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On a family of four dimensional simplex
tilings and its d-dimensional variant

By E. MOLNÁR (Budapest)

Dedicated to professor Lajos Tamássy on the occasion
of his 70th birtday

On the base of [3] and [5] a family of fundamental d-simplex tilings
〈P, Γ〉 will be studied. Each group Γ is generated by a pairing I of the
(d−1-dimensional) facets of the d-simplex P = A0A1 . . . Ad. In particular,
we take for I (d− 1) reflections m0,m1, . . . , md−2 in the mirror facets

(0.1) m0 : A1A2 . . . Ad, . . . md−2 : A0A1 . . .
d−2W

. . . Ad

(Ad−2 is omitted)

and — in our terminology — the screw transformation

(0.2) s : fs−1 := AdA0 . . . Ad−2 7−→ A0A1 . . . Ad−1 =: fs

so that Ad and the s image of Ad−1 lie in oposite sides of the face fs.
Moreover, we take the inverse screw transformation s−1 : fs 7→ fs−1 ,
in combinatorial (topological) sense. From the pairing I we get the Γ-
equivalence classes of the (d− 2)-faces of P. For each (d− 2)-face class a
rotational order can be prescribed. Thus the group Γ will be determined
up to a presentation: by the generators from I and by the defining relations
belonging to the (d− 2)-face classes.

We shall describe all the tilings 〈P, Γ〉 where the rotational orders
(ν1, . . . , νr) yield either a finite stabilizer Γ0 < Γ for the unique Γ-class
of vertices, or Γ0 is a crystallographic group of a Euclidean (d− 1)-space.
Furthermore, we describe all the projective metric realizations of these
tilings 〈P, Γ〉 up to equivariant deformation.
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For each dimension d ≥ 4 there exist two tilings 〈P, Γ〉 with projective
metric realizations in Ed resp. Sd−1×R (the (d− 1)-sphere crossed by the
real line with the product metric [7], [8]). In case of d = 4 we get further
two tilings in H3×R (with the hyperbolic 3-space H3) and an infinite series
in S3×R.

Interesting exceptional cases occur for d = 3: an infinite series of
H2×R-realizations, a H3-realization, and a tiling 〈P, Γ〉 with Euclidean
stabilizer Γ0 for the vertex class, where a projective metric realization
does not exist. These phenomena appeared, when we classified all the
solid transitive 3-simplex tilings in [5]. Now, the strategy of [3], [6] is
illustrated. One can apply our method to each facet pairing of a 4-simplex
from among the 4096 ( ! = 212) cases found by I. Prok [6] by computer.

Our method seems to be actual for deciding metrizability of manifolds
and orbifolds in the program of W. P. Thurston [7], [8]. In [4] we
have obtained interesting hyperbolic tilings by lengthy computations. Now
the linear reflection groups [1], [9], [10] serve us a tool to work in each
dimension.

For d = 2 a Euclidean plane tiling and infinitely many hyperbolic ones
motivate the problem with attractive pictures (Fig. 5.a,b).

As d = 4 is a crucial dimension, and the general formulation for
d > 4 is only of technical character, we restrict ourself first for d = 4.
In Sections 1–2 we shall describe the general combinatorial method for
the tilings 〈P,Γ〉 and recall the projective metric machinery of d + 1 = 5
dimensional linear space. For more details we refer to [2], [3], [9]. In
Sections 3–4 the results will be formulated by Theorems 1–3. In Section 5
we summarize the d > 4 dimensional cases in Theorem 4. For brevity, we
only report the tilings of d = 3, 2 more sketchily (Fig. 4–5), because these
will be published elsewhere in more general aspects.

1. The combinatorial construction of the tiling family, d = 4

The facet pairing I described in formulas (0.1), (0.2) shows how to
form each tiling in the neighbourhood of the starting simplex P. That
means, e.g., the reflection m0 fixes all the points of the facet fm0 :=
A1A2A3A4 (denoted also by m0) and the m0-image of P, denoted by Pm0 ,
joins P along the facet fm0 = fm0

m0
. The screw transformation s maps A4

onto A0, i.e. As
4 = A0, furthermore, As

0 = A1, As
1 = A2, As

2 = A3 and this
mapping will be extended to the points of the facet A4A0A1A2 =: fs−1

and to the image points of A0A1A2A3 =: fs. Our notations also indicate
the action of the inverse screw transformation s−1 ∈ I:

s−1 : A0A1A2A3 =: fs 7−→ fs−1 := A4A0A1A2.
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The image simplex Ps joins P along the facet fs = fs
s−1 , and Ps−1

joins
P along the facet fs−1 = fs−1

s . We think of the simplex P that it has a
standard chart ∆ embedded in R5 (see Sect. 2):

(1.1) ∆ =
{
x = (x0, x1, x2, x3, x4) ∈ R5 : xi ≥ 0,

i ∈ {0, . . . , 4};
4∑

i=0

xi = 1
}

.

The i-facet of ∆ is

∆i =
{
x ∈ ∆ : xi = 0

}
for i = 0, 1, 2, 3, 4.

Then we can define a topological space, namely, the tiling

(1.2) 〈P,Γ〉 := (∆, Γ(I); ∼),

first, as a Cartesian product. Here in the second place we consider words
from the element of I with only cancellation rules

(1.3) m2
0 = m2

1 = m2
2 = 1 = ss−1 = s−1s.

Later on we require 6 additional relations for Γ(I) in (1.7), (1.11) and
(1.13). Moreover, the facets are identified as, e.g.,

(1.4) (∆0, 1) ∼ (∆0,m0); (∆4, 1) ∼ (∆3, s); (∆3, 1) ∼ (
∆4, s

−1
)

show by (0.1) and (0.2) without more detailed explanation of the usual
construction [3].

The group Γ(I) acts on the tiling 〈P, Γ〉 as our notations

(1.5) h : 〈P, g〉 7→ 〈P, g〉h := 〈P, gh〉 with g, h ∈ Γ(I)

indicate. Now, we examine the (d− 2 =) 2-faces of P and of 〈P, Γ〉.
In Fig. 1 we see 2-dimensional projections on neighbourhoods of

(d− 2 =) 2-faces of 〈P, Γ〉. For simplicity we start with the second 2-face
A2A3A4 and its local domain P234 =: 2P2 ⊂ P, bounded by the reflection
facets fm0 and fm1 . The stabilizer 2Γ2 of this 2-face Γ-equivalence class

(1.6) {A2A3A4} =: 22

is generated by m0, m1 and we prescribe a rotational order ν2 (so the facet
angle β01 = π

ν2
for the later metric realization), and the defining relation

(1.7) (m0m1)ν2 = 1, ν2 ∈ {2, 3, . . . } =: N \ {1}.
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Figure 1.

Now we continue with the first 2-face class in Fig. 1 and with the
following Poincaré scheme (see [3] for more details). We take the 2-face
A1A2A3 and the facet fm0 :

(1.8)

(A1A2A3, fm0)
m0−→(A1A2A3, fm0);

take the second facet to A1A2A3 :

(A1A2A3, fs)
s−1

−→(A0A1A2, fs−1);

take the second facet to A0A1A2 :

(A0A1A2, fs)
s−1

−→(A4A0A1, fs−1);

take the second facet to A4A0A1 :

(A4A0A1, fm2)
m2−→(A4A0A1, fm2) .
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Then we have exhausted the I-induced first Γ-equivalence class

(1.9) {A1A2A3, A0A1A2, A4A0A1} =: 12.

By this scheme we can derive a local fundamental domain

(1.10) 1P2 := P123 ∪ Ps
012 ∪ Ps2

401

indicated in the first picture of Fig. 1. This means, we glue together the
2-face ‘corners’ of P as the tiling 〈P, Γ〉 dictates. At 1P2 we see the mirror
facets fm0 and fs2

m2
=: f?

m2
. These reflections m0 and s−2m2s

2 generate
the stabilizer subgroup 1Γ2 of the 2-face class 12 in (1.9). The order of
the rotational subgroup of 1Γ2 has not been determined yet. With the
defining relation

(1.11)
(
m0s

−2m2s
2
)ν1 = 1 ν1 ∈ N := {1, 2, . . . }

this rotational order ν1 has also been defined. If it will be fixed later, then
also the angle sum

(1.12) β04 + β34 + β23 =
π

ν1

will be fixed for an actual metric realization, however, the existence of that
is always questionable.

