∏
z∈S̄

z 6=x,z 6=y

(f ∗ µ)(z). (3.6)

Since 1 and p ∈ S̄ are squarefree, one then derives from (3.6) that

det(C)

=
∏
x∈S

(f ∗ µ)(x) + f(1)
∑

x∈S,vp(x)∈{0,2}
x

p
vp(x)

is squarefree

∏
y∈S\{x}

(f ∗ µ)(y)

+ (f(p)− f(1))
∑

x∈S,vp(x)∈{1,2}
x

p
vp(x)

is squarefree

∏
y∈S\{x}

(f ∗ µ)(y)

+ f(1)(f(p)− f(1))
∑

x,y∈S,x<y,0≤vp(x) 6=vp(y)≤2
x

p
vp(x)

and
y

p
vp(y)

are squarefree

∏
z∈S\{x,y}

(f ∗ µ)(z). (3.7)

Therefore the desired result follows immediately from (3.7). This concludes the

proof of the first part of Theorem 1.2.

We are now in the position to show the second part of Theorem 1.2. Since

f is a nonzero multiplicative function, one has f(gcd(xi, xj))f(lcm(xi, xj)) =

f(xi)f(xj). It follows that

(f(lcm(xi, xj)))=diag(f(x1), . . . , f(xn))·
(

1

f
(gcd(xi, xj))

)
·diag(f(x1), . . . , f(xn)),

where diag(f(x1), . . . , f(xn)) is the n× n diagonal matrix with f(x1), . . . , f(xn)

as its diagonal elements. So one obtains that

det(f(lcm(xi, xj)))1≤i,j≤n =

(
n∏
i=1

f(xi)
2

)
det

(
1

f
(gcd(xi, xj))

)
1≤i,j≤n

.



On a certain arithmetical determinant 183

Thus Theorem 1.2 applied to 1
f gives us the expected formula. This ends the proof

of Theorem 1.2. �

As the conclusion of this section, we show Theorem 1.1.

Proof of Theorem 1.1. Let p = 2, S = {3, . . . , n} and f = I, with the

arithmetic function I being defined for any positive integer x by I(x) := x. Then

I is multiplicative and (I ∗ µ)(x) = ϕ(x) for any positive integer x. But π and µ

are also multiplicative. So for any positive integer x, we have(
1

I
∗ µ
)

(x) =
∏

vp(x)≥1

(
1

I
∗ µ
)

(pvp(x)) =
∏

vp(x)≥1

vp(x)∑
i=0

µ(pi)

I(pvp(x)−i)

=
∏

vp(x)≥1

(−p)pvp(x)(1− 1
p )

p2vp(x)
=

∏
vp(x)≥1

π(pvp(x))ϕ(pvp(x))

(I(pvp(x)))2
=
π(x)ϕ(x)

x2
.

On the one hand, applying Theorem 1.2 yields that

det(gcd(i, j))3≤i,j≤n

=
∏
x∈S

ϕ(x) +
∑

x∈S,2-x
x is squarefree

∏
y∈S\{x}

ϕ(y) +
∑

x∈S,v2(x)=1
x
2

is squarefree

∏
y∈S\{x}

ϕ(y)

+ 2
∑

x∈S,v2(x)=2
x
4

is squarefree

∏
y∈S\{x}

ϕ(y) +
∑

x,y∈S,x<y,0≤v2(x)6=v2(y)≤2
x

2v2(x)
and

y

2v2(y)
are squarefree

∏
z∈S\{x,y}

ϕ(z)

=

(∏
x∈S

ϕ(x)

)(
1 +

∑
x∈S,2-x

x is squarefree

1

ϕ(x)
+

∑
x∈S,v2(x)=1

x
2

is squarefree

1

ϕ(x)

+ 2
∑

x∈S,v2(x)=2
x
4

is squarefree

1

ϕ(x)
+

∑
x,y∈S,x<y,0≤v2(x)6=v2(y)≤2
x

2v2(x)
and

y

2v2(y)
are squarefree

1

ϕ(x)ϕ(y)

)

=

(
n∏
k=3

ϕ(k)

)
(1 + Σ0 + Σ1 + 2Σ2 + Σ0Σ1 + Σ0Σ2 + Σ1Σ2), (3.8)

where for i = 0, 1 and 2, one has

Σi :=
∑

x∈S,v2(x)=i
x
2i

is squarefree

1

ϕ(x)
.
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Since ϕ is multiplicative, ϕ(1) = ϕ(2) = 1 and ϕ(4) = 2, it follows that

