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Two-sided norm estimate for the Bergman projection
on the Besov space in the unit ball in Cn

By DJORDJIJE VUJADINOVIĆ (Podgorica)

Abstract. We find an upper and lower estimate bound for the norm of the

Bergman projection on the Besov space Bp in the unit ball in Cn. We correct and

generalize the existing results in the one-dimensional case from [12]. The obtained up-

per bound is asymptotically sharp for p → +∞ in correspondence to the result from [6].

Also, some related inequalities are included.

1. Introduction and notation

Throughout the paper, by Cn we denote the Euclidean space of complex

dimension n (n is a fixed positive integer). The scalar multiplication and norm

in Cn are defined in a usual manner,

〈z, w〉 =

n∑
i=1

ziw̄i, z = (z1, . . . , zn), w = (w1, . . . , wn),

and

|z| =
√
〈z, z〉 =

√√√√ n∑
i=1

|zi|2.

The standard n-basis for Cn will be denoted by {ei}ni=1.

The open unit ball B in Cn is defined to be

B = {z ∈ Cn; |z| < 1},
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and its boundary S, the unit sphere in Cn,

S = {z ∈ Cn; |z| = 1}.

In the case of n = 1, the unit disc in C will be denoted by D.

The volume measure dv in Cn is normalized, v(B) = 1. We will use a class

of weighted normalizing volume measures on B. Namely, if α > −1 is a real

parameter, then the weighted volume measure dvα on B is defined by

dvα(z) = cα(1− |z|2)αdv(z),

where cα is a normalizing constant, cα = Γ(n+α+1)
n!Γ(α+1) .

If we have the weight α=−(n+ 1), we denote the resulting measure by

dτ(z) =
dv(z)

(1− |z|2)n+1
.

We let σ be a unitary-invariant positive Borel measure on S for which σ(S) = 1.

The term unitary-invariant is related to the unitary transformations of Cn.

Namely, if U is a unitary transformation of Cn, then for any f ∈ L1(S, dσ),∫
S
f(Uξ)dσ(ξ) =

∫
S
f(ξ)dσ(ξ).

The space of all holomorphic functions in B is denoted by H(B). On the other

hand, the space Apα = Lp(B, dvα) ∩ H(B), 0 < p < ∞ is known as the Bergman

space Apα in the unit ball B.

Besov spaces

Following [13], we give the definition of the Besov space Bp. Particularly,

we repeat in a slightly modified form [13, Theorem 6.1, p. 199]. Namely, the

following result holds.

Theorem 1.1. Suppose 1 ≤ f < ∞, and f is holomorphic function in B.

The following results are equivalent:

(a) The functions

(1− |z|2)N
∂mf

∂zm
(z), |m| = N,

are in Lp(B, dτ) for some positive integer N > n
p .
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(b) The functions

(1− |z|2)N
∂mf

∂zm
(z), |m| = N,

are in Lp(B, dτ) for every positive integer N > n
p .

Consequently, the Besov space Bp is defined to be the space of all holomorphic

functions f in B such that the functions (1 − |z|2)N ∂mf
∂zm (z), |m| = N , belong to

Lp(B, dτ).

For the limit case when p = ∞, the Besov space B∞ = B is considered as

the Bloch space, which stands to be the space of all holomorphic functions f in B
such that

sup
z∈B

(1− |z|2)|∇f(z)| <∞.

Here, ∇f(z) =
(
∂f
∂z1

, . . . , ∂f∂zn

)
is the usual notation for the complex gradient of

a function f .

It is clear that for the fixed p, the space Bp considered as the set of functions

stays the same for any choice of the positive integer N as long as the inequality

pN > n is satisfied.

In the sequel, the integer N is fixed and we define the appropriate norm on

the Besov space Bp.

Definition 1.2. Suppose 1 ≤ p < ∞. The Besov space BNp is defined to be

the space of all holomorphic functions in B such that the norm ‖ · ‖BNp defined by

‖f‖p
BNp

=
∑

|m|≤N−1

∣∣∣∣∂|m|f∂zm
(0)

∣∣∣∣+
∑
|m|=N

∫
B

∣∣∣∣(1− |z|2)N
∂Nf

∂zm
(z)

∣∣∣∣p dτ(z)

is finite, where pN > n.

In this manner we obtain the family of equivalent norms {‖ · ‖BNp }N>n/p.
In the rest of the paper, if we do not need the “specificity” of the norm

‖ · ‖BNp , we will use the notation Bp for the Besov space instead of BNp .

Remark 1.3. Another way to introduce Besov spaces relies on a concept of

fractional radial derivatives. Namely, for any two real parameters α and t such

that neither n + α nor n + α + t is a negative integer, we define the operator

Rα,t : H(B)→ H(B) by

Rα,tf(z) =

∞∑
k=0

Γ(n+ 1 + α)Γ(n+ 1 + k + α+ t)

Γ(n+ 1 + α+ t)Γ(n+ 1 + k + α)
fk(z),

f(z) =
∑∞
k=0 fk(z) is the homogenous expansion of f .
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Now, we can characterize Besov spaces in a way that holomorphic func-

tion f ∈ H(B) belongs to the Besov space Bp if and only if the function (1 −
|z|2)NRα,Nf(z) belongs to Lp(B, dτ), pN > n.

