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On Riemannian manifolds with Spin(7)-structure

By FRANCISCO M. CABRERA (Tenerife)

Abstract. We describe explicitly the space of covariant derivatives of the four-
form of a Spin(7)-structure and also prove that Spin(7)-structures of type W2 are
locally conformal parallel. Finally, we give an example of Spin(7)-structure of type W2
not globally conformal parallel.

1. Introduction

An eight-dimensional Riemannian manifold M has a Spin(7)-struc-
ture, if M admits a reduction of the structure group of the tangent bundle
to Spin(7). This can be described geometrically by saying that there is a
three-fold vector cross product P defined on M . Associated with P there is
a four-form ϕ invariant under the action of Spin(7). Under this action, the
covariant derivative of ϕ can be decomposed into two components. This
decomposition is used to classify Spin(7)-structures. Such a classification
was shown by Fernández ([F1]).

In [F1] it is proved that the space W of tensors having the same
symmetries as the covariant derivative of ϕ has two Spin(7)-irreducible
components, W1 and W2. Thus there are four classes of Spin(7)-structure,
namely, P, W1, W2 and W. The list of known examples of Spin(7)-
structures is relatively short (see [FG], [F1], [F2], [Br], [BS], [Z]). Moreover,
there are not known examples for the class W2 not globally conformal to
a Spin(7)-structure of type P

In this paper we describe explicitly the space W of covariant deriv-
ative of ϕ. By another hand, from the defining conditions for classes
of Spin(7)-structures by means of the exterior algebra, we derive that
Spin(7)-structures of type W2 can be considered as locally conformal to
Spin(7)-structures of type P. Finally, we give examples of compact man-
ifolds of type W1, W2 and W. In particular, we show that there are two
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Spin(7)-structures of typeW2 defined in S7×S1. Moreover, by topological
obstructions, the manifold S7 × S1 does not admit any Spin(7)-structure
of type P.

The author would like to thank Prof. J.C. Marrero for useful dis-
cussions in the preparation of this paper.

2. Preliminaries

Let V be an eight dimensional real vector space with a inner product
〈 , 〉. We denote by Λk(V ) the k-th Grassman space V (i.e., the space
generated by the skew-symmetric products v1 ∧ v2 . . . ∧ vk). The inner
product 〈 , 〉 can be extended to Λk(V ) by the formula

〈v1 ∧ v2 ∧ . . . ∧ vk , w1 ∧ w2 ∧ . . . ∧ wk〉 = det(〈vi, wj〉),
for v1, v2, . . . , vk, w1, w2, . . . , wk ∈ V . A three-fold vector cross product
over V ([E], [BG]) is a trilinear map P : V × V × V → V satisfying the
axioms:

〈P (x, y, z), x〉 = 〈P (x, y, z), y〉 = 〈P (x, y, z), z〉 = 0,(2.1)

‖P (x, y, z)‖2 = ‖x ∧ y ∧ z‖2.(2.2)

for x, y, z ∈ V . It follows from (2.1) that P is skew-symmetric. Associated
with P there is a skew-symmetric four-form ϕ, called the fundamental
four-form, given by

ϕ(x, y, z, w) = 〈P (x, y, z), w〉,
for x, y, z, w ∈ V . Next lemma follows from definition of P .

Lemma 2.1 ([F1]).

(2.3) 〈P (x, y, z), P (x, y, u)〉 = 〈x ∧ y ∧ z, x ∧ y ∧ u〉,

P (x, y, P (x, y, z))(2.4)

= −‖x ∧ y‖2z + 〈x ∧ y, x ∧ z〉y + 〈y ∧ x, y ∧ z〉x,

for x, y, z, w ∈ V .

We will need the following consequence of the last lemma.

Corollary 2.2. For x, y, z, u ∈ V , we have

P (x, y, P (x, z, u)) + P (x, z, P (x, y, u)) = −2〈x ∧ y, x ∧ z〉u+

+〈x ∧ z, x ∧ u〉y + 〈x ∧ y, x ∧ u〉z − 〈x ∧ y, z ∧ u〉x− 〈x ∧ z, y ∧ u〉x,
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Proof. It follows by replacing in (2.4) y, z by y + z, u, respectively.
¤

In an eight-dimensional vector space V with a three-fold vector cross
product P , a Cayley basis for V is an orthonormal basis {e−1, e0, . . . , e6}
such that

P (e−1, ei, ei+1) = ei+3,

for all i ∈ Z 7. For such a basis next lemma gives two alternatives.
Lemma 2.3. Let V be an eight dimensional real vector space with an

inner product 〈 , 〉 and a three-fold vector cross product P .
If {e−1, e0, . . . , e6} is a Cayley basis for V , then we have two alternatives:

(a) P (ei+4, ei+5, ei+6) = ei+2, for all i ∈ Z 7. In this case we say that
{e−1, e0, . . . , e6} is a Cayley+ basis.