We can continue as Fig. 1 shows the local fundamental domains 3P2,
. . . , 6P2 for the stabilizers 3Γ2, . . . , 6Γ2 of the Γ classes 32, . . . , 62 of 2-faces
of P, and we obtain further defining relations with ν4, ν5 ∈ N; ν3, ν6 ∈
{2, 3, . . . } =: N \ {1}:
(1.13) (m0m2)ν3 =

(
m0sm1s

−1
)ν4 =

(
m1sm2s

−1
)ν5 = (m1m2)ν6 = 1.

Thus Γ(I, ν1, ν2, . . . , ν6) has been defined by the generators of the facet
pairing I with (1.3) and the additional defining relations (1.7), (1.11),
(1.13).

Now we glue together the fundamental domains for the Γ-equivalence
classes of 1-faces of P as Fig. 2 shows by means of local “surface diagrams”.
For instance, the first two pictures on the left of Fig. 2 describe the local
fundamental domain

(1.14) 1P1 := P12 ∪ Ps−1

23 ∪ Ps
01 ∪ Ps2

40 for the stabilizer 1Γ1

of the 1-face class {A1A2, A2A3, A0A1, A4A0} of P. The dihedral corners
on the “mirror boundary” of 1P1 are illustrated on the “surface diagram”.
The stabilizer 1Γ1 has to be finite 2-dimensional group. This “geometric
requirement” will restrict the possible values of (ν1, ν2, ν4, ν1, ν6, ν5) in the
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Figure 2.

boundary cycle of 1P1. The same method leads to the local fundamental
domain

(1.15) 2P1 := P13 ∪ Ps
02 ∪ Ps2

14 for the stabilizer 2Γ1

of the 1-face class {A1A3, A0A2, A4A1} of P. The dihedral corners and the
values (ν1, ν3, ν4, ν5, ν3) have to define a finite 2Γ1 again. The stabilizer
3Γ1 of {A3A4} and 4Γ1 of {A2A4, A3A0} both are reflection groups, as
the last two pictures of Fig. 2 show.

To describe a local fundamental domain P0 for the stabilizer Γ0 of
the unique vertex (0-face) Γ-equivalence class, that is a more complicated
procedure, because P0 can be illustrated by a 3-dimensional domain as a
Schlegel diagram shows in the upper picture of Fig. 3. P0 will be bounded
also by mirror facets.

(1.16) P0 := P0 ∪ Ps−1

1 ∪ Ps−2

2 ∪ Ps−3

3 ∪ Ps
4

is an appropriate gluing, since As−3

3 = As−2

2 = As−1

1 = A0 = As
4. We glue

along the images of the facets fs and fs−1 . We have indicated how the
appropriate Γ-images of mirror facets bound P0, but now these will be 2-
dimensional faces in the first picture of Fig. 3. Their intersections, i.e. the
2-faces of P0 are described by the edges of Fig. 3 with the corresponding
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Figure 3.

orders ν1, ν2, . . . , ν6. The 1-faces of P0 are pictured by the vertices of
Fig. 3 in accordance with the fact that the 0-face of P0 is not indicated.

We see that the procedure becomes more and more complex with the
increasing dimensions, and we need a computer for the accurate combi-
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natorial descriptions in general. Now we are in a better situation, since
we have mirror reflections as generators, and the theory of linear Coxeter
groups (see e.g. Vinberg [9]) is developed enough.

2. The construction of 〈P,Γ〉 in the projective metric space P4

and sphere PS4

We take a real vector space V5(R) =: V and its dual space V5(R) =:
V . Let b0, b1, b2, b3, b4 be linear forms, a basis in V which will represent
the facets of P. The dual basis vectors a0, a1, a2, a3, a4 in V with

(2.1)
〈
aib

j
〉

= δj
i (the Kronecker symbol)

will represent the vertices of the simplex P, respectively.
Each generating hyperplane reflection mk (k = 0, 1, 2) will be defined

in V and in V by form-vector pair (bk,bk) as the formulas

(2.2) mk :

{
u 7−→ v := u− bk

〈
bku

〉
with

〈
bkbk

〉
= 2,

x 7−→ y := x− 〈
xbk

〉
bk, implying 〈xu〉 = 〈yv〉,

show. We know that the composition (product) of two reflections

(2.3) mimj : u 7−→ w := u− bi
〈
biu

〉− bj
〈
bj

(
u− bi

〈
biu

〉)〉

will be of finite order 1 ≤ nij ∈ N iff

(2.4)
〈
bibj

〉 · 〈bjbi
〉

= 4 cos2
π

nij
.

In (2.2) the pair (bk ·c, 1
cb

k) with c ∈ R\0 =: Ṙ defines the same reflection.
Therefore, in (2.4) we may assume without loss of generality [9]

(2.5)
〈
bibj

〉
=

〈
bjbi

〉
= −2 cos

π

nij
, 1 ≤ nij ∈ N.

By the linearity of mappings in (2.2) and the other aspects, the projec-
tive 4-space P4 := P4(V,V ,R) and the projective 4-sphere PS4(V, V ,R)
will be introduced (see e.g. [9]) as the incidence structure of subspaces of
V or V , resp. of ‘half subspaces’ of V or V . We denote by (x) a point as
a 1-space of V spanned by a non-zero vector x, (u) analogously denotes a
hyperplane determined by a 1-space of V , and we also introduce the set
of incident points

(2.6) (u) := {(x) : 〈xu〉 = 0} , u ∈ V \ {0}.
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Any point of PS4 is a ray [x] := {c·x ∈ V : c ∈ R+}; any half-hypersphere
is represented by [u] := {u · t ∈ V : t ∈ R+} or its point set

(2.7) [u] := {[x] : 〈xu〉 ≥ 0} .

A point [x] and its opposite [−x] of PS4 are the same in P4, similarly [u]
and [−u] are identified with (u).

We may require the regular linear transformations S of V and S−1 of
V, to represent the geometric transformation s of half-spheres and points
of PS4 or hyperplanes and points of P4, respectively, as

(2.8)
〈(

xS−1
)
(Su)

〉
= 〈xu〉 for any x ∈ V, u ∈ V

shows. Thus, s(S,S−1) will be incidence preserving transformation.
(S,S−1) ∼ (cS,S−1 1

c ) mean the same s for PS4 iff the constant c ∈ R+,
and for P4 iff c ∈ Ṙ (= R \ 0).

Now, we turn back to the screw transformation s(S,S−1) by the for-
mula (0.2). The forms b3 and b4 represent the facets fs−1 and fs, respec-
tively, thus we may assume

(2.9) s : b3 7−→ Sb3 = b4 · (−1),

so that As
3, i.e. the s-image of A3, and A4 lie in the opposite side of the

facet fs(b4) in PS4. The next formula shows this fact by

(2.10)

〈
a4b

4
〉

= 1 =
〈
a3b

3
〉

=
〈(

a3S−1
) (

Sb3
)〉

=

=
〈(

a3S−1
) (

b4(−1)
)〉

= − 〈(
a3S−1

)
b4

〉
.

We continue defining s by S (and by S−1 later in 2.13):

(2.111) s : b0 7−→ Sb0 = b1s0
1 + b4s0

4

holds for suitable s0
1, s

0
4 ∈ R with s0

1 6= 0, because of

(b0)∩ (b3) ⊃ fm0 ∩ fs−1 = A4A1A2
s7−→A0A2A3 = fm1 ∩ fs ⊂ (b1)∩ (b4).