Σ0 =

n∑
x=3

x is odd squarefree

1

ϕ(x)
= σ0 − 1, (3.9)

Σ1 =
∑
2x∈S

x is odd squarefree

1

ϕ(2x)
=

bn2 c∑
x=2

x is odd squarefree

1

ϕ(x)
= σ1 − 1, (3.10)

and

Σ2 =
∑
4x∈S

x is odd squarefree

1

ϕ(4x)
=

bn4 c∑
x=1

x is odd squarefree

1

ϕ(4)ϕ(x)
=

1

2
σ2. (3.11)

Hence (3.8), together with equations (3.9) to (3.11), gives us that

det(gcd(i, j))3≤i,j≤n =

(
n∏
k=1

ϕ(k)

)(
σ0σ1 +

1

2
σ0σ2 +

1

2
σ1σ2

)
,

as expected. So the first formula is proved.

On the other hand, since
(
1
I ∗ µ

)
(x) = π(x)ϕ(x)

x2 for any positive integer x,

by Theorem 1.2 one gets that

det(lcm(xi, xj))1≤i,j≤n

=

(∏
x∈S

x2

)(∏
x∈S

π(x)ϕ(x)

x2
+

∑
x∈S

x is odd squarefree

∏
y∈S\{x}

π(y)ϕ(y)

y2

− 1

2

∑
x∈S,v2(x)=1

x
2

is squarefree

∏
y∈S\{x}

π(y)ϕ(y)

y2
+

1

2

∑
x∈S,v2(x)=2

x
4

is squarefree

∏
y∈S\{x}

π(y)ϕ(y)

y2

− 1

2

∑
x,y∈S,x<y,0≤v2(x)6=v2(y)≤2
x

2v2(x)
and

y

2v2(y)
are squarefree

∏
z∈S\{x,y}

π(z)ϕ(z)

z2

)

=

(∏
x∈S

π(x)ϕ(x)

)(
1 +

∑
x∈S

x is odd squarefree

x2

π(x)ϕ(x)
− 1

2

∑
x∈S,v2(x)=1

x
2

is squarefree

x2

π(x)ϕ(x)
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+
1

2

∑
x∈S,v2(x)=2

x
4

is squarefree

x2

π(x)ϕ(x)
− 1

2

∑
x,y∈S,x<y,0≤v2(x)6=v2(y)≤2
x

2v2(x)
and

y

2v2(y)
are squarefree

x2y2

π(x)ϕ(x)π(y)ϕ(y)

)

=

(∏
x∈S

π(x)ϕ(x)

)(
1+Σ̄0−

1

2
Σ̄1+

1

2
Σ̄2−

1

2
(Σ̄0Σ̄1 + Σ̄0Σ̄2 + Σ̄1Σ̄2)

)
, (3.12)

where for i = 0, 1 and 2, we have

Σ̄i :=
∑

x∈S,v2(x)=i
x
2i

is squarefree

x2

π(x)ϕ(x)
.

For any squarefree positive integer x, since π(x) = µ(x)x, one deduces that

x2

π(x)ϕ(x)
=
µ(x)x

ϕ(x)
.

It follows immediately that

Σ̄0 =

n∑
x=3

x is odd squarefree

µ(x)x

ϕ(x)
= σ̄0 − 1, (3.13)

Σ̄1 =
∑
2x∈S

x is odd squarefree

2µ(2x)x

ϕ(2x)
= −2

bn2 c∑
x=2

x is odd squarefree

µ(x)x

ϕ(x)
= 2(1− σ̄1), (3.14)

and

Σ̄2 =
∑
4x∈S

x is odd squarefree

(4x)2

π(4x)ϕ(4x)
= −4

bn4 c∑
x=1

x is odd squarefree

x2

π(x)ϕ(x)
= −4σ̄2. (3.15)

Then from equations (3.12) to (3.15) and noticing that π(1) = 1 and π(2) = −2,

we can deduce that

det(lcm(xi, xj))1≤i,j≤n =

(
n∏
k=3

π(k)ϕ(k)

)
(σ̄0σ̄1 + 2σ̄0σ̄2 − 4σ̄1σ̄2)

=

(
n∏
k=1

π(k)ϕ(k)

)
(2σ̄1σ̄2 −

1

2
σ̄0σ̄1 − σ̄0σ̄2),

as desired. This finishes the proof of Theorem 1.1. �
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