Publ. Math. Debrecen
46 / 3-4 (1995), 271283

On Riemannian manifolds with Spin(7)-structure

By FRANCISCO M. CABRERA (Tenerife)

Abstract. We describe explicitly the space of covariant derivatives of the four-
form of a Spin(7)-structure and also prove that Spin(7)-structures of type Wa are
locally conformal parallel. Finally, we give an example of Spin(7)-structure of type Wa
not globally conformal parallel.

1. Introduction

An eight-dimensional Riemannian manifold M has a Spin(7)-struc-
ture, if M admits a reduction of the structure group of the tangent bundle
to Spin(7). This can be described geometrically by saying that there is a
three-fold vector cross product P defined on M. Associated with P there is
a four-form ¢ invariant under the action of Spin(7). Under this action, the
covariant derivative of ¢ can be decomposed into two components. This
decomposition is used to classify Spin(7)-structures. Such a classification
was shown by FERNANDEZ ([F1]).

In [F1] it is proved that the space W of tensors having the same
symmetries as the covariant derivative of ¢ has two Spin(7)-irreducible
components, Wi and Ws. Thus there are four classes of Spin(7)-structure,
namely, P, Wy, W, and W. The list of known examples of Spin(7)-
structures is relatively short (see [FG]|, [F1], [F2], [Br], [BS], [Z]). Moreover,
there are not known examples for the class W, not globally conformal to
a Spin(7)-structure of type P

In this paper we describe explicitly the space W of covariant deriv-
ative of ¢. By another hand, from the defining conditions for classes
of Spin(7)-structures by means of the exterior algebra, we derive that
Spin(7)-structures of type W, can be considered as locally conformal to
Spin(7)-structures of type P. Finally, we give examples of compact man-
ifolds of type Wi, W5 and W. In particular, we show that there are two
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Spin(7)-structures of type Wy defined in S7 x S*. Moreover, by topological
obstructions, the manifold S7 x S! does not admit any Spin(7)-structure
of type P.

The author would like to thank Prof. J.C. MARRERO for useful dis-
cussions in the preparation of this paper.

2. Preliminaries

Let V be an eight dimensional real vector space with a inner product
(,). We denote by A¥(V) the k-th Grassman space V (i.e., the space
generated by the skew-symmetric products vy A va... A vg). The inner
product (,) can be extended to A*(V) by the formula

(Vi ANva AL AU, wr Awa AL A wg) = det((v;, wy)),

for vi,v9,... Vg, w1, wa,... ,wx € V. A three-fold vector cross product
over V ([E], [BG]) is a trilinear map P : V x V x V — V satisfying the
axioms:

(2.1) (P(z,y,2),2) = (P(2,9,2),y) = (P(z,y,2),2) = 0,
(2.2) 1Pz, y, 2)I* = lla Ay Az

for z,y,z € V. It follows from (2.1) that P is skew-symmetric. Associated
with P there is a skew-symmetric four-form ¢, called the fundamental
four-form, given by

QD(:L', y? Z? w) - <P(x7 y? Z)? w>7
for x,y, z,w € V. Next lemma follows from definition of P.

Lemma 2.1 ([F1]).

(2.3) (P(z,y,2), P(r,y,u)) =(x Ay Az,z ANy Au),

(2.4) P(z,y, P(x,y,z2))
= —|lzAy|Pz+{x Ay, zA2)y+ (y Az, yA z)r,
for x,y,z,w € V.
We will need the following consequence of the last lemma.
Corollary 2.2. For x,y,z,u € V, we have
P(z,y, P(z,z,u)) + P(x,z, P(z,y,u)) = =2(x ANy, x A z)u+
Az, ANwyy+ (z Ay,z Au)z — (x ANy, z ANuyx — (x A 2,y A u)x,
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PRroOOF. It follows by replacing in (2.4) y, z by y + z, u, respectively.

OJ
In an eight-dimensional vector space V' with a three-fold vector cross
product P, a Cayley basis for V is an orthonormal basis {e_1,eq,... ,es}

such that
P(e_1,¢€i,ei41) = €iy3,
for all 4 € Z 7. For such a basis next lemma gives two alternatives.

Lemma 2.3. Let V be an eight dimensional real vector space with an
inner product (,) and a three-fold vector cross product P.
If{e_1,eq,..., es} is a Cayley basis for V, then we have two alternatives:

(a) P(ejta,€ir5,€i46) = €iy2, for all i € Z7. In this case we say that
{e_1,€0,... ,e6} is a Cayley; basis.