Similarly,

(b1)∩ (b3) ⊃ fm1 ∩ fs−1 = A4A0A2
s7−→A0A1A3 = fm2 ∩ fs ⊂ (b2)∩ (b4)

and the other analogous relations imply

(2.112–4) s :





b1 7−→ Sb1 = b2s1
2 + b4s1

4, s1
2 6= 0,

b2 7−→ Sb2 = b3s2
3 + b4s2

4, s2
3, s

2
4 6= 0,

b4 7−→ Sb4 = b0s4
0 + b4s4

4, s4
0, s

4
4 6= 0.
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Finally, the requirements (2.1), (2.8) in the form

(2.12) δj
i = 〈aib

j〉 =
〈(

aiS−1
) (

Sbj
)〉

imply the matrix forms of S and S−1 representing s as follows

S
(
b0, b1, b2, b3, b4

)
=

(
b0, b1, b2, b3, b4

)




0 0 0 0 s4
0

s0
1 0 0 0 0
0 s1

2 0 0 0
0 0 s2

3 0 0
s0
4 s1

4 s2
4 −1 s4

4




,




a0

a1

a2

a3

a4




S−1 =




0 1
s0
1

0 0 0

0 0 1
s1
2

0 0

0 0 0 1
s2
3

0

s4
4

s4
0

s0
4

s0
1

s1
4

s1
2

s2
4

s2
3

−1
1
s4
0

0 0 0 0







a0

a1

a2

a3

a4




.(2.13)

Of course, the inverse transformation s−1 is represented by S−1 on V and
S on V, respectively.

Next we put together the combinatorial and the algebraic construc-
tion, and introduce a new hyperplane reflection (cf. the comments af-
ter (3.5))

(2.14)
m := s−1m2s with form b = Sb2 = b3s2

3 + b4s2
4 =: b3 + b4z

and with vector b = b2S−1.

We require the transformation s to preserve the orders (ν1, . . . , ν6) of
reflection products. Then our assumptions for the stabilizer Γ0 provide
some choices for (ν1, . . . , ν6) and these will fix some still ‘free parameters’
of s in (2.13) as well.

3. The general strategy and the results in Case 1

In Fig. 3 we have pictured the combinatorial fundamental domain P0

for the vertex stabilizer Γ0 < Γ. P0 can be considered as a 3-polyhedron
(in S3 or in E3) bounded by mirror facets. We know the 3-dimensional
transformation groups generated by plane reflections (see e.g. [1], [10]),
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when they are finite, i.e. realizable as discrete groups of isometries of the
spherical 3-space S3, or when they are Euclidean isometry groups in E3.
Thus the following statement holds:

Theorem 1. The group Γ, generated by the pairing I of the facets
of 4-simplex P by formulas (0.1) and (0.2), has finite spherical vertex
stabilizer Γ0 iff the sixtupels of natural rotational orders are

(3.1)
(ν1, ν2, ν3, ν4, ν5, ν6) = (1, 3, 2, 1, 1, 3) or

(ν1, ν2, ν3, ν4, ν5, ν6) = (1, 2, q, 1, 1, 2) for 2 ≤ q ∈ N .

The stabilizer Γ0 is realizable as a Euclidean reflection group in E3, iff

(3.2)
(ν1, ν2, ν3, ν4, ν5, ν6) = (1, 4, 2, 1, 1, 4) or

(ν1, ν2, ν3, ν4, ν5, ν6) = (1, 3, 3, 1, 1, 3).

Proof. We have seen in Section 1 that 2 ≤ ν2, ν3, ν6 ∈ N hold, else
P is not a 4-simplex. If any order from ν1, ν4, ν5 is greater then 2 — as
Fig. 3 shows — the fundamental polyhedron P0 of the vertex stabilizer Γ0

would have more faces than reflection polyhedra in S3 or in E3 have [1].
Indeed, in case ν1 ≥ 2 P0 would have 6 faces at least; ν4 ≥ 2 or ν5 ≥ 2

would imply the same. In these cases each of the 3 faces 1 , 2 , 3 of
our particular P0 (lower part of Fig. 3) would be divided into two parts,
at least, by additional edges, and trigonal faces occur. However, the only
hexahedral reflection polyhedron in S3 or E3 is the Euclidean brick, and
we do not have any with more faces.

For P0 we get the trihedral polyhedron with Coxeter diagram in Fig. 3
below, where the case (1, 3, 2, 1, 1, 3) is illustrated. All the cases, enumer-
ated above, will be realized. ¤

After having fixed ν1 = ν4 = ν5 = 1 and the eqality ν2 = ν6 by
Theorem 1, we read off the relations (1.13) and (1.11) the conjugacies

(3.3) m1 = s−1m0s, m2 = s−1m1s; m0 = s−2m2s
2.

Because of the third formula of (3.3), we can define the reflection

m = s−1m2s = sm0s
−1 by a form-vector pair (b,b)

as indicated in (2.14). These involve in the formulas (2.11) that

(3.4) b0 7−→ Sb0 = b1 7−→ Sb1 = b2, i.es0
1 = s1

2 = 1 and s0
4 = s1

4 = 0 ,

b2 7−→ Sb2 = b = b3 + b4z 7−→ Sb = Sb3 + Sb4z =(3.5)

= −b4 + b0s4
0z + b4s4

4z = b0, i.e. s4
4 =

1
z

= s4
0 with 0 < z ≤ 1
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can be assumed in (2.13) without loss of generality. Namely, after having
fixed m0(b0,b0), m1(b1,b1) and m2(b2,b2) by (2.5) and (3.4), we fix b3

and b4 step-by-step. First (2.9) and (2.14) adjust b, b3, b4 and z > 0, then
Sb = b0 refines them by proportionality. If z > 1, then we change the
role of generators by 0 ↔ 2, 3 ↔ 4, s(S,S−1) ↔ s−1(S−1S) and z ↔ 1

z .
Our s(S,S−1) is also required to preserve the orders of reflection products
by (2.5). Thus e.g.

(3.6)
− cos

π

ν2
=

〈
b0b1

〉
=

〈(
b0S−1

) (
Sb1

)〉
=

〈
b1b2

〉
= . . .

=
〈
b2b

〉
=

〈(
b2S−1

)
(Sb)

〉
=

〈
bb0

〉
=

〈
b0b

〉
= . . .

hold. Continuing the procedure we formulate our criterion for the alge-
braization:

Strategy for finding s(S,S−1). The reflections, given by form-vector
pairs, are in s-cycle

(3.7) m0

(
b0,b0

) s−→m1

(
b1,b1

) s−→m2

(
b2,b2

) s−→m (b,b) s−→m0.

A (symmetric) polarity with its Cartan matrix will be defined by (2.1) and

bk 7−→ bk =: bkiai (k = 0, 1, 2), b 7−→ b =: biai(∗)



〈b0b0〉 〈b0b1〉 〈b0b2〉 〈b0b〉
〈b1b0〉 〈b1b1〉 〈b1b2〉 〈b1b〉
〈b2b0〉 〈b2b1〉 〈b2b2〉 〈b2b〉
〈bb0〉 〈bb1〉 〈bb2〉 〈bb〉


 :=(3.8)

:= 2 ·




1 − cos π
ν2

− cos π
ν3

− cos π
ν2

− cos π
ν2

1 − cos π
ν2

− cos π
ν3

− cos π
ν3

− cos π
ν2

1 − cos π
ν2

− cos π
ν2

− cos π
ν3

− cos π
ν2

1




as a ‘kernel of a projective metric’ on PS4 and P4. We require s(S,S−1) to
leave invariant this polarity and the Cartan matrix. If these requirements
can be satisfied then we say: The tiling 〈P,Γ〉 with Γ(I, ν1, . . . , ν6) has a
projective metric realization. Depending on the signature of the Cartan
matrix, i.e. on (?), we shall have Euclidean, spherical, hyperbolic, etc.
tilings, or such a realization may not exist. ¤
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This criterion prescribes our s(S,S−1) in (2.13) by more specified
matrices as follows (cf. (3.4–5)):

(3.9)

S
(
b0, b1, b2, b3, b4

)
=

(
b0, b1, b2, b3, b4

)



0 0 0 0 1
z

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 z −1 1

z


 ;




a0

a1

a2

a3

a4


S−1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 z −1
z 0 0 0 0







a0

a1

a2

a3

a4




with a
parameter z
0 < z ≤ 1.

