A note on weakly 3-permutable subgroups of finite groups

By HAORAN YU (Changchun)

Abstract. In this note, we not only simplify, but also generalize the main results of Heliel *et al.*, see [3] and [4].

1. Introduction

Throughout this note, assume that G is a finite group and p is a prime. Let $\pi(G)$ be the set of all the prime divisors of |G|, and G_p be a Sylow p-subgroup of G for some prime $p \in \pi(G)$. Following Asaad and Heliel [1], let $\mathfrak Z$ be a complete set of Sylow subgroups of a finite group G, that is, for each prime p dividing |G|, $\mathfrak Z$ contains exactly one and only one Sylow p-subgroup of G; then a subgroup H of G is said to be $\mathfrak Z$ -permutable in G if H permutes with every member of $\mathfrak Z$. In 2015, Heliel et al. [3] generalized $\mathfrak Z$ -permutable subgroups as follows: A subgroup H of G is said to be a weakly $\mathfrak Z$ -permutable subgroup of G if there exists a subnormal subgroup G of G such that G = HK and G if there exists a subnormal subgroup of G is such that G is the subgroup of G which are G-permutable subgroups of G.

By using this new concept, weakly \mathfrak{Z} -permutable subgroups, Heliel *et al.* in [3] and [4] investigated the structure of a finite group G under the assumption that certain subgroups of prime power orders of G are weakly \mathfrak{Z} -permutable in G. More precisely, they proved the following results:

 $Mathematics\ Subject\ Classification:\ 20 D10.$

Key words and phrases: p-nilpotent, 3-permutable subgroups, weakly 3-permutable subgroups. The author is supported by China Postdoctoral Science Foundation (Grant No. 2018M630317).

362 Haoran Yu

Theorem 1.1 (HELIEL et al. [3, Theorem 1.5]). Let \mathfrak{Z} be a complete set of Sylow subgroups of a finite group G, and let p be the smallest prime dividing the order of G. If the maximal subgroups of $G_p \in \mathfrak{Z}$ are weakly \mathfrak{Z} -permutable subgroups of G, then G is p-nilpotent.

Theorem 1.2 (HELIEL et al. [4, Theorem 1.1]). Let \mathfrak{F} be a complete set of Sylow subgroups of a finite group G, and let p be the smallest prime dividing the order of G. If the cyclic subgroups of $G_p \in \mathfrak{F}$ of order p or of order 4 (if p=2) are weakly \mathfrak{F} -permutable subgroups of G, then G is p-nilpotent.

Let p be a prime divisor of the order of a finite group G, \mathfrak{Z} be a complete set of Sylow subgroups of G with $G_p \in \mathfrak{Z}$, and $H \leq G_p$. In Lemma 2.3, we will show that if H is weakly \mathfrak{Z} -permutable in G, then $H \cap O^p(G)$ is \mathfrak{Z} -permutable in G, where $O^p(G) = \bigcap \{N \mid N \leq G \text{ and } G/N \text{ is a } p\text{-group}\}$. The following two examples show that the converse does not hold in general.

Example 1.3. Let p be an odd prime, $G = \langle a, b, c \mid a^{p^2} = b^2 = c^{p^2} = 1$, $b^{-1}ab = a^{-1}, c^{-1}ac = a, c^{-1}bc = ba \rangle$ and $H = \langle c^p \rangle$. Then |H| = p. Let $P = \langle a \rangle \times \langle c \rangle$. Then P is the normal Sylow p-subgroup of G. We will show that for any complete set \mathfrak{Z} of Sylow subgroups of G, $H \cap O^p(G)$ is \mathfrak{Z} -permutable in G, but H is not weakly \mathfrak{Z} -permutable in G for any choice of \mathfrak{Z} .

Let $T=\langle a,b\rangle$. Then $T \subseteq G$ and $G=T\rtimes \langle c\rangle$. Note that $b\in O^p(G)$, so $ba=c^{-1}bc\in O^p(G)$. Hence $a\in O^p(G)$, so $O^p(G)=T$. Hence $H\cap O^p(G)=1$, and thus for any complete set $\mathfrak Z$ of Sylow subgroups of G, $H\cap O^p(G)$ is $\mathfrak Z$ -permutable in G.