(b) P (ei+4, ei+5, ei+6) = −ei+2, for all i ∈ Z 7. In this case we say that
{e−1, e0, . . . , e6} is a Cayley− basis.

Proof. By (2.2), we have

P (ei+4, ei+5, ei+6) = −P (ei+4, ei+5, P (ei+4, ei+3, e−1))

= P (ei+4, ei+3, P (ei+4, ei+5, e−1)) = −P (ei, ei+3, ei+4),

for all i ∈ Z 7. On the other hand, since

P (e−1, ei, ei+1) = ei+3 and ‖P (ei+4, ei+5, ei+6)‖ = 1,

for all i ∈ Z 7, we obtain

P (ei+4, ei+5, ei+6) = ±ei+2.

If P (ej+4, ej+5, ej+6) = ej+2 for some j ∈ Z 7, then ej+2 = −P (ej , ej+3,
ej+4). Hence P (ej+2, ej+3, ej+4) = ej . Similar arguments show that

P (ej , ej+1, ej+2) = ej+5, P (ej+5, ej+6, ej) = ej+3,

P (ej+3, ej+4, ej+5) = ej+1, P (ej+1, ej+2, ej+3) = ej+6,

P (ej+6, ej , ej+1) = ej+4.

The case (b) can be deduced in a similar way. ¤
If {α−1, α0, α1, . . . , α6} is the dual basis of a Cayley± basis {e−1, e0,

. . . , e6} of V , then the fundamental four-form ϕ can be expressed in one
the following ways

(2.5) ϕ =
∑

i∈Z 7

α−1 ∧ αi ∧ αi+1 ∧ αi+3 −
∑

i∈Z 7

αi+2 ∧ αi+4 ∧ αi+5 ∧ αi+6,

or

(2.6) ϕ =
∑

i∈Z 7

α−1 ∧ αi ∧ αi+1 ∧ αi+3 +
∑

i∈Z 7

αi+2 ∧ αi+4 ∧ αi+5 ∧ αi+6.
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3. The space of covariant derivatives of the fundamental four-form

We consider an eight-dimensional real vector space V with a three-
fold vector cross product P . In [F1] it is defined the vector space W that
consists of those tensor fields having the same symmetries as the covariant
derivative of ϕ, i.e.,

(3.1) W = {α ∈ V ∗ ⊗ Λ4(V ∗) | α(w, x, y, z, P (x, y, z)) = 0,

for all w, x, y, z ∈ V },

where Λ4(V ∗) denotes the set of skew-symmetric four-forms on V . If α ∈
W , by polarization on z we have

(3.2) α(w, x, y, P (x, y, z), u) = α(w, x, y, z, P (x, y, u)),

for all w, x, y, z, u ∈ V . Next lemma gives another way to describe W .

Lemma 3.1. If α ∈ V ∗ ⊗ Λ4(V ∗), the following conditions are equiv-
alent:

(a) α ∈ W .

(b) α(w, x, y, P (x, y, z), P (x, y, u)) = −‖x ∧ y‖2α(w, x, y, z, u),
for all w, x, y, z, u ∈ V .

Proof. If α ∈ W , condition (b) follows easily by using (3.2) and
(2.4). Conversely, taking P (x, y, z) instead of u in (b), and using (3.2), we
will deduce (a). ¤

We give an explicit description for α ∈ W in next lemma.