To construct an s-invariant polarity, i.e. an appropriate 5× 5 Cartan
matrix or a scalar (inner) product (if exists), we consider

(3.10)
b0 =: b0iai, b0S−1 = b1 =: b1iai, b1S−1 = b2 =: b2iai and

b2S−1 = b0S = b =: bjaj =: b0a0 + b1a1 + b2a2 + b3a3 + b4a4

i.e. the poles to the mirrors (b0), (b1), (b2), (b) in (3.7) and (3.8.?). First

(3.11) b03 :=
〈
b0b3

〉
, b13 :=

〈
b1b3

〉
, b23 :=

〈
b2b3

〉
, b3 :=

〈
bb3

〉

will be important. By cyclicity in (3.7), we get

b03 := 〈b0b3〉 =
〈(

b0S−1
) (

Sb3
)〉

=
〈
b1

(−b4
)〉

=

=
〈
b1

(
b3 − b

) 1
z

〉
= b13 · 1

z
+ 2 cos

π

ν3
· 1
z
,(3.12)

b13 := b23 · 1
z

+ 2 cos
π

ν2
· 1
z

and, analogously by (3.8–9),

b3 :=
〈
bb3

〉
=

〈
(bS)

(
S−1b3

)〉
=

〈
b2

(
b2 + b3z

)〉
= 2 + b23z =

=
〈(

bS−1
) (

Sb3
)〉

=
〈
b0

(
b3 − b

) 1
z

〉
= b03 · 1

z
+ 2 cos

π

ν2
· 1
z

.

Hence we obtain the following system of equations

(3.13)

(
b03, b13, b23

)
(−z 0 1

1 −z 0
0 1 −z2

)
=

2 ·
(
− cos

π

ν3
, − cos

π

ν2
, z − cos

π

ν2

)
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with determinant D = 1− z4 (4 is an exponent), where 0 < z ≤ 1.
Case 1: z = 1, i.e. D = 0. Then we obtain from (3.13) with z = 1

the condition

(3.14) 2 cos
π

ν2
+ cos

π

ν3
= 1 i.e. ν2 = 3 (= ν6), ν3 = 2,

as indicated in Fig. 3. Then the matrix (3.15), i.e. the ‘half’ Cartan ma-
trix (3.8) induces a semi-definite inner product on the 4-subspace of V ,
generated by b0, b1, b2, b = b3 + b4:

(3.15)




1 − 1
2 0 − 1

2

− 1
2 1 − 1

2 0

0 − 1
2 1 − 1

2

− 1
2 0 − 1

2 1




, e.g.

〈
b0; b1

〉
=

〈
b1; b2

〉
=

〈
b2; b

〉
=

〈
b; b0

〉
= −1

2
.

Indeed, the sum of columns of (3.15) will be the zero column, thus the
form

(3.16) e0 := b0 + b1 + b2 + b = b0 + b1 + b2 + b3 + b4

will be orthogonal to any other form of the above 4-subspace of V . The
orthogonal basis {b0, b2, b−b1, e0} shows that the signature will be 〈+ +
+; 0〉 just as at a Euclidean projective metric 3-space.

Now the point is that we can extend this to a Euclidean projective
metric 4-space, and other two affine metric 4-spaces.

By (3.13), with z = 1, we get

(3.17) b03 = b13 = b23 + 1,

moreover, in analogy to (3.12) with b4 = b− b3, we get

(3.18)

〈
b0b4

〉
=: b04 = −b03 − 2 cos

π

ν2
= −b03 − 1,

〈
b1b4

〉
=: b14 = −b13,

〈
b2b4

〉
=: b24 =

〈
b2

(
b− b3

)〉
= −1− b23,

〈
bb4

〉
=: b4 =

〈
b

(
b− b3

)〉
= 2− b3 = −b23.

These eqations tell us how to extend the s-invariant Cartan-matrix and
inner product from (3.15) for b3 and b4 as the equations, e.g.,

(3.19)
b03 =

〈
b0b3

〉
=: 2

〈
b0; b3

〉
=: 2

〈
b3; b0

〉
=:

〈
b3b0

〉
,

b04 =
〈
b0b4

〉
=: 2

〈
b0; b4

〉
=: 2

〈
b4; b0

〉
=:

〈
b4b0

〉
,
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show. In this manner we require

b33 :=
〈
b3b3

〉
=

〈(
b3S

) (
b3S−1

)〉
=

〈(
b2 + b3

) (
b2 + b3

)〉
=

=
〈
b2b2

〉
+

〈
b3b2

〉
+

〈
b2b3

〉
+

〈
b3b3

〉
= 2 + 2b23 +

〈
b3b3

〉
,(3.20)

−1 = b23 = −b3 = −b4 = b04 and b03 = b13 = b14 = b24 = 0.i.e.

We have a free parameter r ∈ R for the inner product, and s(S,S−1):

(3.21)
〈
b3b3

〉
=

〈
b4b4

〉
=: 2r;

〈
b3b4

〉
=

〈
b3

(
b− b3

)〉
= 1− 2r.

We shall take r = 1 in our main example, when the affine space is Eu-
clidean, A4 =: E4. Then by bij = −2 cos βij our 4-simplex has completely
been defined, as the Coxeter diagram of P in Fig. 3 shows. This is the
well-known reflection polyhedron with facet angles

(3.22)
β01 = β12 = β23 = β34 = β40 =

π

3
,

β02 = β24 = β41 = β13 = β30 =
π

2
.

We see that the form e0 by (3.16) is orthogonal to any other form of V as
the sum of columns of the 5× 5 matrix in formula (3.23) will show. This
formula defines our s-invariant polarity and inner product by

〈u, v〉 :=
〈
biui; bjvj

〉
= ui

〈
bi; bj

〉
vj where(3.23)

(〈
bi; bj

〉)
=




1 − 1
2 0 0 − 1

2

− 1
2 1 − 1

2 0 0

0 − 1
2 1 − 1

2 0

0 0 − 1
2 r 1

2 − r

− 1
2 0 0 1

2 − r r




=:
1
2

(〈
bibj

〉)
=

(〈
bi;bj

〉)

as a result of our calculations in Case 1. This inner product induces the
quadratic form

(3.24)
〈v,v〉 =

(
v0 − 1

2
v1 − 1

2
v4

)2

+
3
4

(
v1 − 2

3
v2 − 1

3
v4

)2

+

+
2
3

(
v2 − 3

4
v3 − 1

4
v4

)2

+
(

r − 3
8

)
(v3 − v4)

2
.

We see, the signature is 〈+ + +, ε; 0〉. The sign ε is plus, zero or minus iff
our parameter r greater, equal or smaller then 3

8 , respectively.
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Now an affine metric space will be introduced. Choose (e0) by (3.16)
as the ideal hyperplane at the infinity, and the space of proper points

(3.25) A4 :=
{
(x) : x ∈ V5, xe0 = 1

}

spanned by the vertices {Ai(ai) : i = 0, 1, 2, 3, 4} of P by (2.1). This
A4 will be an affine space with an inner product for its ‘free vectors’ as
point-pair classes. Vector bases are:

e1 := a1 − a0, e2 := a2 − a0, e3 := a3 − a0, e4 := a4 − a0,

or — if r 6= 3
8 — we omit f0 := 1

2b
0 = a0 − 1

2a1 − 1
2a4 and choose

(3.26)

f1 :=
1
2
b1 =− 1

2
a0 + a1 − 1

2
a2

f2 :=
1
2
b2 = − 1

2
a1 + a2 − 1

2
a3

f3 :=
1
2
b3 = − 1

2
a2 + ra3 +

(
1
2
− r

)
a4

f4 :=
1
2
b4 =− 1

2
a0 +

(
1
2
− r

)
a3 + ra4

as (3.23) shows. For the vectors of A4 the inner product will be defined
by (3.26) 〈fi; fj〉 =: 1

2 〈bibj〉 := 〈bi; bj〉 i, j = 1, 2, 3, 4 from (3.23). The
‘barycentre’ with fixed denotation

(3.27) a :=
1
5
(a0 + a1 + a2 + a3 + a4), with ae0 = 1,

can be chosen as origin for A4.
The reflections mk(bk,bk) (k = 0, 1, 2) and m(b = b3 + b4, b =

b3+b4) can be written down by the second row of (2.2) without difficulties.