(b) P(€it4,€ir5,€it6) = —€it2, for all i € Z;. In this case we say that
{e_1,€0,... 66} is a Cayley_ basis.

PROOF. By (2.2), we have

P(€¢+4,€i+5,6i+6) = _P(6i+47ei+57P(6i+47€i+376—1))
= P(eita,€iy3, P(€ita, €it5,6-1)) = —P(e;, €43, €i44),
for all © € Z 7. On the other hand, since
P(€—17€i7€i+1) = e;43 and ’|P(€i+4,€i+57€z‘+6)” =1,
for all © € Z 7, we obtain
P(€ijt4,€its,€itr6) = Teita.
If P(€j+4, 6j+57€j+6) = €12 for some j € Z 7, then €jt2 = —P(Gj,6j+3,
ejt4). Hence P(ejio,€j43,€j44) = €. Similar arguments show that
P(ej, ej+1,€j12) = €j45, P(ejis,¢€j16,€5) = €j13,
P(eji3,ejva,€j15) = €jv1,  Plejyi,ej12,€543) = €jie,
P(eji6,€j,€541) = €j1a-
The case (b) can be deduced in a similar way. O

If {a_1,a0,a1,...,a6} is the dual basis of a Cayleyy basis {e_1, ep,
. ,eg} of V| then the fundamental four-form ¢ can be expressed in one
the following ways

(25) @Y = E a_1 N\ (67 A Q41 A Q43 — E a5492 A [e7EW) VAN 45 VAN 046,
i€Z 7 1€Z 7
or

(2.6) Y= Z a_1 No; Ao N\ o3+ Z Qo N\ Qiya N\ Oiys N\ Q.
1€EL 7 1€L 7
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3. The space of covariant derivatives of the fundamental four-form

We consider an eight-dimensional real vector space V' with a three-
fold vector cross product P. In [F1] it is defined the vector space W that
consists of those tensor fields having the same symmetries as the covariant
derivative of ¢, i.e.,

(31) W={aeV @A (V") |a(w,z,y,z Px,y,2) =0,
for all w,xz,y,z € V},

where A*(V*) denotes the set of skew-symmetric four-forms on V. If a €
W, by polarization on z we have

(3'2) a<w7 x’ y? P(x7 y7 Z)? u) = a(w7 w? y? z? P(x7 y’ u))?
for all w,z,y,z,u € V. Next lemma gives another way to describe W.

Lemma 3.1. If « € V* @ A*(V*), the following conditions are equiv-
alent:

(a) a e W.

(b) a(w7 x? y7 P(x7 y7 2)7 P($7 y7 u)) = _||‘/I’l /\ yH2a(w7 .T, y? Z? u)?
for all w,z,y,z,u € V.

PrOOF. If a € W, condition (b) follows easily by using (3.2) and
(2.4). Conversely, taking P(xz,y, z) instead of u in (b), and using (3.2), we
will deduce (a). O

We give an explicit description for a« € W in next lemma.

Lemma 3.2. Let {e_1,ep,€1,...,e6} be a Cayleyy basis of V' and
{a_1,a0,a1,...,ag} its dual basis. Then each o € W' is given by
o=+ Z a;ijoy ® (a1 ANejap —a; Ae_qip)

i€Z 7U{—1},j€7Z

= Z Q0 & (Oéj_|_4 Nejrs510p — ajrs A ej+4_|g0)
i€Z 7U{—1},j€Z

= > aijo @ (i1 A ejpsap — ajps A ejp1p)
i€Z 7 U{—1},5€Z ¢

= Z aijc; @ (jr2 A €jpeap — Qe N €jr21p),
i€Z 7U{—1},j€Z ¢

where J denotes the interior product.
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PROOF. From (2.5) and (2.6) it can be checked that
+o; ® (a1 Aejop —aj; ANe_jup)
=o;® (ij+4 A €j4+510 — Q45 A\ €j+44(,0)
=0 ® (Oéj_H Nejr3ap — a3 N €j+1Jg0)
=; ® (@j42 A ejreap — Qe A ejyap).
From the definition of W we have
a(ei, €1, €5, €511, €j43) = a€i; €42, €44, €545, €j46) = 0,

for each i € Z ;U {—1} and j € Z 7. Using Lemma 3.1, we obtain

afei, e—1,€j,€j41,€j12) = —a(€i,€_1,€j,€j13,€j46)
= —afej; e-1,€j41, €43, €j+a) = (e, €-1,€j42, €544, €j+6)
=F alei, ej,€j41,€j43,€j45) = ta(ei, e, €42, €515, €j46)
=F a(ei, €j11,€j+2,€j+4,€j45) = Fa(e;, €43, €44, €545, €j+6),

for all i € Z7; U{—1} and j € Z 7. Taking (2.5) and (2.6) into account, we
will have the required expressions. [