This characterization of the Besov space is equivalent to the previous one

(see Definition (1.2)).

Bergman projection

Let us recall that the weighted Bergman projection Pα, α > −1 represents the

integral operator induced with the reproducing kernel Kα(z, w) acting boundedly

from Lp(B, dvα) onto the Bergman space Apα,

Pα : Lp(B, dvα)→ Apα, 1 < p ≤ +∞,

in a way,

Pαf(z) =

∫
B
Kα(z, w)f(w)dvα(w), f ∈ Lp(B, dvα),

Kα(z, w) =
1

(1− 〈z, w〉)n+α+1
, z, w ∈ B.

The boundedness of the Bergman projection is an old problem with a nu-

merous of articles based on various Lp-norm techniques of estimation. When we

consider the Hilbert space L2(B, dvα), the operator norm of the Bergman projec-

tion is clearly

‖Pα‖L2(B,dvα)→A2
α

= 1.

On the other hand, finding the “exact” operator norm for the other values of p is

still an open problem.

Here we will mention some known results related to unweighted Bergman

projection such as Zhu’s result (see[14]):

Theorem 1.4. There exists a constant C > 0, depending on n but not on p,

such that

C−1 csc
π

p
≤ ‖P‖p ≤ C csc

π

p
,

for all p.

When n = 1, Dostanić (see [2]) obtained the following result:

1

2
csc

π

p
≤ ‖P‖p ≤ π csc

π

p
,

for all 1 < p < +∞.
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Recently, C. Liu (see[7]) proved the following result:

csc
π

p
≤ ‖P‖p ≤

πn!

Γ2(n+1
2 )

csc
π

p
, (1.1)

where the first inequality in (1.1) is strict for p 6= 2.

Also, by the same author was given a conjecture,

‖P‖p =
Γ(n+1

p )Γ(n+1
q )

Γ2(n+1
2 )

,

for all p ∈ (1,∞), where q is conjugate exponent of p, i.e., 1
p + 1

q = 1. For more

recent results, the reader may see [8].

Bergman projection on Besov spaces in the unit ball

The following theorem presents an important statement which is going to be

used throughout the paper.

Theorem 1.5. Suppose 1 ≤ p <∞ and α > −1. Then

Bp = PαL
p(B, dτ).

We will consider the semi-norm ‖ · ‖B̃Np in BNp defined by

‖f‖p
B̃Np

=
∑
|m|=N

∫
B

∣∣∣∣(1− |z|2)N
∂Nf

∂zm
(z)

∣∣∣∣p dτ(z). (1.2)

By the ‖Pα‖Lp(BN ,dτ)→BNp we mean the operator norm of the Bergman pro-

jection Pα defined as

‖Pα‖Lp(B,dτ)→BNp = sup
‖f‖Lp(B,dτ)≤1

‖Pαf‖B̃Np .

The estimates of the norm for the Bergman projection in the context of Besov

spaces appeared first in a case of the Bloch spaces.

Namely, in [9], the exact value of the operator norm for the Bergman projec-

tion P : L∞(D)→ B was calculated ‖P‖L∞→B = 8
π . See also [11] for complement

and generalization of [9]. In [5], the partial higher-dimensional generalization of

the previous result was done.

The higher-dimensional boundary case when p = ∞, Pα : L∞(B) → B, was

treated in [6]. The Bloch space was considered with the semi-norm ‖ · ‖B̃ defined

by

‖f‖B̃ = max
|m|=N

sup
z∈B

(1− |z|2)N
∣∣∣∣∂Nf(z)

∂zm

∣∣∣∣ , f ∈ B,
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and the norm of the Bergman projection was determined as

‖Pα‖L∞→B̃ =
Γ(N + n+ α+ 1)Γ(N)

Γ2(N+n+α+1
2 )

. (1.3)

Here N was an arbitrary positive integer.

Further, in [12], the one-dimensional case N = n = 1, when α = 0, was

considered and the following result was established.

Theorem 1.6. Let P be the Bergman projection, P : Lp(D, dλ) → Bp,

1 < p < +∞, 1
p + 1

q = 1. Then

‖P‖ ≤ Cp,

where

Cp =
8

p sin π
p

.

Remark 1.7. At this point, we would like to emphasize the fact that the con-

stant Cp which occurs in [12] is given by
(

8
p sin π

p

) 1
q
(

8
q sin π

q

) 1
p

, which is incorrect,

and the real-correct value is Cp =
(

8
p sin π

p

) 1
q
(

8
p sin π

q

) 1
p

= 8
p sin π

p
.

The constant Cp is asymptotically sharp when p → +∞, which means that

limp→+∞ Cp = 8
π ( ‖P‖L∞→B = 8

π ).

Also, the case n = 1, when p = 1, Pα : L1(D, dλ)→ B1, was treated in [11].

Considering the minimal Möbius invariant space B1 defined in the terms of the

semi-norm

‖f‖ =

∫
D
|f ′′(z)|dA(z),

the following sharp estimate is obtained (normalized case):

‖Pαf‖ ≤
(α+ 1)Γ(4 + α)

Γ2(2 + α
2 )

‖f‖L1(D,dλ). (1.4)

The main idea of this paper is the investigation of the analogous problem of

Theorem 1.6, which arises in the high-dimensional case in correspondence to the

results from [6].