Lemma 3.2. Let {e−1, e0, e1, . . . , e6} be a Cayley± basis of V and
{α−1, α0, α1, . . . , α6} its dual basis. Then each α ∈ W is given by

α = ±
∑

i∈Z 7∪{−1}, j∈Z 7

aijαi ⊗ (α−1 ∧ ejyϕ− αj ∧ e−1yϕ)

=
∑

i∈Z 7∪{−1}, j∈Z 7

aijαi ⊗ (αj+4 ∧ ej+5yϕ− αj+5 ∧ ej+4yϕ)

=
∑

i∈Z 7∪{−1}, j∈Z 7

aijαi ⊗ (αj+1 ∧ ej+3yϕ− αj+3 ∧ ej+1yϕ)

=
∑

i∈Z 7∪{−1}, j∈Z 7

aijαi ⊗ (αj+2 ∧ ej+6yϕ− αj+6 ∧ ej+2yϕ),

where y denotes the interior product.
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Proof. From (2.5) and (2.6) it can be checked that

±αi ⊗ (α−1 ∧ ejyϕ− αj ∧ e−1yϕ)

= αi ⊗ (αj+4 ∧ ej+5yϕ− αj+5 ∧ ej+4yϕ)

= αi ⊗ (αj+1 ∧ ej+3yϕ− αj+3 ∧ ej+1yϕ)

= αi ⊗ (αj+2 ∧ ej+6yϕ− αj+6 ∧ ej+2yϕ).

From the definition of W we have

α(ei, e−1, ej , ej+1, ej+3) = α(ei, ej+2, ej+4, ej+5, ej+6) = 0,

for each i ∈ Z 7 ∪ {−1} and j ∈ Z 7. Using Lemma 3.1, we obtain

α(ei, e−1, ej , ej+1, ej+2) = −α(ei, e−1, ej , ej+3, ej+6)

=− α(ei, e−1, ej+1, ej+3, ej+4) = α(ei, e−1, ej+2, ej+4, ej+6)

=∓ α(ei, ej , ej+1, ej+3, ej+5) = ±α(ei, ej , ej+2, ej+5, ej+6)

=∓ α(ei, ej+1, ej+2, ej+4, ej+5) = ±α(ei, ej+3, ej+4, ej+5, ej+6),

for all i ∈ Z7 ∪ {−1} and j ∈ Z 7. Taking (2.5) and (2.6) into account, we
will have the required expressions. ¤

Remark 3.3. Since dim W = 56, the set of tensors αi⊗(αj+1∧ej+3yϕ−
αj+3 ∧ ej+1yϕ) is a basis for W . Moreover, by using the relationship
between the interior product and the wedge product we get the following
expression for α ∈ W

α =
∑

i∈Z 7∪{−1}, j∈Z 7

aij αi ⊗ (α−1 ∧ ∗(αj ∧ ϕ)− αj ∧ ∗(α−1 ∧ ϕ)),

where ∗ denotes the Hodge ∗-operator.
Fernández ([F1]) proves that W has two irreducible components

under the action of Spin(7),

W = W
(48)
1 ⊕W

(8)
2 ,

the upper index indicates the corresponding dimension. Thus each α ∈
W has two components. These components can be studied by means
of the exterior algebra. In fact, the irreducible components of W can
be described by applying Schur’s Lemma to the restrictions to W of the
Spin(7)-equivariant map

(3.3)
V ∗ ⊗ Λ4(V ∗) → Λ5(V ∗)

α = x⊗ a ∧ b ∧ c ∧ d → s(α) = x ∧ a ∧ b ∧ c ∧ d.



276 Francisco M. Cabrera

In [Br] it can be found the descriptions of the decompositions of
Λ5(V ∗) in its irreducible components under the Spin(7)-action, i.e.,

Λ5(V ∗) = Λ5
(48)(V

∗)⊕ Λ5
(8)(V

∗),

where the subindices indicate the corresponding dimension. The above
irreducible components are as follows

Λ5
(48)(V

∗) = {α ∈ Λ5(V ∗) | ∗α ∧ ϕ = 0},(3.4)

Λ5
(8)(V

∗) = {α ∧ ϕ | α ∈ V ∗}.(3.5)

4. Spin(7)-structures

An eight-dimensional C∞ Riemannian manifold M with tensor metric
field 〈 , 〉, has a Spin(7)-structure, if the structure group of the bundle of
orthonormal frames can be reduced from O(8) to the spinor group Spin(7).
Geometrically this means that for each m ∈ M the tangent space Tm(M)
is provided with a three-fold vector cross product Pm such that the map
m → Pm is C∞. This is also equivalent to the existence of a non where
vanishing four-form ϕ such that it can be locally expressed in one of the
following ways

(4.1) ϕ =
∑

i∈Z 7

α−1 ∧ αi ∧ αi+1 ∧ αi+3 ∓
∑

i∈Z 7

αi+2 ∧ αi+4 ∧ αi+5 ∧ αi+6.

where {α−1, α0, . . . , α6} is a local orthonormal frame of the cotangent
bundle.