Remark 3.3. Since dim W = 56, the set of tensors o; ®@(cvj41Aej43 10—
aji3 A ejr1a9) is a basis for W. Moreover, by using the relationship

between the interior product and the wedge product we get the following
expression for a € W

o= Z aij a; @ (a—1 Ax(a; Ap) —a; Ax(a1 Ayp)),
i€Z 7U{—1},jEL 7

where * denotes the Hodge *-operator.
FERNANDEZ ([F1]) proves that W has two irreducible components
under the action of Spin(7),

w=w" e w®,

the upper index indicates the corresponding dimension. Thus each a €
W has two components. These components can be studied by means
of the exterior algebra. In fact, the irreducible components of W can
be described by applying Schur’s Lemma to the restrictions to W of the
Spin(7)-equivariant map

3.3
(3:3) a=rxR@aANbANcANd—s(a)=xANaANbAcAd.
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In [Br] it can be found the descriptions of the decompositions of
A3(V*) in its irreducible components under the Spin(7)-action, i.e.,

AP (V) = AQusy (V) @ Afgy (V7).

where the subindices indicate the corresponding dimension. The above
irreducible components are as follows

(3.4) ALy (V*) = {a € A>(V*) | xa A = 0},
(3.5) Ay (V) ={ahg|aecV}

4. Spin(7)-structures

An eight-dimensional C*° Riemannian manifold M with tensor metric
field (,), has a Spin(7)-structure, if the structure group of the bundle of
orthonormal frames can be reduced from O(8) to the spinor group Spin(7).
Geometrically this means that for each m € M the tangent space T,, (M)
is provided with a three-fold vector cross product P, such that the map
m — P, is C°°. This is also equivalent to the existence of a non where
vanishing four-form ¢ such that it can be locally expressed in one of the
following ways

(41) Y = Z a_1 Na; N\ 41 N ;3 F Z (07 ) N (67w VAN Q45 VAN a4 6.
€L 7 1EZL 7

where {a_1,a0,...,a6} is a local orthonormal frame of the cotangent
bundle.

In each point of a Riemannian manifold with a Spin(7)-structure there
are local orthonormal frames {E_1, Fy,..., Eg}, called Cayley frames,
such that

P(E_1,E, Eit1) = Eiys,

foralli € Z 7. Wether P(Eq;+4, Ei+5, Ei+6) = EZ'+2 or P(EZ'+4, Ei+5, Ei+6)
= —F; o, for all i € Z 7 we say that such a frame is a Cayley; or Cayley_
frame, respectively. Along this section {«_1, ag, ... ,ag} will be the dual
forms of a local Cayley, frame. On the same point there is not simulta-
neously a Cayley, frame and a Cayley_ frame, because in that case we
would have x¢p = ¢ and *¢ = —¢p. Then on each connected component of
M there exists only one type (+ or —) of local Cayley frames.

Let V be the Riemannian connection of (,). In [F1] it is shown
that in each point m € M the covariant derivative V¢ belongs to W C
T M @ A*T* M defined as in (3.1).

A Spin(7)-structure is said of type P, Wy, Ws or W, if the covariant
derivative Vi lies in {0}, W7, Wy or W, respectively.
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Denoting by d the exterior derivative on M, it is obvious that dyp =
s(Vy). Using Shur’s Lemma, from (3.4) and (3.5) one deduces a charac-
terization for each type of Spin(7)-structure. These characterizations are
shown in the following table

P | dp=0
Wi | *dpANp =20
Wy =LCP | dp=a ANy
W | no relation

Table 1

In agreeing with the notation used in [F1], we consider the one-form
pd*p on M defined by

pd*p = —* (xdp A @).

We denote by mg the projection AST*M — A?B)T*M . In the following

lemma we compute 7g(dp).

Lemma. We have:

1 *
ms(dyp) = ;pd AP

PROOF. A straightforward computation shows
(ki N ) N p) = =Tay;,

for all i € Z 7U{—1}. We write ms(dp) = aNpand a =3, (1) G Q.
Then

pd o = —x (xdp Np) = —* (¥mg(dp) A p)
=— Z ci % (x(a; ANp) Np) = Z Tcia; = Ta. O
i€Z 7U{—1} €7 7U{—1}

From the previous lemma it follows immediately the following corol-
lary.