The screw transformation s, as that of points, can be expressed by the
formula for (ai)S−1 in (3.9) with z = 1, and by S−1 : f1 7→ f2 7→ f3 + f4;
f3 7→ −f4; f4 7→ f0 + f4 = −f1 − f2 − f3. Thus we have, step-by-step, the
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explicit formula of s as follows

s : x = a + xifi 7−→ y = a + yifi = aS−1 + xi
(
fiS−1

)
=(3.28)

= a +
1
5
(a0 + a3 − 2a4) +

(
x1, x2, x3, x4

)



0 1 0 0
0 0 1 1
0 0 0 −1
−1 −1 −1 0







f1
f2
f3
f4


 ,

s : y1 = −x4; y2 = x1 − x4; y3 = x2 − x4; y4 = x2 − x3 − 2
5
, if r = 1.

In general,

(3.29)
1
5
(a0 + a3 − 2a4) = −2

5
f4 +

1− r

5
(
r − 3

8

)
(

1
2
f1 + f2 +

3
2
f3 − 1

2
f4

)

is complicated enough. The translation direction of s is the eigen vector
e := f1 + 2f2 + 3f3 − f4 of eigen value 1 in the linear part of (3.28). Other
discussions for r are not detailed here, see also Case 2.a. We summarize
the result in

Theorem 2. The group Γ = Γ1, generated by the facet pairing of the
4-simplex P in formulas (0.1) and (0.2) with rotational orders (ν1, ν2, ν3, ν4,
ν5, ν6) = (1, 3, 2, 1, 1, 3), has a projective metric realizations in the Eu-
clidean 4-space E4. The corresponding tiling 〈P, Γ1〉 is realizable by the
reflection polyhedron P with Coxeter diagram in Fig. 3, up to an affine
stretching of E4. This stretching is determined by the parameter r > 3

8
in (3.21).

For r ≤ 3
8 we have affine metric realizations of Lorentz signature 〈++

+,−〉, resp. isotropic realization of signature 〈+ + +, 0〉. The translation
direction of the screw transformation s is time-like (−) or isotropic (0),
respectively. ¤

We remark that another linear realization, allowing an invariant pro-
jective metric or not, still will occur also with rotational orders in Theo-
rem 2. To examine this, we shall consider the screw transformation s in
(3.9) or in (3.11) with 0 < z < 1. We shall see that an s-invariant projec-
tive metric, on P4(V,V ,R) or on PS4(V,V ,R), does not exist anymore
in classical sense. But special product spaces as S3×R, H3×R arise.

4. Results in Case 2

Case 2 is 0 < z < 1. We turn back to the screw transformation s in
(3.9). The linear mapping S has an eigen value 1

z (and ±1, also ±i) and
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a 1-subspace of eigen forms, spanned, say, by

(4.1) u :=
(
b0, b1, b2, b3, b4

)



1
z
z2

z3

1


 · 1

1− z4

For simplicity, we take a new basis in V and its dual in V:

(4.2)

(
b0′ , b1′ , b2′ , b3′ , b4′

)
=

(
b0, b1, b2, b3, b4

)




1 0 0 0 1
1−z4

0 1 0 0 z
1−z4

0 0 1 0 z2

1−z4

0 0 0 1 z3

1−z4

0 0 0 z 1
1−z4




,




a0′

a1′

a2′

a3′

a4′




=




1 0 0 z
1−z4 − 1

1−z4

0 1 0 z2

1−z4 − z
1−z4

0 0 1 z3

1−z4 − z2

1−z4

0 0 0 1
1−z4 − z3

1−z4

0 0 0 −z 1







a0

a1

a2

a3

a4




, 0 < z < 1,

i.e. with b3′ = b = b3 + b4z, b4′ = u and 〈ai′ , b
j′〉 = δj′

i′ . Then the screw
transformation s(S,S−1) can be expressed by

S
(
b0′ , b1′ , b2′ , b3′ , b4′

)
=

(
b0′ , b1′ , b2′ , b3′ , b4′

)



0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

z


 ,




a0′

a1′

a2′

a3′

a4′


S−1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 z







a0′

a1′

a2′

a3′

a4′


 , 0 < z < 1,(4.3)

and t := a4′ = −za3 + a4 is an eigen vector of S−1 with eigen value z.
The eigen form u and the eigen vector t describe an invariant hyperplane
and a fixed point of s in the projective 4-space P4 or in PS4, respectively.
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Similarly, we get the real eigen values, eigen forms and eigen vectors,
characterizing the corresponding s-invariant hyperplanes and fixed points,
respectively, as follows:
Eigen value 1 and its eigen form and eigen vector, respectively

(4.4)
g := b0′ + b1′ + b2′ + b3′ = b0 + b1 + b2 + b3 + b4z

f := a0′ + a1′ + a2′ + a3′ = a0 + a1 + a2 +
1

1− z
(a3 − a4);

Eigen value −1 and its eigen form and eigen vector

(4.5)
k := b0′ − b1′ + b2′ − b3′ = b0 − b1 + b2 − b3 − b4z

j := a0′ − a1′ + a2′ − a3′ = a0 − a1 + a2 − 1
1 + z

(a3 + a4).

Notice the incidences

(4.6)
(t), (j) (g); (t), (f) (k); (f), (j) (u),

(t)
(
b0

)
,
(
b1

)
,
(
b2

)
, (b); (u)

(
b0

)
,
(
b1

)
,
(
b2

)
, (b).

The latter ones are consequences of

(4.7)

〈
tbi′

〉
=

〈(
tS−4

) (
S4bi′

)〉
= z4

〈
tbi′

〉
, 0 < z < 1, and

〈
bi′u

〉
=

〈(
bi′S−4

) (
S4u

)〉
=

〈
bi′u

〉 1
z4

, i′ = 0, 1, 2, 3.

These imply that the hyperplane (u) and the point (t) are invariant under
any reflection mi′(bi′ ,bi′), i′ = 0, 1, 2, 3. Furthermore, the polarity or
inner product at (3.8) can be extended onto the whole V only by

(4.8) b4′ = u 7−→ u := 0

if we require s-invariance. Thus our polarity can be expressed by

(4.9)
(
b0′ , b1′ , b2′ , b3′ , b4′

)
7−→

2 ·




1 − cos π
ν2

− cos π
ν3

− cos π
ν2

0

− cos π
ν2

1 − cos π
ν2

− cos π
ν3

0

− cos π
ν3

− cos π
ν2

1 − cos π
ν2

0

− cos π
ν2

− cos π
ν3

− cos π
ν2

1 0
0 0 0 0 0







a0′

a1′

a2′

a3′

a4′




,
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in general. Of course we could use also other bases, e.g. by (4.2), and these
would be in accordance with (3.13) but for 0 < z < 1.

Case 2.a. Consider again ν2 = 3, ν3 = 2,when the signature of (4.9)
is 〈+ + +; 0 0〉. We shall get a tiling equivariant to 〈P,Γ1〉 in case 1,
however, in other geometric situation.

