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Finite groups with some subgroups of
Sylow subgroups weakly H-embedded

By MOHAMED ASAAD (Cairo)

Abstract. Let G be a finite group and H a subgroup of G. We say that H is
an H-subgroup in G if Ng(H) N HY < H, for all ¢ € G. The subgroup H is called
weakly H-embedded in G if G has a normal subgroup K such that H® = HK and
H N K is an H-subgroup in G, where H is the normal closure of H in G, that is,
H® =< HY : g € G >. Using this concept, we improve and extend Theorem 1.6 and
Corollary 1.9 of [3] and Theorem 3.1 of [17].

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite
group. A class of groups § is a formation if it contains all homomorphic images
of a group in §, and if G/M and G/N are both in §, then G/(M N N) is also
in § for any normal subgroups M and N of G. A formation § is said to be
saturated if G/®(G) € § implies that G € §. For more details about saturated
formations, see [8]. Let il be the class of all supersolvable groups. It is known
that 4l is a saturated formation. Let Zy(G) denote the {I-hypercenter of G, where
Zy(QG) is the product of all normal subgroups H of G such that every chief factor
of G below H has prime order. Clearly, Zo(G) < Zy(G), where Zo(G) is the
hypercenter of G, that is, Z(G) is the largest term of the upper central series
of G. The generalized Fitting subgroup F*(G) of G is the set of all elements z
of G which induce an inner automorphism on every chief factor of G (see [16,
Chapter X, Section 13]). A subgroup H of G is said to be c-normal in G if there
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exists a normal subgroup K of G such that G = HK and H N K < Hg, where
Hg is the largest normal subgroup of G contained in H (see [18]). A subgroup
H of G is said to be an H-subgroup of G if No(H)NHY < H for all g € G
(see [5]). The set of all H-subgroups of G will be denoted by H(G). It is easy
to note that the Sylow subgroups of a normal subgroup of G belong to H(G).
A subgroup H of G is said to be a weakly H-subgroup of G if G has a normal
subgroup K such that G = HK and H N K € H(G) (see [2]). A subgroup H
of G is said to be weakly H-embedded in G if G has a normal subgroup K such
that H = HK and HN K € H(G), where HY is the normal closure of H
in G, that is, H® =< H9 : g € G >, (see [3]). Clearly, c-normal subgroups,
H-subgroups and weakly H-subgroups are weakly H-embedded. The converse is
not true (see [3, Examples 1.3, 1.4 and 1.5]). Using the above concepts, many
interesting results have been obtained. For example, L1 and QIao [17] proved
the following statement: Let p be an odd prime dividing the order of G, and P
a Sylow p-subgroup of G. Suppose that there exists a subgroup D of P with
1 < |D| = d < |P| such that every subgroup H of P with |H| = d is a weakly
‘H-subgroup of G and Ng(H) is p-nilpotent. Then G is p-nilpotent. In [3], the
authors proved that if P is a Sylow p-subgroup of G, then G is p-nilpotent if
and only if Ng(P) is p-nilpotent and every maximal subgroup of P is weakly
‘H-embedded in G. Moreover, working within the framework of formation theory,
they proved: Let § be a saturated formation containing i, and G a group with
a normal subgroup E such that G/E € §. If, for every Sylow subgroup P of
F*(E), every maximal subgroup of P is weakly H-embedded in G, then G € §.
For more results in this direction of study, see [2]-[4], [6]-[7], [11]-[12], [17]-[19],
and [21].

In this paper, we go further in studying the influence of weakly H-embedded
subgroups on the structure of finite groups. More precisely, we prove:

Theorem 1.1. Let G be a group, and P a Sylow p-subgroup of G. Sup-
pose that there exists a subgroup D of P with 1 < |D| = d < |P| such that
every subgroup H of P with |H| = d is weakly H-embedded in G and Ng(H) is
p-nilpotent. Then G is p-nilpotent.

Theorem 1.2. Let § be a saturated formation containing 4, and FE a normal
subgroup of G with G/E € §. For every prime p dividing |E| and every Sylow
p-subgroup E, of E, suppose that E, has a subgroup D with 1 < |D| =d < |E,|
and every subgroup of E, of order p"d (n = 0,1) is weakly H-embedded in G.
Then G € §.
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Theorem 1.3. Let § be a saturated formation containing ${, and FE a normal
subgroup of G with G/E € §. For every prime p dividing |F*(E)| and every Sylow
p-subgroup P of F*(E), suppose that P has a subgroup D with1 < |D| =d < |P)|
and every subgroup of P of order p"d (n = 0, 1) is weakly H-embedded in G. Then
Geg.

Clearly, Theorems 1.1, 1.2 and 1.3 improve and extend the above-mentioned
results and many new related results in the literature.