Corollary 4.2. The form « appearing in Table 1 is such that pd*yp =
To.

From (2.5) and (2.6) it follows the following lemma proved in [Bo].

Lemma 4.3 ([Bo]). Let a be a skew-symmetric p-form. If p < 2,
p A a =0 if and only if a = 0.
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Lemma 4.4. If P is of type W5, the one-form pd*y is closed.

Proor. If P is of type Ws, then dp = %pd*gp A . By differentiating
we have 0 = dpd*¢ A p. By Lemma 4.3, we conclude dpd*p =0. [

Remark 4.5. Spin(7)-structures of type P are usually called paral-
lel. If we consider a Spin(7)-structure of type W,, by Lemma 4.4 and
Poincaré’s Lemma, in each point m of M there exists a local function o
such that do = —2l8pd*<p. Doing the conformal change of metric given by
(,)o = €2?(,) in the neighborhood U of m where o is defined, we get a
Spin(7)-structure on U of type parallel. This argument makes reasonable
to call Spin(7)-structures of type W, locally conformal parallel (LCP).

5. Examples

The manifold S7 x S!
In [FG] it is shown that the sphere S” has a nearly parallel Go-

structure, i.e., there is a non where vanishing three-form ¢ on S7 such
that it can be written locally in the way

p= Z a; N Q1 N\ Gy,
i€Z7

where {ayg, ... ,ag} is an local orthonormal frame of the cotangent bundle
of S7. The nearly parallel condition implies dy = k x ¢ and d * ¢ = 0 (see
[Cl, [FG]).

We consider on the product manifold S7 x S* the four-forms given by
Pr =NAPE*Q,

where 7 is a non null one-form of Maurer-Cartan on S*. For the local
coframe {7, ag, ... ,as}, the forms ¢4 are locally written

Py = Z A Najpr N ogrs F Z Qo N\ Qg N Qg5 N\ Qg
i€l 7 i€ 7

Then each one of the forms ¥, defines a Spin(7)-structure. By differenti-

ating we have
dp, =nANkxp==xknA\p,.

Hence the Spin(7)-structures are of type W, and they are not of type
P. In fact, there are topological obstructions to the existence of Spin(7)-
structure of type P. In [Bo] it is proved that if a compact manifold M has
a Spin(7)-structure of type P, then
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where b; denote the Betti numbers. Since for S7x St we have by (S7xS1)=1
and by (S7x S1) = 0, we conclude that S7x S does not admit any Spin(7)-
structure of type P. To our knowledge, these are the first known examples
of Spin(7)-structures of type Ws not globally conformal to one of type P.

However, for each point of S7 x S' there exists a neighborhood S”xU
where the fucntions o such that do = :F%n are defined. Doing the con-
formal changes of metric given by (,)o = €27(,) in S” x U, we get two
Spin(7)-structures of type P defined on S7 x U.

The manifolds M (k) x T ®

Let us consider the manifolds M (k) described in [CFG] as follows.
For a fixed k € R, k # 0, let G(k) be the three-dimensional connected and
solvable (non-nilpotent) Lie group consisting of the matrices

ehz Ok 0 «x

— 0 e 0 vy
a 0 0 1 z]|°

0 0 0 1

where z,y,z € R. Then, a global coordinate system {z,y, z} for G(k) is
given by z(a) =z, y(a) =y, z(a)= z. A straightforward computation
proves that a basis of right invariant 1-forms on G(k) is {dx — kxdz, dy +
kydz,dz}.
The Lie group G(k) can be also described as the semidirect product
R x4 R?, where
¢ : R — Aut(R?)

is the representation defined by

ekz

¢>(t):< 0 e_okz), z€eR.

Therefore G(k) posesses a discrete subgroup I'(K) such that the quo-
tient manifold M (k) = G(k)/I'(k) is compact. Moreover, the one-forms
dx — kxdz, dy + kydz, dz descend to M (k). Let us denote by «,3,~
respectively, the induced one-forms on M (k). Then, we have da = —ka A
Y, dB =kB Ny, dy=0.

Let us consider the product manifold M (k) x T ® where T ? is a five-
dimensional torus. Let n1,72,73,n4,75 be a basis of closed one-forms on
T®. Then in M (k) x T we have the following basis of one-forms
Qo1 =15, g =7, 0 =11, Q2 =12, 03 =, Qg =13, 05 =3, X = 1.