Take (u) = (b4′) as the ideal plane at infinity with the points (f) and
(j) on it. The affine space A4, derived from P4(V ,V) will be

(4.10) A4 = {(x) : x ∈ V, 〈xu〉 = 1}
containing the fixed point (t) as the apice of a ‘cone-shaped space’. The
mirror hyperplanes (bi′) i′ = 0, 1, 2, 3, pass through (t) and they generate
an affine reflection group. The screw transformation s(S,S−1), as a point
mapping, can be written in the coordinate system (ai′), i′ = 0, 1, 2, 3, 4;
now (t) = (a4′) is taken the origin of A4, see (4.3):

(4.11) s :=
(
x0′ , x1′ , x2′ , x3′ , 1

)
7−→

(
x3′ , x0′ , x1′ , x2′ , z

)
∼

∼
(

1
z
x3′ ,

1
z
x0′ ,

1
z
x1′ ,

1
z
x2′ , 1

)

express the product of a dilatation, with 1
z > 1, and a ‘rotatory’ transfor-

mation. We see that any 3-hyperplane of A4 with the form by (4.4)

(4.12) 〈xg〉 = x0′ + x1′ + x2′ + x3′ = const > 0

has Euclidean metric, and it is invariant under any reflection mi′(bi′ ,bi′),
i′ = 0, 1, 2, 3 because of 〈bi′g〉 = 0, (3.8) or (4.9), (2.2).

Summarizing, in Case 2.a our tiling 〈P, Γ′1〉 is realized in the positive
half space (4.12) of A4 as a cone with the origin as its apice. This is a good
example where isomorphic groups have different geometric realizations,
although they are equivariant under a homeomorphism ϕ : E4 7→ A4

expressible from (3.28) and from (4.11) as follows.
We take the points from E4 := A4 by (3.25) and find by (3.28) the

eigen vector e = f1 +2f2 +3f3− f4. Thus the linear form v := b1 + b2 · 2+
b3 ·3+b4(−1) (satisfying (S−1−1)v = e0, independently of our parameter
r) ‘measures’ the exponent

(4.13)
〈[(

xi

Σxj
− 1

5

)
ai

]
v

〉
=

1
Σxj

(−x0 + x2 + 2x3 − 2x4
)

=: n

of the screw transformation s on the vector x − a, extendable for n ∈ R,
too.
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Now take a point from A4, i.e. x = xi′ai′ with x4′ = 1 so that

(4.14) x0′ + x1′ + x2′ + x3′ =
(

1
z

)n

· const > 0,

is a functional measuring the exponent n of s again. By (4.2) we write
(4.14) in the form

(4.14′)
(1− z4)(x0 + x1 + x2 + x3 + x4z)

x0 + x1z + x2z2 + x3z3 + x4
=

(
1
z

)n

· const > 0

(Please do not confuse: x’s have upper indices, z’s have exponents!) Thus,
the equivariance homeomorphism ϕ : E4 7→ A4 is an exponential mapping
of the parallel levels of corresponding forms. The ‘barycentre’ a = 1

5 (a0 +
a1 +a2 +a3 +a4) and its images (z = 1!) aS−1, aS−2, . . . yield 0, 1, 2, . . .
for n in (4.13), however, with 0 < z < 1 from (4.14′) we get the constant

(4.15) const =
(1− z4)(4 + z)
2 + z + z2 + z3

,

then const
z , const

z2 , . . . for the explicite expression of ϕ providing the
equivariance Γ′1 = ϕ−1Γ1ϕ.

Case 2.b. We take the second finite stabilizer by (3.1) and, by the
formula (4.9), the semi-definite Cartan matrix

2 ·




1 0 − cos π
q 0 0

0 1 0 − cos π
q 0

− cos π
q 0 1 0 0

0 − cos π
q 0 1 0

0 0 0 0 0




, 2 ≤ q ∈ N(4.16)

in the dual bases
(
b0′ b1′ b2′ b3′ b4′

)
, (a0′ a1′ a2′ a3′ a4′).

This is of signature 〈+ + + +; 0〉 now. Again, we take the eigen form
u = b4′ of S by (4.1), and take the hyperplane (u), fixed under s(S,S−1),
as ideal one at infinity, now, that of a Euclidean space E4 := A4 by (4.10).

The reflections mi′(bi′ ,bi′), i′ = 0, 1, 2, 3 generate a finite group
Dq×Dq, the direct product of two dihedral reflection groups. The mirror
hyperplanes (bi′) are incident to the ‘origin’ (t) = (a4′) of E4, and the poles
(bi′) are ideal points as (4.6–7) show. Any point x(x0′ , x1′ , x2′ , x3′ , 1) of
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E4 and its mirror images under the group Dq×Dq lie on a 3-sphere of origin
(t). Indeed, the vector x− t, as a point pair class of E4 has the form

(4.17) x− t = x0′a0′ + x1′a1′ + x2′a2′ + x3′a3′ .

Thus, it has inverse polar hyperplanes by (4.16), of the form

(4.18)

x− t :=
(
b0′ , b1′ , b2′ , b3′

)
· 1
sin2 π

q

·



1 0 cos π
q 0

0 1 0 cos π
q

cos π
q 0 1 0

0 cos π
q 0 1







x0′

x1′

x2′

x3′


 + b4′ · c,

with any c ∈ R and

〈x− t; x− t〉 := 〈(x− t)(x− t)〉 =

=
1

sin2 π
q

·
[(

x0′
)2

+
(
x1′

)2

+
(
x2′

)2

+
(
x3′

)2

+

2 cos
π

q

(
x0′x2′ + x1′x3′

)]

is invariant under any reflection mi′(bi′ ,bi′) i′ = 0, 1, 2, 3 by (2.2). The
screw transformation s(S,S−1) by (4.3) has the form (4.11) again, and so

(4.19) s : 〈x− t; x− t〉 7−→ 〈
(x− t)S−1; (x− t)S−1

〉
=

=
(

1
z

)2

〈x− t; x− t〉

changes these 3-spheres in (4.18) by dilatation 1
z > 1.

So we have obtained our tiling (P, Γ2) in the Euclidean 4-space punc-
tured in the origin (t) = (a4′). Γ = Γ2 is represented as a reflection group
of the 3-sphere in E4 combined with an one-parameter similarity group
generated by s in (4.11).

The following mapping will provide an equivariant homeomorphism,
again:

(4.20) R+ −→ R;
√
〈x− t; x− t〉 7−→ c

2
ln〈x− t; x− t〉 =: n,

where the normalizing constant c can be fixed, say, by the ‘barycentre’
a = 1

5 (a0 +a1 +a2 +a3 +a4). The mapping (4.20) induces an equivariant
deformation ϕ of the punctured E4 above onto S3×R, i.e. the 3-sphere
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crossed by the real line. Γϕ
2 := ϕ−1Γ2ϕ acts on S3×R by the reflections on

S3 as above and by the screw transformation s that cyclically permutes
the mirrors and translates along R as (4.20) shows. By (4.2) and (4.12)
one could give also the explicite formulas of ϕ and Γϕ as an isometry group
of S3×R now.

Cases 2.c and 2.d. We take the stabilizers by (3.2) and follow the
analogy above. Both matrices by (4.9), i.e.

(4.21)

c : 2 ·




1 −
√

2
2 0 −

√
2

2 0

−
√

2
2 1 −

√
2

2 0 0

0 −
√

2
2 1 −

√
2

2 0

−
√

2
2 0 −

√
2

2 1 0
0 0 0 0 0




resp.

d : 2 ·




1 − 1
2 − 1

2 − 1
2 0

− 1
2 1 − 1

2 − 1
2 0

− 1
2 − 1

2 1 − 1
2 0

− 1
2 − 1

2 − 1
2 1 0

0 0 0 0 0




have the signature 〈+ + +;−; 0〉. Moreover, the stabilizers Γ0
3 and Γ0

4 will
be Euclidean reflection group in E3 as the diagram of P0 in Fig. 3 would
show. These facts can be seen on the upper principal 3×3 minor matrices
of signature 〈++; 0〉. The upper 4 × 4 minors show hyperbolic reflection
groups in H3 well known, e.g. by [10, p. 216], as quasi Lanner groups.
Then the vertices of 3-simplices would lie on the absolute of H3, however,
we describe this in dimension d = 4 now.