In each point of a Riemannian manifold with a Spin(7)-structure there
are local orthonormal frames {E−1, E0, . . . , E6}, called Cayley frames,
such that

P (E−1, Ei, Ei+1) = Ei+3,

for all i ∈ Z 7. Wether P (Ei+4, Ei+5, Ei+6) = Ei+2 or P (Ei+4, Ei+5, Ei+6)
= −Ei+2, for all i ∈ Z 7 we say that such a frame is a Cayley+ or Cayley−
frame, respectively. Along this section {α−1, α0, . . . , α6} will be the dual
forms of a local Cayley± frame. On the same point there is not simulta-
neously a Cayley+ frame and a Cayley− frame, because in that case we
would have ∗ϕ = ϕ and ∗ϕ = −ϕ. Then on each connected component of
M there exists only one type (+ or −) of local Cayley frames.

Let ∇ be the Riemannian connection of 〈 , 〉. In [F1] it is shown
that in each point m ∈ M the covariant derivative ∇ϕ belongs to W ⊂
T ∗mM ⊗ Λ4T ∗mM defined as in (3.1).

A Spin(7)-structure is said of type P, W1, W2 or W, if the covariant
derivative ∇ϕ lies in {0}, W1, W2 or W , respectively.
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Denoting by d the exterior derivative on M , it is obvious that dϕ =
s(∇ϕ). Using Shur’s Lemma, from (3.4) and (3.5) one deduces a charac-
terization for each type of Spin(7)-structure. These characterizations are
shown in the following table

P dϕ = 0
W1 ∗dϕ ∧ ϕ = 0

W2 = LCP dϕ = α ∧ ϕ

W no relation

Table 1

In agreeing with the notation used in [F1], we consider the one-form
pd∗ϕ on M defined by

pd∗ϕ = − ∗ (∗dϕ ∧ ϕ).

We denote by π8 the projection Λ5T ∗M → Λ5
(8)T

∗M . In the following
lemma we compute π8(dϕ).

Lemma. We have:

π8(dϕ) =
1
7
pd∗ϕ ∧ ϕ.

Proof. A straightforward computation shows

∗(∗(αi ∧ ϕ) ∧ ϕ) = −7αi,

for all i ∈ Z 7∪{−1}. We write π8(dϕ) = α∧ϕ and α =
∑

i∈Z 7∪{−1} ci αi.
Then

pd∗ϕ = − ∗ (∗dϕ ∧ ϕ) = − ∗ (∗π8(dϕ) ∧ ϕ)

= −
∑

i∈Z 7∪{−1}
ci ∗ (∗(αi ∧ ϕ) ∧ ϕ) =

∑

i∈Z 7∪{−1}
7ciαi = 7α. ¤

From the previous lemma it follows immediately the following corol-
lary.

Corollary 4.2. The form α appearing in Table 1 is such that pd∗ϕ =
7α.

From (2.5) and (2.6) it follows the following lemma proved in [Bo].

Lemma 4.3 ([Bo]). Let α be a skew-symmetric p-form. If p ≤ 2,
ϕ ∧ α = 0 if and only if α = 0.
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Lemma 4.4. If P is of type W2, the one-form pd∗ϕ is closed.

Proof. If P is of type W2, then dϕ = 1
7pd∗ϕ ∧ ϕ. By differentiating

we have 0 = dpd∗ϕ ∧ ϕ. By Lemma 4.3, we conclude dpd∗ϕ = 0. ¤
Remark 4.5. Spin(7)-structures of type P are usually called paral-

lel. If we consider a Spin(7)-structure of type W2, by Lemma 4.4 and
Poincaré’s Lemma, in each point m of M there exists a local function σ
such that dσ = − 1

28pd∗ϕ. Doing the conformal change of metric given by
〈 , 〉o = e2σ〈 , 〉 in the neighborhood U of m where σ is defined, we get a
Spin(7)-structure on U of type parallel. This argument makes reasonable
to call Spin(7)-structures of type W2, locally conformal parallel (LCP ).

5. Examples

The manifold S7 × S1

In [FG] it is shown that the sphere S7 has a nearly parallel G2-
structure, i.e., there is a non where vanishing three-form ϕ on S7 such
that it can be written locally in the way

ϕ =
∑

i∈Z 7

αi ∧ αi+1 ∧ αi+3,

where {α0, . . . , α6} is an local orthonormal frame of the cotangent bundle
of S7. The nearly parallel condition implies dϕ = k ∗ ϕ and d ∗ ϕ = 0 (see
[C], [FG]).