Therefore,

da_1 = day = doy = das = day = dag = 0,

dOég = l{?Oé() VAN s, dOé5 = —kOé() VAN as.
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Let (,) be a tensor metric field on M (k) x T ® given by
<,> =a_1Qa_1+ Z a; Q.
1E€EL 7

We consider the frame {F_1, Ey, E1,... , Eg} of orthonormal vector fields
dual of the one-forms ;. We define the three-fold vector cross products P
and P_ such that {E_1, Fy, E1, ..., Eg} is a Cayley, or Cayley_ frame,
respectively, i.e.,

P(E_1,E;,Ei11) = Eiys ; P(Eija, Eiys, Eite) = £Ei49,

for all i € Z 7. Then fundamental four-forms ¢4 are given as in (2.5) and
(2.6). The exterior differential of the fundamental four-forms ¢4 of Py
are given by

(5.2)
dpr =—ka_1 Nag Nas ANag Nag+ ka1 ANag ANas A ag N\ oy

+ kag ANas ANag N as ANag F kag Aag A ag A as Aas.

Since *dp+ Ay = 0 and dpy # 0, the Spin(7)-structures are of type
W, and they are not of type P. In summary,

P, . P_ecW —P.
In [CFG] are computed the Betti numbers for M(k), i.e.,
bi(M(k)) = ba(M(k)) = 1.
Hence for the product manifold M (k) x T ® we have
by =6, and by = 30.

Therefore, in this case the topological obstruction (5.1) does not work as
in the previous example.
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The manifolds M (k) x H/I" x T 2

Let us consider the product of M(k), the Heisenberg compact nil-
manifold H/I" and a two-dimensional torus. The manifold M (k) has been
considered in the previous example. Let us decribe, briefly, the manifold
H/TI" (see [FI] for more details).

Let H be the Heisenberg group of dimension three, i.e., H is the con-
nected, simply connected and nilpotent Lie group consisting of matrices:

1 = =z
a=|(0 1 vy ],
0 0 1

where z,y, z € R. A (global) coordinate system {x, y, z} over H is given by:
z(a) =z, yla) =y, z(a)=z. It is easy to show that {dz,dy,dz — zdy}
are linearly independent left invariant one-forms of H. Let I' be the
discrete subgroup of all matrices of H which entries x,y, z are integers.
The quotient space H/I' is called the Heisenberg compact nilmanifold.
Since {dx,dy,dz — xdy} are left invariant one-forms under the action of
I', they descend respectively to the one-forms {o, p, u} on H/I" such that
du=pANo.

Let us consider the product manifold M (k) x H/I"' x T 2 where T ? is
a two-dimensional torus. Let 7;,m2 be a basis of closed one-forms on T 2.
Then for M (k) x H/I" x T ? we have the next basis for one-forms

Q_1 =19, Qg =", Q1 =p, Qg =0, O3 = Q,04 = [, 5 = 3, ag = 1.

Therefore,

dOé_l = dao = dOél = dOéQ = dOéG = 0,
dOé3 == /{?Oéo A Qas, dOé4 = a1 N\ a9, dOé5 = —k’Oé() A ag.
Let (,) be a tensor metric field on M (k) x H/I' x T! given by (,) =
a1 ®@a_1+Y cp. @ ®a;. We consider the frame {E_y, Eo, E, ..., Eg}
of orthonormal vector fields dual to the one-forms «;. We define the three-
fold vector cross products Py and P_ such that {E_1, Eg, Eq,... ,Eg} is a

Cayley,; and Cayley_ frame, respectively. The exterior differential of the
fundamental four-forms ¢4 of PL are given by

dpr = —ka_1 Nag Nag Nag N ag+ ka1 ANag ANas A\ ag N\ oy
:]:I{JOéQ/\OéQ/\Oz4/\Oé5/\Oé6:Fk?OéO/\Oé@/\Oél/\Oég/\Ozg

—06_1/\065/\060/\061/\062—04_1/\046/\041/\042/\063.

Since *dp+ A p1 # 0, the Spin(7)-structures are not of type W.
Now we compute pd*pr = *(xdp+ A p1). We obtain

pd ot = F2a ;.
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Since dyp+ # %pd*(pi A @+, the Spin(7)-structures are not of type Ws. In
summary,

P+,P_ EW—<W1 UWQ)
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