Assume that H is weakly 3-permutable in G for a complete set \mathfrak{Z} of Sylow subgroups of G. Since $H \leq \Phi(P)$, it follows that H is 3-permutable in G. Recall that $P \subseteq G$. In Lemma 2.4, we will show that $G = N_G(H)P$. Note that P is abelian. Hence $H \subseteq G$. In particular, $\langle b \rangle$ normalizes H. This is a contradiction since $b^{-1}c^pb = c^pa^{p^2-p}$. Hence H is not weakly 3-permutable in G for any choice of \mathfrak{Z} .

Example 1.4. Let p=2, $G=\langle a,b,c,d\mid a^4=b^4=c^3=d^4=1,b^{-1}ab=a,c^{-1}ac=ab,c^{-1}bc=ab^2,d^{-1}ad=a,d^{-1}bd=b,d^{-1}cd=c\rangle$ and $H=\langle a^2d^2\rangle$. Notice that |H|=p. Let $P=\langle a\rangle\times\langle b\rangle\times\langle d\rangle$. Then P is the normal Sylow p-subgroup of G. We will show that for any complete set \mathfrak{Z} of Sylow subgroups of G, $H\cap O^p(G)$ is \mathfrak{Z} -permutable in G, but H is not weakly \mathfrak{Z} -permutable in G for any choice of \mathfrak{Z} .

Let $T = \langle a, b, c \rangle$. Then $T \subseteq G$ and $G = T \times \langle d \rangle$. Note that $c \in O^p(G)$, so $cb = aca^{-1} \in O^p(G)$. Hence $b \in O^p(G)$. Similarly, we have $cab = bcb^{-1} \in O^p(G)$. Then $a \in O^p(G)$. Hence $O^p(G) = T$. Then $H \cap O^p(G) = 1$, and thus for any complete set \mathfrak{Z} of Sylow subgroups of G, $H \cap O^p(G)$ is \mathfrak{Z} -permutable in G.

Assume that H is weakly 3-permutable in G for a complete set \mathfrak{Z} of Sylow subgroups of G. Since $H \leq \Phi(P)$, it follows that H is 3-permutable in G. Recall that $P \subseteq G$. In Lemma 2.4, we will show that $G = N_G(H)P$. Note that P is abelian. Hence $H \subseteq G$. In particular, $\langle c \rangle$ normalizes H. This is a contradiction, since $c^{-1}(a^2d^2)c = a^2b^2d^2$. Hence H is not weakly 3-permutable in G for any choice of \mathfrak{Z} .

In this note, we not only simplify, but also generalize Theorems 1.1 and 1.2 as follows:

Theorem 1.5. Let \mathfrak{Z} be a complete set of Sylow subgroups of a finite group G, and let p be the smallest prime dividing the order of G. Suppose that for any maximal subgroup P_1 of $G_p \in \mathfrak{Z}$, $P_1 \cap O^p(G)$ is \mathfrak{Z} -permutable in G. Then G is p-nilpotent.

Theorem 1.6. Let \mathfrak{Z} be a complete set of Sylow subgroups of a finite group G, and let p be the smallest prime dividing the order of G. Suppose that for any cyclic subgroup P_1 of $G_p \in \mathfrak{Z}$ of order p or of order p (if p=2), $p \in \mathfrak{Z}$ is \mathfrak{Z} -permutable in p. Then p is p-nilpotent.

2. Preliminaries

Let \mathfrak{Z} be a complete set of Sylow subgroups of a finite group G, and let N be a normal subgroup of G. We denote the following families of subgroups of G, G/N and N, respectively:

$$\mathfrak{Z}N = \{G_pN : G_p \in \mathfrak{Z}\}, \qquad \mathfrak{Z}N/N = \{G_pN/N : G_p \in \mathfrak{Z}\},$$

 $\mathfrak{Z} \cap N = \{G_p \cap N : G_p \in \mathfrak{Z}\}.$

Lemma 2.1 (1, Lemma 2.1). Let H and N be subgroups of a finite group G such that N is normal in G, and let \mathfrak{Z} be a complete set of Sylow subgroups of G. Then:

- (a) $\mathfrak{Z} \cap N$ and $\mathfrak{Z}N/N$ are complete sets of Sylow subgroups of N and G/N, respectively.
- (b) If $H \leq N$ and H is a \mathfrak{Z} -permutable subgroup of G, then H is a $\mathfrak{Z} \cap N$ -permutable subgroup of N.
- (c) If H is a 3-permutable subgroup of G, then HN/N is a 3N/N-permutable subgroup of G/N.