Our machinery will lead to the pseudo-Euclidean space E3,1 : A4 by
(4.10) with (u) = (b4′) as ideal hyperplane and (t) = (a4′) as the origin
of E3,1. The reflection mi′(bi′ ,bi′) i′ = 0, 1, 2, 3 will act in the interior of
the ‘cone’ of E3,1 with apice (t).

Indeed, for the points of E3,1 we can normalize again as x(x0′ , x1′ , x2′ ,
x3′ , 1). For the points of the simplex P the basis change (4.2) yields non-
negative coordinates in x = xiai as earlier.

Each vector x − t, as a point pair class of E3,1 has the form (4.17)
again. Its inverse polar plane by (4.21) c resp. d and the quadratic form
〈x − t; x − t〉 is just analogous as in (4.18), however, the signature is
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〈+ + +;−〉 now in both cases as

〈x− t; x− t〉 :=(4.22.c)

:= −
√

2x0′x1′ − 2x0′x2′ −
√

2x0′x3′ −
√

2x1′x2′ − 2x1′x3′ −
√

2x2′x3′ =

=
(
x0′

)2

+
1
2

(
x1′ − x3′

)2

+
(
x2′

)2

− 1
2

(√
2x0′ + x1′ +

√
2x2′ + x3′

)2

〈x− t; x− t〉 :=(4.22.d)

:= −4
3

(
x0′x1′+ x0′x2′+ x0′x3′+ x1′x2′+ x1′x3′+ x2′x3′

)
=

(
x0′+ x2′

)2

+

+
1
3

(
x0′ − x2′

)2

+
1
3

(
x1′ − x3′

)2

− 1
3

(
2x0′ + 2x2′ + x1′ + x3′

)2

show. The points of the ‘cone’ of E3,1, defined by

(4.23) 〈x− t; x− t〉 = 0,

describe the absolute ofH3 modelled in E3,1 if x−t and c(x−t) 0 6= c ∈ R,
represent the same point of H3 as in the projective metric space P3(V3,1).
The points of our simplex P lie in the negative valued part

(4.24) 〈x− t; x− t〉 < 0

of E3,1, i.e. in the cone interior, except the vertices of P. All these are
easily checked in (4.22.c–d) by (4.2).

Any reflection mi′(bi′ ,bi′) leaves 〈x − t; x − t〉 invariant, while our
screw transformation s changes it by (4.19). Again,

(4.25) R+ −→ R;
√
−〈x− t; x− t〉 7−→ c

2
ln |〈x− t; x− t〉| =: n

will lead to an equivariant homeomorphism ϕ of the upper half-cone (say)
of E3,1 onto H3×R. The normalizing constant c can be fixed, e.g., by
the barycentre a of P in cases c resp. d. Thus, both Γϕ

3 and Γϕ
4 will be

isometry groups of H3×R modelled above, and so we have also realized
the tilings 〈P,Γ3〉 and 〈P,Γ4〉. We summarize our Case 2 in

Theorem 3. Our 4-simplex tilings 〈P,Γ1〉, 〈P,Γ2(q)〉, 〈P, Γ3〉, 〈P, Γ4〉
have also ‘cone-like’ realizations in the affine half space of A4, in the Eu-
clidean space E4 (punctured in its origin) and in the interior of the cone
of the pseudo-Euclidean space E3,1 for the last two tilings, respectively.
Then the screw transformation s becomes a similarity with the origin
as centre, it cyclically changes the four mirror hyperplanes m0, m1, m2,
m = s−1m2s = sm0s

−1. These realizations are equivariant to the metric
realizations in E4 as 〈P,Γ1〉, in S3×R as 〈P, Γ2(q)〉 and in H3×R as 〈P, Γ3〉
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and 〈P, Γ4〉. The equivariant homeomeorphism has a free parameter by
the similarity factor 1

z > 1. ¤

5. The d-dimensional variant

Our method provides just a word-by-word d-dimensional generaliza-
tion in the sense of [3], [5] as indicated in the introduction.

The screw transformation s by (0.2) will be a screw motion (preserv-
ing the orientation) in odd dimensions, a screw reflection (reversing the
orientation) if d is even. The linear mapping S in (3.9) has the eigen values
1
z and 1 for any dimension d ≥ 2, and an eigen value is −1, iff d is even.

We report the modifications, first, for d > 4.

The stabilizer Γ0 for the one vertex class of the tiling 〈P, Γ〉 will be
generated by d− 1 reflections having the Coxeter-diagram
(5.1)

n n n
©−−−−−−−−−©−−−−· · ·−−−−©−−−−−−−−−©
m0 m1 md−3 md−2

with n = 2 or3 and the
usual conventions in [1].

The arguments for this statement are analogous as for d = 4. By (0.1–2)
we can derive the relations.

(5.2)
s−1m0s = m1, s−1m1s = m2, . . . , s−1md−3s = md−2,

and s−2md−2s
2 = m0,

in general. Thus we can introduce the reflection

(5.3) m := s−1md−2s = sm0s
−1

and a cyclic Coxeter-diagram

(5.4)

n m1 n
m0 ©−−−−−−−−−©−−−−· · ·−−−−© md−3

n
∣∣∣

∣∣∣ n

m ©−−−−−−−−−−−−−−−−−−−−−−© md−2
n

with n = 2 or 3 .

This describes the reflection subgroup ΓR < Γ so that s cyclically changes
the d mirror hyperplanes. Studying the tables (e.g. in [1], [10]) of the finite
(spherical) and the Euclidean reflection groups for Γ0 and comparing with
the cyclicity requirement above, only (5.4) comes into account for ΓR.
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Theorem 4. For any dimension d > 4 there are exactly two d-simplex
tilings 〈P, Γ1〉, 〈P, Γ2〉 where the group Γ = Γj (j = 1, 2) is generated
by the facet pairing I (0.1–2) so that the unique Γ-equivalence class of
vertices has finite stabilizer Γ0 as a spherical reflection group on Sd−1.
Such a group does not exist if the stabilizer Γ0 is a Euclidean reflection
group in Ed−1.

The tiling 〈P, Γ1〉 with n = 3 in (5.2–4) can be metrically realized in
Ed, up to an affine stretch, by the reflection simplex

P = Ãd (d ≥ 2)

3 1 3
0 ©−−−−−−−−−©−−−−· · ·−−−−© d− 3
3

∣∣∣
∣∣∣ 3

d ©−−−−−−−−−©−−−−−−−−−−−© d− 2
3 d− 1 3

.

This simplex cyclically has the facet angles

(5.5)
π

3
= β01 = β12 = · · · = βd−1,d = βd,0 and

π

2
for others.

Again we have real parameter r analogous to that in (3.21), and a critical
value r0(d) < 1 increasing with the dimension d (r0(2) = 1

4 , r0(3) = 1
3 ,

r0(4) = 3
8 , . . . ). For r > r0, r = r0 and r < r0 we have Euclidean,

isotropic and Lorentz realizations, respectively. All these realizations are
equivariant to that of (5.5).

The tiling 〈P,Γ2〉 with n = 2 in (5.2–4) appears by isometries Γ2

of the product space Sd−1×R of the (d − 1)-sphere and the real line.
The reflection subgroup ΓR < Γ2 is generated by d hyperplanes pairwise
orthogonal to each other.

The screw transformation s of Γ = Γj (j = 1, 2) cyclically changes
the mirrors m0, . . . , md−2, m of (5.4) and translates by an R-component.

Proof of existence is the same as for d = 4, but we have fewer cases.
The Cartan matrix (3.8) will be




〈b0b0〉 〈b0b1〉 . . . 〈b0bd−2〉 〈b0b〉
〈b1b0〉 〈b1b1〉 . . . 〈b0bd−2〉 〈b1b〉

...
...