More precisely, our goal is related to estimating the upper and lower norm

bound for the weighted Bergman projection Pα, α > −1,

Pα : Lp(B, dτ)→ BNp , 1 < p < +∞,

where, as it was stated before, N is a fixed positive integer for which pN > n.
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Theorem 1.8. Let Pα be the Bergman projection, Pα : Lp(B, τ) → Bp,

where 1 < p < +∞.

Then

‖Pα‖Lp(B,dτ)→BNp ≤ C
p
N,n,α,

where

CpN,n,α =

(
N + n− 1

N

) 1
p Γ

(
N − n

p

)
Γ
(
n
p + α+ 1

)
Γ(α+ 1)B

(
N+n+α+1

2 , N+n+α+1
2

) . (1.5)

Remark 1.9. In the one-dimensional case, when N = 1 and α = 0, we have

that Cp1,1,0 = 8
p sin π

p
, which undoubtedly generalizes the result from [12].

Remark 1.10. For the semi-norm defined in (1.2), the boundary limit when

p→ +∞ is given by

lim
p→+∞

‖f‖B̃p = max
|m|=N

sup
z∈B

(1− |z|2)N
∣∣∣∣∂Nf(z)

∂zm

∣∣∣∣
(see [6]). Therefore,

lim
p→+∞

CpN,n,α =
Γ(N)Γ(N + n+ α+ 1)

Γ2(N+n+α+1
2 )

,

which proves that the obtained CpN,n,α is asymptotically sharp for p→ +∞.

Remark 1.11. It is interesting to note that

lim
p→1+

CpN,n,α =
Γ(N + n)Γ(N + n+ α+ 1)Γ(n+ α+ 1)Γ(N − n)

Γ(α+ 1)Γ(N + 1)Γ(n− 1)Γ2(N+n+α+1
2 )

. (1.6)

Specially,

lim
p→1+

C1
2,1,α =

(1 + α)Γ(4 + α)

Γ2(2 + α
2 )

coincides with the constant given in relation (1.4) for N = 2, n = 1 (see [11]).

On the other hand,

lim
p→1+

C1
1,1,α = +∞.

In addition, we include the lower norm bound of the Bergman projection.

Theorem 1.12. For 1 < p <∞ and integer N > n
p , we have

‖Pα‖Lp(B,dτ)→BNp > ApN,n,α,

where

ApN,n,α =
Γ(N + 1)B(N + n+ α+ 1, n+1

p + α+ 1)
(
B(n+ pN

2 + 1, pN − n)
) 1
p

B(N + n+ n+1
p + α+ 1, α+ 1)

(
B(pN, pN2 + 1)

) 1
p

.
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Proof. Let us consider the function

ϕm(z) = c−1zm1 (1− |z|2)
n+1
p ,

where m ∈ N, p > 1, and

c = ‖ϕm‖Lp(B,dτ) =

(∫
B
|z1|mpdv(z)

) 1
p

=

(
2n

pm+ 2n

∫
S
|ξ1|mpdσ(ξ)

) 1
p

=

(
Γ(n+ 1)Γ(pm2 + 1)

Γ(n+ pm
2 + 1)

) 1
p

(see Lemma 5.1).

Then, clearly, ‖ϕm‖Lp(B,dτ) = 1.

Further,

Pα(ϕm)(z) = c−1cα

∫
B

ϕm(w)(1− |w|2)α

(1− 〈z, w〉)n+α+1
dv(w)

= c−1cα

∞∑
k=0

Γ(n+ α+ k + 1)

k!Γ(n+ α+ 1)

∫
B
wm1 〈z, w〉

k
(1− |w|2)

n+1
p +αdv(w)

= c−1cα
Γ(n+ α+m+ 1)

m!Γ(n+ α+ 1)
zm1

∫
B
|w1|2m(1− |w|2)

n+1
p +αdv(w)

= c−1
Γ(m+ n+ α+ 1)Γ(n+1

p + α+ 1)

Γ(α+ 1)Γ(m+ n+ n+1
p + α+ 1)

zm1 ,

and for m ≥ N , we have

‖Pα(ϕm)‖BNp =
Γ(m+ 1)Γ(m+ n+ α+ 1)Γ(n+1

p + α+ 1)

Γ(α+ 1)Γ(m+ n+ n+1
p + α+ 1)Γ(m−N + 1)

×

(
Γ(n+ pm

2 + 1)Γ(pN − n)Γ(p(m−N)
2 + 1)

Γ(pm2 + 1)Γ(pN + p(m−N)
2 )

) 1
p

. (1.7)

Finally,

‖Pα‖Lp(B,dτ)→BNp > sup
m≥N

‖Pα(ϕm)‖BNp

≥
Γ(N + 1)Γ(N + n+ α+ 1)Γ(n+1

p + α+ 1)

Γ(α+ 1)Γ(N + n+ n+1
p + α+ 1)

×

(
Γ(n+ pN

2 + 1)Γ(pN − n)

Γ(pN)Γ(pN2 + 1)

) 1
p

, (1.8)

which completes the proof. �
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2. Preliminaries

Hypergeometric series

The hypergeometric function 2F1(a, b; c; t) is defined by the series expansion

∞∑
n=0

(a)n(b)n
n!(c)n

tn, for |t| < 1,

and by the continuation elsewhere. Here (a)n denotes the shifted factorial, i.e.,

(a)n = a(a+ 1) · · · (a+ n− 1) with any real number a.