364 Haoran Yu

Lemma 2.2. Let p be a prime divisor of the order of a finite group G, \mathfrak{Z} be a complete set of Sylow subgroups of G with $G_p \in \mathfrak{Z}$, and $H \leq G_p$. If H is \mathfrak{Z} -permutable in G, then $H \cap O^p(G)$ is \mathfrak{Z} -permutable in G.

PROOF. For any $q \in \pi(G) \setminus \{p\}$, let $G_q \in \mathfrak{Z}$. Then $G_q \leq O^p(G)$. Since $HG_q = G_qH$, it follows that $(H \cap O^p(G))G_q = G_q(H \cap O^p(G))$, and thus $H \cap O^p(G)$ permutes with G_q . Notice that $H \cap O^p(G) \leq H \leq G_p$. Hence $H \cap O^p(G)$ is \mathfrak{Z} -permutable in G.

Lemma 2.3. Let p be a prime divisor of the order of a finite group G, \mathfrak{Z} be a complete set of Sylow subgroups of G with $G_p \in \mathfrak{Z}$, and $H \leq G_p$. If H is weakly \mathfrak{Z} -permutable in G, then $H \cap O^p(G)$ is \mathfrak{Z} -permutable in G.

PROOF. By the definition of weakly 3-permutable subgroups, there exists a subnormal subgroup K of G such that G = HK and $H \cap K \leq H_3$, where H_3 is the subgroup of H generated by all those subgroups of H which are 3-permutable subgroups of G. By [3, Lemma 2.2(a)], we see that H_3 is 3-permutable in G. Note that $O^p(G) \leq K$, and thus $H \cap O^p(G) \leq H_3 \leq H$. Hence $H \cap O^p(G) = H_3 \cap O^p(G)$. By Lemma 2.2, we see that $H \cap O^p(G) = H_3 \cap O^p(G)$ is 3-permutable in G.

Lemma 2.4. Let p be a prime divisor of the order of a finite group G, \mathfrak{Z} be a complete set of Sylow subgroups of G with $G_p \in \mathfrak{Z}$, and P be a normal p-subgroup of G. If $H \leq G_p$ is \mathfrak{Z} -permutable in G, then $G = N_G(H \cap P)G_p$.

PROOF. For any $q \in \pi(G) \setminus \{p\}$, let $G_q \in \mathfrak{Z}$. Since $HG_q = G_qH$, and P is a normal p-subgroup of G, we see that $HG_q \cap P = H \cap P$, and thus $H \cap P$ is normalized by G_q . Hence $[G:N_G(H \cap P)]$ is a p-number. Notice that $[G:G_p]$ is a p-number. Hence $G = N_G(H \cap P)G_p$.

Lemma 2.5. Let p be a prime divisor of the order of a finite group G, \mathfrak{F} be a complete set of Sylow subgroups of G with $G_p \in \mathfrak{F}$, $H \leq G_p$, and N be a normal p'-subgroup of G. If $H \cap O^p(G)$ is \mathfrak{F} -permutable in G, then $HN/N \cap O^p(G/N)$ is \mathfrak{F} N/N-permutable in G/N.

PROOF. Notice that $N \leq O_{p'}(G) \leq O^p(G)$. Then $HN/N \cap O^p(G/N) = HN/N \cap O^p(G)/N = (H \cap O^p(G))N/N$. By Lemma 2.1(c), we see that $HN/N \cap O^p(G/N) = (H \cap O^p(G))N/N$ is $\mathfrak{Z}N/N$ -permutable in G/N.

Lemma 2.6 (7, Lemma 2.6). Suppose that G is a finite nonabelian simple group. Then there exists an odd prime $r \in \pi(G)$ such that G has no Hall $\{2, r\}$ -subgroup.

Lemma 2.7. Let p be the smallest prime dividing the order of a finite group G. Suppose that G has a Hall $\{p,r\}$ -subgroup for any prime $r \in \pi(G) \setminus \{p\}$. Then G is solvable.