Remark. Theorems 1.2 and 1.3 are false if we assume n = 0 only as the
following examples show:

Ezample 1.4. Write G = SL(2,3). Then G is the split extension of a quater-
nion group of order 8 by the cyclic group of order 3. Clearly, the center of G is
a unique subgroup of order 2, and so it is weakly H-embedded in G. Then G/P
satisfies the hypothesis of Theorems 1.2 and 1.3 when n = 0, but G ¢ .

Ezample 1.5. Let H =< a,b : a® = b°> = 1,ab = ba > and « be an auto-
morphism of H of order 3 satisfying that a® = b, b* = a='b~!. Let H = Hy,
Hy; =< a',b' > be two copies of H, and denote by G = [H; x Hs] < a > the
corresponding semidirect product. Then G has at least four distinct minimal nor-
mal subgroups H; (i = 1,2,3,4) of G of order 25, and so G is not supersolvable
and if A is any subgroup of order 25, then there exists i € {1,2,3,4} such that
ANH; =1 (see [15]). Now it is easy to note that every subgroup of H; x Hy of
order 52 is not normal in G, so G contains nonnormal subgroups of order 52. Let
A be any nonnormal subgroup of G of order 25. Then A < A® = H, x Hy, = AH;
for some ¢ € {1,2,3,4}, that is, A is weakly H-embedded in G and, since normal
subgroups of order 52 are weakly H-embedded in G, we have every subgroup of
order 5? is weakly H-embedded in G, but G ¢ sl

All unexplained notation and terminology are standard (see [10], [13]-[14]).

2. Preliminaries

Lemma 2.1 ([3, Lemma 2.2]). Let H be a subgroup of G. Then:

(1) If H is weakly H-embedded in G, H < M < G, then H is weakly H-embedded
in M.

(2) Let N be a normal subgroup of G and N < H. Then H is weakly H-
embedded in G if and only if H/N is weakly H-embedded in G/N.
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(3) Let H be a p-subgroup of G for some prime p, and N a normal p’-subgroup
of G. If H is weakly H-embedded in G, then HN/N is weakly H-embedded
in G/N.

Lemma 2.2 ([13, Lemma 3.6.10]). Let K be a normal subgroup of G, and
P be a p-subgroup of G. If Py is a Sylow p-subgroup of PK, then N¢/x (PK/K) =
Na(P)K/K.

Lemma 2.3 ([10, Theorem 8.3.1]). If P is a Sylow p-subgroup of G, with
p odd, and if Ng(Z(J(P))) is p-nilpotent, then G is p-nilpotent.

Lemma 2.4 ([3, Theorem 1.6]). Let p be a prime dividing the order of G,
and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if Ng(P) is
p-nilpotent and every maximal subgroup of P is weakly H-embedded in G.

Lemma 2.5 (]9, Corollary B3]). If H is a 2-subgroup of G such that H €
H(G) and Ng(H)/Cg(H) is a 2-group, then H is a Sylow 2-subgroup of HS.

Lemma 2.6 ([5, Theorem 6(2)]). Let H be an H-subgroup of G. If H is
subnormal in G, then H is normal in G.

Lemma 2.7. Let P be a nontrivial normal p-subgroup of G and L < P.
Then L is weakly H-embedded in G if and only if G has a normal subgroup K
such that L¢ = LK and L N K is normal in G.

PROOF. If G has a normal subgroup K such that L¢ = LK and LN K is
normal in G, then L is weakly H-embedded in G. Conversely, let L be a weakly
H-embedded in G. Then G has a normal subgroup K such that L¢ = LK and
LNK € H(G). It is clear that L N K is subnormal in G. Then, by Lemma 2.6,
LN K is normal in G. U

Lemma 2.8 ([20, Theorem 7.19, Chapter 1]). Let H be a normal subgroup
of G. Then H < Zy(G) if and only if H/®(H) < Zy(G/B(H)).

Lemma 2.9 ([10, Theorem 5.3.13]). For an odd prime p, a p-group P pos-
sesses a characteristic subgroup D of class at most 2 and of exponent p such that
every nontrivial p’-automorphism of P induces a nontrivial automorphism of D.

Lemma 2.10 ([6, Lemma 2.10]). Let P be a normal p-subgroup of a group G.
Let D be a characteristic subgroup of P such that every nontrivial p’-automor-
phism of P induces a nontrivial automorphism of D. If D < Zy(G), then P <
Zy(@).