. . .
...

...
〈bd−2b0〉 〈bd−2b1〉 . . . 〈bd−2bd−2〉 〈bd−2b〉
〈bb0〉 〈bb1〉 . . . 〈bbd−2〉 〈bb〉




=(5.6a)
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= 2 ·




1 − cos π
n . . . 0 − cos π

n

− cos π
n 1

. . . 0 0
...

. . . . . . . . .
...

0 0
. . . 1 − cos π

n− cos π
n 0 . . . − cos π

n 1




,(5.6b)

according to (5.4). This reflection group ΓR < Γ can be extended either
to (5.5) analogously as at (3.17–29), or trivially by a radical form u as at
(4.9). The screw transformation s(S,S−1), by S in Vd+1 and S−1 in Vd+1,
has analogous forms as in (3.9) and (4.3). Furthermore, if 0 < z < 1 holds
for the eigen value parameter z of s, we have also (equivariant) ‘cone-like’
realizations of our tilings: either in the affine half space of Ad for 〈P,Γ1〉,
or, for 〈P, Γ2〉 in the Euclidean space Ed punctured in its origin. We omit
the further details. ¤

In [10] and in our references the reader finds further works of B. N.
Apanasov, E. Ascher, I. A. Baltag, A. Janner, V. P. Garit,
B. Klotzek, V. S. Makarov, G. Maxwell, B. A. Venkov and others
which are relevant to our topics.

For the sake of completeness we report also the cases d = 3 and 2.
As we discussed at the Family 10 in [5], the analogous tilings 〈P, Γ〉

with Γ := Γ21(2u, 4v, 6w) have interesting metric realizations (Table to
Family 10). Here the parameters correspond to the relations in the follow-
ing presentation

(5.7)

Γ := Γ21(2u, 4v, 6w) :=

:=
(
m0,m1, s −− 1 = m2

0 = m2
1 = (m0m1)

u =

=
(
s−1m0sm1

)v
=

(
s−2m1s

2m0

)w
)

i) For (u, v, w) = (2, 1, 1) we have a tiling 〈P, Γ〉 in S2×R as in the
general case. Similarly,

ii) (u, v, w) = (3, 1, 1) leads to Euclidean tiling (if r > r0(3) = 1
3 ) but P is

metrically not unique. The screw motion s has a free transformation
parameter i.e. the simplex P has a free angle parameter

(5.8)
β12 = β03 = x with β23 = π − 2x,

β02 = β13 =
π

2
, β01 =

π

3
.

Γ = R3m is the crystallographic space group no. 160.
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Figure 4.

iii) For the infinite series (u, v, w) = (q, 1, 1), q > 3 the stabilizer Γ0(q) is
still finite (Fig. 4.b). The tilings 〈P,Γ(q)〉 appears in H2×R, because
the Coxeter diagram (according to (5.3–4))

(5.9)

m0 q m1 q m
©−−−−−−−−−©−−−−−−−−−©∣∣∣

∣∣∣
|−−−−−−−−−−−−−−−−−−−−−−|

q

indicates hyperbolic
plane tilings Fig.4.c.

iv) In the exceptional subcase (u, v, w) = (2, 2, 1) the stabilizer Γ0 is E2-
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crystallographic group no. 6.mApmm with a mirror rectangle as
fundamental domain (Fig. 4.d). Our machinery leads to a unique
simplex P with angles

(5.10) β01 = β23 =
π

2
, β13 = β02 = β12 = β03 =

π

4

in the hyperbolic space H3 and with ideal vertices at the absolute.
All these can be seen at the resulting matrix

(〈
bi; bj

〉)
=




1 0 −
√

2
2 −

√
2

2

0 1 −
√

2
2 −

√
2

2

−
√

2
2 −

√
2

2 1 0

−
√

2
2 −

√
2

2 0 1




(5.11)

of signature 〈+ + +;−〉; (i, j = 0, 1, 2, 3).

The generating screw motion s(S,S−1) is described by

(5.12.a) S
(
b0, b1, b2, b3

)
=

(
b0, b1, b2, b3

)




0 0 0
√

2

1 0 0 0

0
√

2
2 0 0√

2
√

2
2 −1 1




(5.12.b)




a0

a1

a2

a3


S−1 =




0 1 0 0
0 0

√
2 0√

2
2

√
2 1 −1√

2
2 0 0 0







a0

a1

a2

a3




with det S = 1 .

v) The most interesting exceptional case (Fig. 4.e): (u, v, w)=(2, 1, 2).
This yields for Γ0 an E2-crystallographic group mApmm, again. Our
method will show, however, there does not exist a collineation group
in SP3(R) or in P3(R) for Γ such that the 3-simplex tiling 〈P, Γ〉
would be realizable. This problem will be the topic of another paper.
Let only the result be mentioned. Our simplex with the given face
identifications will be a non-geometric good orbifold [7]. Splitting this
orbifold along a toric 2-suborbifold, we obtain a H2×R-orbifold with
3 ideal points (ends).
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Case d =2. We have the reflection m0 and the glide reflection s as
generators for the group Γ. The tiling 〈P, Γ〉 has the free parameter as the
rotational order in the presentation

(5.13) Γ := Γ(u) :=
(
m0, s −− 1 = m2

0 =
(
m0s

−2m0s
2
)u

, u ∈ N
)

If u = 1, then we get the Euclidean plane crystallographic group
Γ(1) = cm no. 5 (see e.g. in [1], Fig. 5.a).

Figure 5.

For other u > 2 we get hyperbolic triangle tilings with free angle
parameter

(5.14) β01 = β02 = x > 0; β12 =
π

u
− 2x > 0.

In Fig. 5.b the subcase u = 2, x = π
6 is pictured in the Poincaré circle

model.
The general classification of tile transitive triangle tilings is much

easier and will be published elsewhere: We have 13 infinite series of marked
triangle tilings divided into 3 families. Each family is characterized by the
maximal groups of automorphisms of the tiling series, i.e. Γ = Aut〈P,Γ〉.
Depending on some free parameters, each tiling 〈P, Γ〉 can be metrically
realized either on the sphere S2 or in the Euclidean plane E2 or, mostly,
in the hyperbolic plane H2.
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As we have seen in this paper, the higher dimensional simplex tilings
can be much more complicated, and I am working on a unified method for
criteria of metric realizations.

This work is done in the cooperation of geometricians of TU Budapest
and University Potsdam. I am indebted to Prof. Benno Klotzek for his
valuable suggestions and to my colleague István Prok for typesetting
the text in TEX.
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malen flächentransitiven Bewegungsgruppen, Math. Pannonica 4/1 (1993), 113–136.

[5] E. Moln�ar and I. Prok, Classification of solid transitive simplex tilings in simply
connected 3-spaces. Part I., Colloquia Math. Soc. J. Bolyai 63, 311-362, Intuitive
Geometry, Szeged (Hungary) 1991, Edited by K. B�or�oczky and G. Fejes T�oth,
North-Holland Co. Amsterdam – Oxford – New York, 1994.

[6] I. Prok, Data structures and procedures for a polyhedron algorithm, Periodica
Polytechnica Mech. Engnrg. 36 (3-4) (1992), 299–316.

[7] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983),
401–487.

[8] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic
geometry, Bull. London Math. Soc. 6 (1982), 357–381.

[9] E. B. Vinberg, Discrete linear groups generated by reflections, Math. USSR Izves-
tija 5 No 5 (1971), 1083–1119.

[10] E. B. Vinberg and O. V. Shvartsman, Discrete transformation groups of spaces
of constant curvature Geometriya 2 VINITI, Itogi Nauki i Techniki, Sovr. Probl.
Mat. Fund. Napr. 29 (1988), 147–259, (Russian). English: E. B. Vinberg, editor,
Geometry II, volume 29 of Encyclopedia of Mathematical Sciences, Springer Verlag,
Berlin – Heidelberg, 1993.

EMIL MOLNÁR
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