We recall some known identities for the hypergeometric function (for details,

see [1]).

Euler’s identity:

F (a, b; c;x) = (1− x2)c−a−bF (c− a, c− b; c;x), Re (c) > Re (b) > 0, (2.1)

Gauss’s identity:

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re (c− a− b) > 0, (2.2)

Differentiation identity:

∂

∂x
F (a, b; c;x) =

ab

c
F (a+ 1, b+ 1; c+ 1;x). (2.3)

The next theorem gives the answer what happens in the limit cases when

Re(c− a− b) < 0 or c = a+ b.

Theorem 2.1. If Re(c− a− b) < 0, then

lim
x→1−

2F1(a, b; c;x)

(1− x)c−a−b
=

Γ(c)Γ(c− a− b)
Γ(a)Γ(b)

,

and for c = a+ b,

lim
x→1−

2F1(a, b; c;x)

log( 1
1−x )

=
Γ(a+ b)

Γ(a)Γ(b)
.

In Section 4, we will also need the next inequality for the Gamma function

(see [3]).

Proposition 2.2. Let m, p and k be real numbers with m, p > 0 and

p > k > −m. If

k(p−m− k) ≥ 0(≤ 0), (2.4)

then we have

Γ(p)Γ(m) ≥ (≤)Γ(p− k)Γ(m+ k). (2.5)
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Schur’s test

For the estimation of the upper bound norm for the integral operators,

we appeal to the well-known Schur’s test (see [13, p. 45]).

Lemma 2.3. Suppose that (X,µ) is a σ-finite measure space, and K(x, y)

is a nonnegative measurable function on X × X, and T the associated integral

operator

Tf(x) =

∫
X

K(x, y)f(y)dµ(y).

Let 1 < p <∞ and 1
p + 1

q = 1. If there exist a positive constant C1 and a positive

measurable function h on X such that∫
X

K(x, y)h(y)qdµ(y) ≤ C1h(x)q,

for almost all x in X, and∫
X

K(x, y)h(x)pdµ(x) ≤ C2h(y)p,

for almost all y in X, then T is bounded on Lp(X, dµ) with

‖T‖Lp(µ)→Lp(µ) ≤ C
1
q

1 C
1
p

2 .

3. The proof of Theorem 1.8

Proof. According to Theorem 1.5, for any function f ∈ Lp(B, dτ), the

image function g = Pαf is in Bp.

So,

‖g‖p
B̃p

= ‖Pαf‖pB̃p =
∑
|m|=N

∫
B

∣∣∣∣(1− |z|2)N
∂Ng

∂zm
(z)

∣∣∣∣p dτ(z). (3.1)

Further, differentiating under the integral sign in (3.1), we obtain∫
B

∣∣∣∣(1− |z|2)N
∂Ng

∂zm
(z)

∣∣∣∣p dτ(z)

=

∫
B

∣∣∣∣(1− |z|2)N
∂N

∂zm

∫
B
Kα(z, w)f(w)dvα(w)

∣∣∣∣p dτ(z)

= CpN,α

∫
B
(1− |z|2)pN

∣∣∣∣∫
B

f(w)(1− |w|)n+α+1w̄m

(1− 〈z, w〉)N+n+α+1
dτ(w)

∣∣∣∣p dτ(z)

= CpN,α

∫
B

∣∣∣∣(1− |z|2)N
∫
B

f(w)(1− |w|2)n+1+αw̄m

(1− 〈z, w〉)N+n+α+1
dτ(w)

∣∣∣∣p dτ(z). (3.2)
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Here the constant CN,α =
Γ(n+ α+ 1)

n!Γ(α+ 1)

N∏
i=1

(n+ i+ α).

Let us denote by T the integral operator T : Lp(B, dτ)→ Lp(B, dτ), defined

as

Tf(z) = (1− |z|2)N
∫
B

f(w)(1− |w|2)n+1+α

|1− 〈z, w〉 |N+n+α+1
dτ(w).

Then,

‖Pα‖Lp(B,dτ)→Bp ≤ C̃N,α‖T‖Lp(B,dτ)→Lp(B,dτ),

where

C̃N,α =
Γ(n+ α+ 1)

n!Γ(α+ 1)

(
N + n− 1

N

) 1
p
N∏
i=1

(n+ α+ i).

Now, we are going to estimate the norm of the operator T by using Shur’s

test started in Lemma (2.3).

Here, we would like to point out the fact that results from [7] can be directly

applied to obtain the upper bound estimate for the operator T (see, for instance,

the proof of Theorem 1.1 for the upper bound estimate and related lemmas).

For the completeness, we give the proof, analogous to the one already known

when n = 1 and N = 1.

Let us choose the test function

m(z) = (1− |z|2)
n
pq ,

1

p
+

1

q
= 1.