PROOF. Let K/L be a composition factor of G. Then K/L is simple. If |K/L| is odd, by the Feit–Thompson Theorem, it follows that K/L is a cyclic subgroup of order p for some odd prime p. Assume that |K/L| is even. Recall that p is the smallest prime dividing the order of G. Then p=2. It is not very difficult to see that K/L has a Hall $\{2,r\}$ -subgroup for any odd prime $r\in \pi(K/L)$. By Lemma 2.6, we see that K/L is abelian, and thus K/L is a cyclic subgroup of order 2. Hence every composition factor of G is cyclic, and thus G is solvable. \Box

Lemma 2.8 (6, Theorem 3.1). Let \mathfrak{Z} be a complete set of Sylow subgroups of a finite group G, and let p be the smallest prime dividing |G|. If the cyclic subgroups of $G_p \in \mathfrak{Z}$ of order p or of order 4 (if p = 2) are \mathfrak{Z} -permutable subgroups of G, then G is p-nilpotent.

Lemma 2.9. Let p be a prime dividing the order of a finite group $G, P \in \operatorname{Syl}_p(G)$, and $P_1 \leq P$ such that $P_1 \leq G$. If $P_1 \leq \Phi(P)$ and G/P_1 is p-nilpotent, then G is p-nilpotent.

PROOF. By [2, Theorem 9.2(d)] and the fact that the class of p-nilpotent groups is a saturated formation, we have G is p-nilpotent.

3. Proofs

PROOF OF THEOREM 1.5. Suppose that G is a counterexample with minimal order and we work in the following steps to obtain a contradiction.

Step 1. $O_{p'}(G) = 1$.

By Lemma 2.5, the hypotheses are inherited by $G/O_{p'}(G)$. If $O_{p'}(G) > 1$, then $G/O_{p'}(G)$ is p-nilpotent, and thus G is p-nilpotent. This is a contradiction. Hence $O_{p'}(G) = 1$.

Step 2. G is solvable.

Assume that $O^p(G) = G$. Then for any maximal subgroup P_1 of G_p , P_1 is 3-permutable in G. If G_p is cyclic, by [5, Corollary 5.14], we see that G is p-nilpotent. This is a contradiction. Hence G_p is noncyclic. Then G_p has two maximal subgroups P_1 and P_2 such that $G_p = P_1P_2$. It is easy to see that $G_p = P_1P_2$ is 3-permutable in G. Hence G has a Hall $\{p,r\}$ -subgroup for any prime $r \in \pi(G) \setminus \{p\}$. By Lemma 2.7, we see that G is solvable.

366 Haoran Yu

Assume that $O^p(G) < G$, i.e., $G_p \cap O^p(G) < G_p$. Then G_p has a maximal subgroup P_1 such that $G_p \cap O^p(G) \le P_1$. Hence $G_p \cap O^p(G) = P_1 \cap O^p(G)$. By Lemma 2.1(b), we see that $G_p \cap O^p(G) = P_1 \cap O^p(G)$ is $\mathfrak{Z} \cap O^p(G)$ -permutable in $O^p(G)$. Hence $O^p(G)$ has a Hall $\{p,r\}$ -subgroup for any prime $r \in \pi(O^p(G)) \setminus \{p\}$. By Lemma 2.7, we see that $O^p(G)$ is solvable. Hence G is solvable.

Step 3. $G_p \cap O^p(G) \leq G$.

By Step 2, G>1 is solvable. In particular, G is p-solvable. By Step 1, $O_{p'}(G)=1$. Hence $O_p(G)>1$. Let $N=O_p(G)$. Then $N\leq G_p$.

If $N = G_p$, then $G_p \subseteq G$, and thus $G_p \cap O^p(G) \subseteq G$.

Assume that $N < G_p$ and consider G/N. Then $G_p/N > 1$. For any maximal subgroup P_1 of G_p that contains N, we see that $P_1/N \cap O^p(G/N) = (P_1 \cap O^p(G))N/N$. By Lemma 2.1(c), we have $P_1/N \cap O^p(G/N) = (P_1 \cap O^p(G))N/N$ is 3N/N-permutable in G/N. Hence the hypotheses are inherited by G/N. Recall that N > 1. Then G/N is p-nilpotent, and thus $O^p(G)N/N = O^p(G/N)$ is a p'-group. Hence $N \cap O^p(G)$ is the normal Sylow p-subgroup of $O^p(G)$. Notice that $N \cap O^p(G) = G_p \cap O^p(G)$. Hence $G_p \cap O^p(G) \subseteq G$.