We consider on the product manifold S7×S1 the four-forms given by

ϕ± = η ∧ ϕ± ∗ϕ,

where η is a non null one-form of Maurer-Cartan on S1. For the local
coframe {η, α0, . . . , α6}, the forms ϕ± are locally written

ϕ± =
∑

i∈Z 7

η ∧ αi ∧ αi+1 ∧ αi+3 ∓
∑

i∈Z 7

αi+2 ∧ αi+4 ∧ αi+5 ∧ αi+6.

Then each one of the forms ϕ± defines a Spin(7)-structure. By differenti-
ating we have

dϕ± = η ∧ k ∗ ϕ = ±kη ∧ ϕ±.

Hence the Spin(7)-structures are of type W2 and they are not of type
P. In fact, there are topological obstructions to the existence of Spin(7)-
structure of type P. In [Bo] it is proved that if a compact manifold M has
a Spin(7)-structure of type P, then

(5.1) b4(M) 6= 0 and b4(M) ≥ b1(M),
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where bi denote the Betti numbers. Since for S7×S1 we have b1(S7×S1)=1
and b4(S7×S1) = 0, we conclude that S7×S1 does not admit any Spin(7)-
structure of type P. To our knowledge, these are the first known examples
of Spin(7)-structures of type W2 not globally conformal to one of type P.

However, for each point of S7×S1 there exists a neighborhood S7×U
where the fucntions σ such that dσ = ∓k

4η are defined. Doing the con-
formal changes of metric given by 〈 , 〉0 = e2σ〈 , 〉 in S7 × U , we get two
Spin(7)-structures of type P defined on S7 × U .

The manifolds M(k)× T 5

Let us consider the manifolds M(k) described in [CFG] as follows.
For a fixed k ∈ R, k 6= 0, let G(k) be the three-dimensional connected and
solvable (non-nilpotent) Lie group consisting of the matrices

a =




ekz 0 0 x
0 e−kz 0 y
0 0 1 z
0 0 0 1


 ,

where x, y, z ∈ R. Then, a global coordinate system {x, y, z} for G(k) is
given by x(a) = x, y(a) = y, z(a) = z. A straightforward computation
proves that a basis of right invariant 1-forms on G(k) is {dx− kxdz, dy +
kydz, dz}.

The Lie group G(k) can be also described as the semidirect product
R×φ R2, where

φ : R −→ Aut(R2)

is the representation defined by

φ(t) =
(

ekz 0
0 e−kz

)
, z ∈ R.

Therefore G(k) posesses a discrete subgroup Γ (K) such that the quo-
tient manifold M(k) = G(k)/Γ (k) is compact. Moreover, the one-forms
dx − kxdz, dy + kydz, dz descend to M(k). Let us denote by α, β, γ
respectively, the induced one-forms on M(k). Then, we have dα = −kα ∧
γ, dβ = kβ ∧ γ, dγ = 0.

Let us consider the product manifold M(k)× T 5 where T 5 is a five-
dimensional torus. Let η1, η2, η3, η4, η5 be a basis of closed one-forms on
T 5. Then in M(k)× T 5 we have the following basis of one-forms

α−1 = η5, α0 = γ, α1 = η1, α2 = η2, α3 = α, α4 = η3, α5 = β, α6 = η4.

Therefore,

dα−1 = dα0 = dα1 = dα2 = dα4 = dα6 = 0,

dα3 = kα0 ∧ α3, dα5 = −kα0 ∧ α5.
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Let 〈 , 〉 be a tensor metric field on M(k)× T 5 given by

〈 , 〉 = α−1 ⊗ α−1 +
∑

i∈Z 7

αi ⊗ αi.

We consider the frame {E−1, E0, E1, . . . , E6} of orthonormal vector fields
dual of the one-forms αi. We define the three-fold vector cross products P+

and P− such that {E−1, E0, E1, . . . , E6} is a Cayley+ or Cayley− frame,
respectively, i.e.,

P (E−1, Ei, Ei+1) = Ei+3 ;P (Ei+4, Ei+5, Ei+6) = ±Ei+2,

for all i ∈ Z 7. Then fundamental four-forms ϕ± are given as in (2.5) and
(2.6). The exterior differential of the fundamental four-forms ϕ± of P±
are given by

dϕ± =− kα−1 ∧ α0 ∧ α3 ∧ α4 ∧ α6 + kα−1 ∧ α0 ∧ α5 ∧ α6 ∧ α1

(5.2)

± kα0 ∧ α2 ∧ α4 ∧ α5 ∧ α6 ∓ kα0 ∧ α6 ∧ α1 ∧ α2 ∧ α3.