Now, we consider the inequalities∫
B

(1− |z|2)N+n
q (1− |w|2)n+1+α

|1− 〈z, w〉 |N+n+α+1
dτ(z) ≤ C1(1− |w|2)

n
q ,

∫
B

(1− |z|2)N (1− |w|2)n+1+α+n
q

|1− 〈z, w〉 |N+n+α+1
dτ(w) ≤ C2(1− |z|2)

n
p . (3.3)

We need to find the maximal value for the functionals Φ1(w), Φ2(z), where

Φ1(w) = (1− |w|2)n−
n
q +α+1

∫
B

(1− |z|2)N+n
q

|1− 〈z, w〉 |N+n+α+1
dτ(z),

Φ2(z) = (1− |z|2)N−
n
p

∫
B

(1− |w|2)n+1+α+n
p

|1− 〈z, w〉 |N+n+α+1
dτ(w). (3.4)
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By using the uniform expansion, orthogonality of the functions 〈z, w〉k, 〈z, w〉m

(k 6= m) in L2(B, dv) and polar coordinates, for the function Φ2, we get

Φ2(z) = (1− |z|2)N−
n
p

∫
B

(1− |w|2)α+n
p

|1− 〈z, w〉 |N+n+α+1
dv(w) =

= (1− |z|2)N−
n
p

∞∑
k=0

Γ2(k + N+α+n+1
2 )

(k!)2Γ2(N+α+n+1
2 )

∫
B
(1− |w|2)α+n

p | 〈z, w〉 |2kdv(w)

= (1− |z|2)N−
n
p

∞∑
k=0

2nΓ2(k + N+α+n+1
2 )

(k!)2Γ2(N+α+n+1
2 )

×
∫ 1

0

(1− r2)α+n
p r2(n+k)−1dr

∫
S
| 〈ξ, z〉 |2kdσ(ξ). (3.5)

At this point, we will use the change of variable provided by the unitary

transformation U of the unit sphere (see [13, p. 15]) such that Uξ = ξ′, ξ′ =

(ξ′1, . . . , ξ
′
n), ξ′1 = 〈ξ,z〉

|z| .

By the unitary invariance of dσ, we have∫
S
| 〈ξ, w〉 |2kdσ(ξ) = |z|2k

∫
S
|ξ′1|2kdσ(ξ′) = |z|2k (n− 1)!k!

(n+ k − 1)!
.

Thus,

Φ2(z)

=(1−|z|2)N−
n
p

∞∑
k=0

2nΓ2(k+ N+α+n+1
2 )

(k!)2Γ2(N+α+n+1
2 )

|z|2k(n− 1)!k!

(n+ k − 1)!

∫ 1

0

(1−r2)α+n
p r2(n+k)−1dr

=(1−|z|2)N−
n
p

∞∑
k=0

Γ2(k + N+α+n+1
2 )

k!Γ2(N+α+n+1
2 )

|z|2kn!

(n+ k − 1)!

Γ(α+ n
p + 1)Γ(n+ k)

Γ(n+ α+ n
p + k + 1)

=Cq(1−|z|2)N−
n
p

∞∑
k=0

Γ2(k + N+α+n+1
2 )

k!Γ2(N+α+n+1
2 )

Γ(n+ α+ n
p + 1)

Γ(n+ α+ n
p + k + 1)

|z|2k

=Cq(1−|z|2)N−
n
p

2F1

(
N+α+n+1

2
,
N+α+n+1

2
;n+α+

n

p
+1; |z|2

)
, (3.6)

where Cq =
n!Γ(α+n

p+1)

Γ(n+α+n
p+1) .
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Since N + α+ n+ 1 > n+ α+ n
p + 1, and the function

2F1

(
N + α+ n+ 1

2
,
N + α+ n+ 1

2
;n+ α+

n

p
+ 1;x

)
is increasing in x ∈ (0, 1), according to the (2.1), we derive

max
|z|≤1

Φ2(z) = Cq lim
|z|→1−

2F1

(
N+α+n+1

2 , N+α+n+1
2 ;n+ α+ n

p + 1; |z|2
)

(1− |z|2)
n
p−N

=
n!Γ(np + α+ 1)Γ(N − n

p )

Γ2(N+n+α+1
2 )

. (3.7)

By using the same type of arguments as before, we obtain that

Φ1(w) =
n!Γ(N + n

q − n)

Γ(N + n
q )

(1− |w|2)n−
n
q +α+1

× 2F1

(
N + α+ n+ 1

2
,
N + α+ n+ 1

2
;N +

n

q
; |w|2

)
, (3.8)

and

max
|w|≤1

Φ1(w) =
n!Γ(N + n

q − n)

Γ(N + n
q )

× lim
|w|→1−

2F1

(
N+α+n+1

2 , N+α+n+1
2 ;N + n

q ; |w|2
)

(1− |w|2)
n
q−n−α−1

=
n!Γ(N + n

q − n)Γ(np + α+ 1)

Γ2(N+n+α+1
2 )

. (3.9)

Finally,

‖Pα‖Lp(B,dτ)→Bp ≤
(
N + n− 1

N

) 1
p Γ(n+ α+ 1)

∏N
i=1(n+ α+ i)

Γ(α+ 1)Γ2(N+n+α+1
2 )

×
(

Γ

(
n

p
+ α+ 1

)
Γ

(
N − n

p

)) 1
q

×
(

Γ

(
N +

n

q
− n

)
Γ

(
n

p
+ α+ 1

)) 1
p

. (3.10)

This completes the proof. �



276 Djordjije Vujadinović

4. The Hilbert case

At the beginning of this section, let us stress again the form of the semi-norm

which we are going to consider in this case:

‖f‖2BN2 =
∑
|m|=N

∫
B

∣∣∣∣(1− |z|2)N
∂Nf

∂zm
(z)

∣∣∣∣2 dτ(z), (4.1)

f ∈ B2 and 2N > n.