Step 4. The final contradiction.

Let $\widehat{P} = G_p \cap O^p(G)$. By Step 3, we see that $\widehat{P} \subseteq G$. Assume that $\widehat{P} \subseteq \Phi(G_p)$. Notice that $O^p(G)/\widehat{P}$ is the normal *p*-complement of G/\widehat{P} , and thus G/\widehat{P} is *p*-nilpotent. By Lemma 2.9, we see that G is *p*-nilpotent. This is a contradiction.

Assume that $\widehat{P} \nleq \Phi(G_p)$. Then G_p has a maximal subgroup P_1 such that $\widehat{P} \nleq P_1$. Then $[\widehat{P}: P_1 \cap \widehat{P}] = p$. Notice that $P_1 \cap \widehat{P} = P_1 \cap O^p(G)$. By the hypotheses, we see that $P_1 \cap \widehat{P}$ is 3-permutable in G. Recall that $\widehat{P} \trianglelefteq G$. By Lemma 2.4, it follows that $G = N_G(P_1 \cap \widehat{P})G_p$. Notice that $P_1, \widehat{P} \trianglelefteq G_p$, and thus $P_1 \cap \widehat{P} \trianglelefteq G_p$. Hence $G_p \leq N_G(P_1 \cap \widehat{P})$, and thus $G = N_G(P_1 \cap \widehat{P})$, i.e., $P_1 \cap \widehat{P} \trianglelefteq G$. Let $N_1 = P_1 \cap \widehat{P}$. Consider G/N_1 . Then \widehat{P}/N_1 is the normal Sylow p-subgroup of $O^p(G)/N_1$, and $|\widehat{P}/N_1| = p$. Notice that p is the smallest prime divisor of the order of $O^p(G)/N_1$. By [5, Corollary 5.14], we see that $O^p(G)/N_1$ is p-nilpotent. Then $O^p(O^p(G)) < O^p(G)$. This is the final contradiction. \square

PROOF OF THEOREM 1.6. Suppose that G is a counterexample and we work to obtain a contradiction. Then $G_p \cap O^p(G) > 1$. By the hypotheses, for any cyclic subgroup P_1 of $G_p \cap O^p(G)$ of order p or of order 4 (if p = 2), $P_1 = P_1 \cap O^p(G)$ is 3-permutable in G. By Lemma 2.1(p), we see that P_1 is $\mathfrak{Z} \cap O^p(G)$ -permutable in $O^p(G)$. By Lemma 2.8, it follows that $O^p(G)$ is p-nilpotent, i.e., G is p-nilpotent. This is a contradiction.

ACKNOWLEDGEMENTS. The author thanks the referees who provided their valuable suggestions and detailed reports.

References

- [1] M. ASAAD and A. A. HELIEL, On permutable subgroups of finite groups, *Arch. Math. (Basel)* **80** (2003), 113–118.
- [2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin, 1992.
- [3] A.A. Heliel, M.M. Al-Shomrani and T.M. Al-Gafri, On weakly 3-permutable subgroups of finite groups, J. Algebra Appl. 14 (2015), 1550062, 15pp.
- [4] A. A. Heliel, R. A. Hijazi and T. M. Al-Gafri, The influence of weakly 3-permutable subgroups on the structure of finite groups, *Publ. Math. Debrecen* 88 (2016), 345–355.
- [5] I. M. ISAACS, Finite Group Theory, American Mathematical Society, Providence, RI, 2008.
- [6] X. Li, Y. Li and Y. Wang, 3-permutable subgroups and p-nilpotency of finite groups. II, Israel J. Math. 164 (2008), 75–85.
- [7] Y. Li and X. Li, 3-permutable subgroups and p-nilpotency of finite groups, J. Pure Appl. Algebra 202 (2005), 72–81.

HAORAN YU SCHOOL OF MATHEMATICS JILIN UNIVERSITY NO. 2699 QIANJIN STREET CHANGCHUN 130012

 $E ext{-}mail:$ sylowtheorem@pku.edu.cn

(Received August 29, 2017; revised May 23, 2018)