Since ∗dϕ±∧ϕ± = 0 and dϕ± 6= 0, the Spin(7)-structures are of type
W1 and they are not of type P. In summary,

P+, P− ∈ W1 − P.

In [CFG] are computed the Betti numbers for M(k), i.e.,

b1(M(k)) = b2(M(k)) = 1.

Hence for the product manifold M(k)× T 5 we have

b1 = 6, and b4 = 30.

Therefore, in this case the topological obstruction (5.1) does not work as
in the previous example.
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The manifolds M(k)×H/Γ × T 2

Let us consider the product of M(k), the Heisenberg compact nil-
manifold H/Γ and a two-dimensional torus. The manifold M(k) has been
considered in the previous example. Let us decribe, briefly, the manifold
H/Γ (see [FI] for more details).

Let H be the Heisenberg group of dimension three, i.e., H is the con-
nected, simply connected and nilpotent Lie group consisting of matrices:

a =

(
1 x z
0 1 y
0 0 1

)
,

where x, y, z ∈ R. A (global) coordinate system {x, y, z} over H is given by:
x(a) = x, y(a) = y, z(a) = z. It is easy to show that {dx, dy, dz − xdy}
are linearly independent left invariant one-forms of H. Let Γ be the
discrete subgroup of all matrices of H which entries x, y, z are integers.
The quotient space H/Γ is called the Heisenberg compact nilmanifold.
Since {dx, dy, dz − xdy} are left invariant one-forms under the action of
Γ , they descend respectively to the one-forms {σ, ρ, µ} on H/Γ such that
dµ = ρ ∧ σ.

Let us consider the product manifold M(k)×H/Γ ×T 2 where T 2 is
a two-dimensional torus. Let η1, η2 be a basis of closed one-forms on T 2.
Then for M(k)×H/Γ × T 2 we have the next basis for one-forms

α−1 = η2, α0 = γ, α1 = ρ, α2 = σ, α3 = α, α4 = µ, α5 = β, α6 = η1.

Therefore,

dα−1 = dα0 = dα1 = dα2 = dα6 = 0,

dα3 = kα0 ∧ α3, dα4 = α1 ∧ α2, dα5 = −kα0 ∧ α5.

Let 〈 , 〉 be a tensor metric field on M(k) × H/Γ × T 1 given by 〈 , 〉 =
α−1⊗α−1 +

∑
i∈Z 7

αi⊗αi. We consider the frame {E−1, E0, E1, . . . , E6}
of orthonormal vector fields dual to the one-forms αi. We define the three-
fold vector cross products P+ and P− such that {E−1, E0, E1, . . . , E6} is a
Cayley+ and Cayley− frame, respectively. The exterior differential of the
fundamental four-forms ϕ± of P± are given by

dϕ± = − kα−1 ∧ α0 ∧ α3 ∧ α4 ∧ α6 + kα−1 ∧ α0 ∧ α5 ∧ α6 ∧ α1

± kα0 ∧ α2 ∧ α4 ∧ α5 ∧ α6 ∓ kα0 ∧ α6 ∧ α1 ∧ α2 ∧ α3

− α−1 ∧ α5 ∧ α0 ∧ α1 ∧ α2 − α−1 ∧ α6 ∧ α1 ∧ α2 ∧ α3.

Since ∗dϕ± ∧ ϕ± 6= 0, the Spin(7)-structures are not of type W1.
Now we compute pd∗ϕ± = ∗(∗dϕ± ∧ ϕ±). We obtain

pd∗ϕ± = ∓2α−1.
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Since dϕ± 6= 1
7pd∗ϕ± ∧ϕ±, the Spin(7)-structures are not of type W2. In

summary,

P+, P− ∈ W − (W1 ∪W2).
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ometŕıa diferencial, Proc. Recent Topics on Diff. Geom. Workshop (D. Chinea and
J.M. Sierra, eds.), Univ. de La Laguna, Spain, December 1990, pp. 31–41.

[E] B. Eckman, Systeme von Richtungsfeldern in Sphären undstetige Lösungen kom-
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