The semi inner-product 〈·, ·〉 : BN2 ×BN2 → R is then defined as

〈f, g〉 =
∑
|m|=N

∫
B
(1− |z|2)2N ∂

Nf

∂zm
(z)

∂Ng

∂zm
(z)dτ(z). (4.2)

The main goal of this section is the estimation of the Hilbert norm for the weighted

Bergman projection Pα : L2(B, dτ)→ BN2 .

The study of this problem when n = 1 and α = 0 has been done by the

author in [12].

As the main result of this section, we establish the two-side norm estimate

of the weighted Bergman projection Pα (see Theorem(4.4)).

Definition 4.1. By B2
ϕ we denote the space which consists of all functions f

defined on B, such that
f(z)

ϕ(z)
∈ A2(B),

where ϕ(z) = (1− |z|2)
n+1
2 , z ∈ B.

Obviously, B2
ϕ ⊂ L2(B, dτ).

The result of the following Lemma refers to the computation of the image

of the function φs(w) = ws related to the weighted Bergman projection and

introduced space B2
ϕ. Here, s ∈ Nn0 , s = (s1, . . . , sn) and |s| = k. Let us mention

that the result could be also explained by using the properties of the convolution

on the unit sphere.

Lemma 4.2.

Pα(φsϕ)(z) = C(n, k, α)φs(z), (4.3)

where

C(n, k, α) =
Γ(n+1

2 + α+ 1)Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)Γ(α+ 1)

.
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Proof. By direct calculation, one obtains

Pα(φsϕ)(z)

=

∫
B

ws(1− |w|2)
n+1
2

(1− 〈z, w〉)n+α+1
dvα(w)

= cα

∞∑
d=0

Γ(d+ n+ α+ 1)

Γ(d+ 1)Γ(n+ α+ 1)

∫
B
ws(1− |w|2)

n+1
2 +α 〈z, w〉d dv(w)

= zs
k!Γ(k + n+ α+ 1)

s!n!Γ(k + 1)Γ(α+ 1)

∫
B
|w|2s(1− |w|2)

n+1
2 +αdv(w)

= zs
Γ(k + n+ α+ 1)

s!n!Γ(α+ 1)

∫ 1

0

2nr2k+2n−1(1− r2)
n+1
2 +αdr

∫
S
|ξ|2sdσ(ξ)

=
Γ(n+1

2 + α+ 1)Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)Γ(α+ 1)

φs(z), (4.4)

which proves our assumption. �

Remark 4.3. Note that a special case of Lemma 4.3 was used in the proof of

Theorem 1.12.

Let us denote by pk the homogenous polynomial of degree k, i.e.,

pk(z) =
∑
|s|=k

asφs(z), s = (s1, . . . , sn) and φs(z) = zs.

Then, it is easy to get the following identity:

Pα(pkϕ)(z) = C(n, k, α)pk(z).

The proof of Theorem 4.4 is organized as follows. We find the lower bound for

the norm of the Bergman projection regarding to the subspace B2
ϕ. We determine

the upper bound of the norm for the Bergman projection by using the main result

of Theorem 1.8.

Theorem 4.4. Let Pα : L2(B, dτ)→ BN2 be the weighted Bergman projec-

tion into the Besov space BN2 . Then

Γ(n+1
2 + α+ 1)

Γ(α+ 1)

√
Γ(2N − n) ≤ ‖Pα‖L2(B,dτ)→BN2 ≤ C

2
N,n,α. (4.5)
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Proof. Since the set of all polynomials is dense in A2(B), it is clear that it

is enough to consider the supremum of the quotient

‖Pαg‖BN2
‖g‖L2(B,dτ)

, (4.6)

where g(z) = pm(z)ϕ(z), and pm(z) =
∑

0≤k≤m pk(z), m ∈ N, and as in

Lemma 4.3, we denote in the same way pk(z) =
∑
|s|=k asφs(z), s = (s1, . . . , sn).

Here, polynomial pk(z) represents the homogenous polynomial of degree k.

According to Lemma 4.3, we have

‖Pα(pmϕ)‖2BN2 =

m∑
k=0

(
Γ(n+1

2 + α+ 1)Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)Γ(α+ 1)

)2

‖pk‖2BN2 , (4.7)

where

‖pk‖2BN2 =
∑
|s|=k

|as|2‖φs‖2B2
=
∑
|s|=k

|as|2
Γ(2N − n)n!s!

Γ(k +N)

∑
m≤s

sm. (4.8)

Here,
∑n
i mi = N , sm =

∏n
i=1 si(si − 1) · · · (si − mi + 1), and m ≤ s means

mi ≤ si, i ∈ {1, 2, . . . , n}.
On the other hand, we can easily compute

‖pkϕ‖L2(B,dτ) =

∑
|s|=k

n!s!

(n+ k)!
|as|2

 1
2

,

i.e.,

‖pmϕ‖2L2(B,dτ) =

m∑
k=0

∑
|s|=k

n!s!

(n+ k)!
|as|2

 .

Because of orthogonality, we can consider the quotient with fixed s, |s| = k,

‖Pα(asφsϕ)‖2
BN2

‖asφsϕ‖2L2(B,dτ)

=CN,n,α

(
Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)

)2 Γ(n+ k + 1)
∑
m≤s s

m

Γ(k +N)
,

where

CN,n,α =

(
Γ(n+1

2 + α+ 1)

Γ(α+ 1)

)2

Γ(2N − n).



Two-sided norm estimate. . . 279

Then

max
|s|=k

‖Pα(asφsϕ)‖2
BN2

‖asφsϕ‖2L2(B,dτ)

≥ CN,n,α
(

Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)

)2
Γ(n+ k + 1)Γ(k + 1)

Γ(k +N)Γ(k −N + 1)
.

(4.9)

Further, by using the (2.2), we have

Γ(n+ k + 1)Γ(k + 1)

Γ(k +N)Γ(k −N + 1)
≤ Γ(n+ k + 1)Γ(k + 1)

Γ(k)Γ(k + 1)
=

Γ(n+ k + 1)

Γ(k)
. (4.10)

It is easy to see that(
Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)

)2
Γ(n+ k + 1)

Γ(k)
≤ 1.

On the other hand, Stirling’s asymptotic formula implies

lim
k→+∞

(
Γ(k + n+ α+ 1)

Γ(k + 3n+1
2 + α+ 1)

)2
Γ(n+ k + 1)Γ(k + 1)

Γ(k +N)Γ(k −N + 1)
= 1.

Therefore,

sup
|s|≥N

‖Pα(asφsϕ)‖2
BN2

‖asφsϕ‖2L2(B,dτ)

≥
(

Γ(n+1
2 + α+ 1)

Γ(α+ 1)

)2

Γ(2N − n).

The upper estimate in (4.5) follows from Theorem 1.8 for the special case when

p = 2. The estimate from below is an easy consequence from the fact that

B2
ϕ ⊂ L2(B, dτ) and the previous computations. �

Remark 4.5. It can be easily shown that

lim
N→+∞

A2
N,n,α

(
Γ(n+1

2 + α+ 1)

Γ(α+ 1)

√
Γ(2N − n)

)−1

= 0,

which justifies the main result of Theorem 4.4 concerning Theorem 1.8.

The general problem of finding the norm of the weighted Bergman projection

Pα : L2(B, dτ)→ BN2 seems to be more complicated in a technical way of meaning.

Clearly, the method of finding the required norm would be analogous to the

previous one.

The main difficulty in the proof is caused by the fact that the set of all finite

linear combinations of functions of the form zmz̄l is dense in L2(B, dv).
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More precisely, we should consider the supremum of the following quotient

‖Pαg‖BN2
‖g‖L2(B,dτ)

,

where g(z) = p(z)(1− |z|2)
n+1
2 , and

p(z) =
∑
m,l

am,lz
mz̄l, m, l ∈ N

is a finite sum.

For instance, in the case when m−l = d−s = p if we denote am,l = al+p,l = al
and ad,s = as, then

‖pϕ‖2L2(B,dτ) = n!
∑
p≥0

∑
l,s

alās(p+ l + s)!

(n+ |p|+ |l|+ |s|)!
,

and

Pα(pϕ)(z) =
Γ(n+1

2 + α+ 1)

Γ(α+ 1)

∑
p≥0

∑
l

al
Γ(n+ |p|+ α+ 1)(l + p)!zp

Γ(|l|+ |p|+ 3n+1
2 + α+ 1)p!

.

Since the finitely many coefficients am,l are different from zero, the above

series expansion reduces to a finite sum.

5. The Lp-norm growth of the derivatives in Besov space

In this section, we will study certain Lp-norm quantities for derivatives of

functions in Besov space. According to Definition (1.2), the Besov Lp-norm ‖·‖BNp
for a function f ∈ Bp depends on the degree of its derivative (N). The fact that

any two norms from the family {‖ · ‖BNp }N>n
p

are equivalent, raises a question of

estimating the quotient

sup
f∈Bp,f 6=0

‖f‖BNp
‖f‖

B
N1
p

,

where integers N,N1 >
n
p are fixed.

In this section, under certain conditions, we aim to find the Lp-norm inequal-

ities for a function in Bp depending on a choice of N (Theorem 5.2).

By the Lpα- norm of the function f defined on B we mean

‖f‖Lpα =

(∫
B
|f(z)|pdvα(z)

) 1
p

, p ≥ 1.

Before we start to prove the main result of this section let us state the next

known result (see [5, Lemma 3.3]).
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Lemma 5.1. For n-tulpe m = (m1, . . . ,mn) ∈ Nn0 , we have∫
S
|ξm|dσ(ξ) =

(n− 1)!
∏n
i=1 Γ(1 + mi

2 )

Γ(n+ |m|
2 )

. (5.1)

Here wm =
∏n
i=1 w

mi
i and |m| =

∑n
i=1 |mi|.

Theorem 5.2. Let g ∈ Bp(B), p > 2n, and

∂|k|g

∂zk
(0, . . . , 0) = 0. (5.2)

Then, for α > −1 and any n-tulpe k = (k1, . . . , kn), such that |k| + n ≤ N ,

the next inequality holds:∥∥∥∥∂|k|g∂zk

∥∥∥∥
Lpα

≤ Cn,p,α
∥∥∥∥∂n+|k|g

∂zm

∥∥∥∥
Lp
,

where m = (k1 + 1, . . . , kn + 1). Here,

Cn,p,α =

(
πqΓ(1− 2n

p )

4qΓ( 3
2 −

2n
p )

)n(
n!Γn(1 + p

2 )Γ(n+ α+ 1)

Γ(n+ np
2 + α+ 1)

) 1
p

. (5.3)

Proof. We may suppose that zi 6= 0, i ∈ {1, 2, . . . , n}.
According to condition (5.2), we have

∂|k|g

∂zk
(z) =

∫ z1

0

· · ·
∫ zn

0

∂n+|k|g

∂zm
(t1, . . . , ti, . . . , tn)dt1 . . . dtn, (5.4)

where m = (k1 + 1, . . . , kn + 1).

By using the subharmonicity of the function |∂n+|k|g/∂zm(t)| in the ball

Bt = {w ∈ Cn|‖w − t‖ < 1− |t|} and Jensen’s inequality, we obtain∣∣∣∣∂kg∂zk
(z)

∣∣∣∣
≤
∫ z1

0

· · ·
∫ zn

0

∣∣∣∣∂n+|k|g

∂zm
(t1, . . . , ti, . . . , tn)

∣∣∣∣ d|t1| . . . d|tn|
≤
∫ z1

0

· · ·
∫ zn

0

v(Bt)−1

∫
Bt

∣∣∣∣∂n+|k|g

∂zm
(w1, .., wi, ..wn)

∣∣∣∣ dv(w)d|t1| . . . d|tn|

≤
∫ z1

0

· · ·
∫ zn

0

(
v(Bt)−1

∫
Bt

∣∣∣∣∂n+|k|g

∂zm
(w1, .., wi, ..wn)

∣∣∣∣pdv(w)

) 1
p

d|t1| . . . d|tn|≤
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≤
∥∥∥∥∂n+|k|g

∂zm

∥∥∥∥
Lp

∫ z1

0

· · ·
∫ zn

0

(v(Bt)−
1
p d|t1| . . . d|tn|

=

(
Γ(n+ 1)

πn

) 1
p
∥∥∥∥∂n+|k|g

∂zm

∥∥∥∥
Lp

n∏
k=1

|zi|
∫ 1

0

· · ·
∫ 1

0

dx1 · · · dxn
(1−

√∑n
i=1 |zi|2x2

i )
2n
p

=

(
Γ(n+ 1)

πn

) 1
p
∥∥∥∥∂n+|k|g

∂zm

∥∥∥∥
Lp

∫ |z1|
0

· · ·
∫ |zn|

0

dx1 · · · dxn
(1− |x|)

2n
p

, x ∈ Rn.

On the other hand,∫ |z1|
0

· · ·
∫ |zn|

0

dx1 · · · dxn
(1− |x|)

2n
p

=

∫ |z1|
0

· · ·
∫ |zn|

0

(1 + |x|)
2n
p

(1− |x|2)
2n
p

dx1 · · · dxn ≤ 2
2n
p

∫ |z1|
0

· · ·
∫ |zn|

0

dx1 · · · dxn
(1− |x|2)

2n
p

= 2
2n
p |zn|

∫ |z1|
0

· · ·
∫ |zn−1|

0

2F1

(
1
2 ,

2n
p ; 3

2 ; |zn|
2

1−|x′|2

)
(1− |x′|2)

2n
p

dx1 · · · dxn−1

≤ 2
2n
p |zn|2F1

(
1

2
,

2n

p
;

3

2
; 1

)∫ |z1|
0

· · ·
∫ |zn−1|

0

dx1 · · · dxn−1

(1− |x′|2)
2n
p

. (5.5)

Here, x′ = (x1, . . . , xn−1).

The last inequality in (5.5) follows from the fact that the function

2F1

(
1
2 ,

2n
p ; 3

2 ;x2
)

is increasing for x ∈ [0, 1] (property (2.1)).

So, for p > 2n, we have∥∥∥∥∂kg∂zk

∥∥∥∥
Lpα

≤ Cn,p,α
∥∥∥∥∂n+|k|g

∂zm

∥∥∥∥
Lp
,

Cn,p,α =

(
Γ(n+ α+ 1)

πnΓ(α+ 1)

) 1
p

×

(∫
B
(1−|z|2)α

(∫ |z1|
0

· · ·
∫ |zn|

0

1

(1−|x|)
2n
p

dx1 · · · dxn

)p
dv(z)

) 1
p

.

From inequality (5.5) and by using the induction with respect to n, we obtain
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Cn,p,α ≤
(

22nΓ(n+ α+ 1)

πnΓ(α+ 1)

) 1
p
(

2F1

(
1

2
,

2n

p
;

3

2
; 1

))n

×

(∫
B
(1− |z|2)α

n∏
i=1

|zi|pdv(z)

) 1
p

=

(
πqΓ(1− 2n

p )

4qΓ( 3
2 −

2n
p )

)n(
Γ(n+ α+ 1)

Γ(α+ 1)

) 1
p

×
(

2n

∫ 1

0

r2n+np−1(1− r2)αdr

∫
S
|ξ|pdσ(ξ)

) 1
p

=

(
πqΓ(1− 2n

p )

4qΓ( 3
2 −

2n
p )

)n(
n!Γn(1 + p

2 )Γ(n+ α+ 1)

Γ(n+ np
2 + α+ 1)

) 1
p

, (5.6)

which completes the proof. �
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