Lemma 2.11 ([10, Theorem 7.6.1]). Let P be a Sylow p-subgroup of G,
where p is the smallest prime dividing |G|. If P is cyclic, then G is p-nilpotent.
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Lemma 2.12 ([4, Theorem A)]). Let P be a noncyclic Sylow p-subgroup of G,
where p is the smallest prime dividing |G|. Suppose that there exists a subgroup D
of P with 1 < |D| =d < |P|, and every subgroup of P of order p"d (n =0,1) is
weakly H-embedded in G. Then G is p-nilpotent.

Lemma 2.13 ([20, Theorem 6.3, Appendix C]). Let P be a normal
p-subgroup of G such that |G/Cq(P)| is a power of p. Then P < Z,(G).

Lemma 2.14. Let P be a normal 2-subgroup of G. Suppose that P has
a subgroup D with 1 < |D| = d < |P|, and every subgroup of P of order 2™d
(n =0,1) is weakly H-embedded in G. Then P < Z(G).

PROOF. Let @ be any Sylow subgroup of G with (2,|Q|) = 1. Then, by
Lemmas 2.11 and 2.12, PQ is 2-nilpotent, and so PQ = P x ). Hence, by
Lemma 2.13, P < Z(G). O

Lemma 2.15 ([1, Lemma 2.19]). Le § be a saturated formation containing i\.
Let P be a normal p-subgroup of G with G/P € §. If P < Zy(G), then G € §.
Lemma 2.16 ([16, Chapter X]). Let G be a group. Then:
(1) If F*(Q) is solvable, then F*(G) = F(G).
(2) Ca(F(G)) < F(G).
Lemma 2.17 ([20, Theorem 7.15, Chapter 1]). Let H be a normal subgroup
of G and H < Zy(QG). Then G/C¢(H) is supersolvable.

3. Proofs

PROOF OF THEOREM 1.1. Suppose that the theorem is false, and let G be
a counterexample of minimal order. Then

(1) Op (G) =1L

Suppose that O, (G) # 1. Then, by Lemmas 2.1(3) and 2.2, G/O,(G)
satisfies the hypothesis of the theorem. Hence, by the minimal choice of G,
G/O, (G) is p-nilpotent, and so G is p-nilpotent, a contradiction.

(2) If K is a proper subgroup of G and P, < K, where P; is a Sylow
p-subgroup of K such that P, < P and |P;| > d, then K is p-nilpotent.

By Lemma 2.1(1), every subgroup H of P, with |H| = d is weakly H-
embedded in K. Since Ng(H) < Ng(H), it follows that Ng(H) is
p-nilpotent. Then K satisfies the hypothesis of the theorem. The minimal choice
of GG implies that K is p-nilpotent.
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(3) If p > 2, then O,(G) # 1.

Suppose that O,(G)=1. Then P<Ng(Z(J(P)))<G. By (2), Na(Z(J(P)))
is p-nilpotent. Hence, by Lemma 2.3, G is p-nilpotent, a contradiction.

(4) If p =2 and O3(G) =1, then |P| > 2d.

Suppose that |P| < 2d. By the hypothesis of the theorem, |P| > 2d. Then
|P| = 2d. By (2), Ng(P) is 2-nilpotent. Hence, by Lemma 2.4, G is 2-nilpotent,
a contradiction.

(5) If p =2, then O5(G) # 1.

Suppose that O2(G) = 1. Let H be a subgroup of P of order d. Then, by the
hypothesis of the theorem, H is weakly H-embedded in GG, and so G has a normal
subgroup K such that HY = HK and H N K € H(G). As O9(G) = 1, we have
K # 1. Suppose that K # G. If PK < @G, then, by (2), PK is 2-nilpotent,
and so K is 2-nilpotent. By (1), K is a normal 2-group, a contradiction. Hence
G = PK, and so P £ K. As G is not 2-nilpotent, we have PN K # 1. Let P,
be a maximal subgroup of P such that PN K < P;. Clearly, Py K < G. By (4),
|Py] > d. Then, by (2), PLK is 2-nilpotent, and so K is 2-nilpotent. Hence,
by (1), K is a normal 2-group, a contradiction. Thus K = G, so H® = K = G
and H € H(G). By the hypothesis of the theorem, Ng(H) is 2-nilpotent, and so
Ng(H)/Cq(H) is a 2-group. Hence, by Lemma 2.5, H is a Sylow 2-subgroup of
H% = @G, a contradiction.

(6) O,(G) # 1, where p > 2.

It follows from (3) and (5).

(7) Let N be a minimal normal subgroup of G such that N < O,(G). Then
|N| < d, G/N is p-nilpotent and G is p-solvable.

Suppose that |N| > d. If [N| = d, then, by the hypothesis of the theorem,
N¢(N) = G is p-nilpotent, a contradiction. If |N| > d, then, by the hypothesis
of the theorem, every subgroup L of N with |L| = d is weakly H-embedded
in G. Then, by Lemma 2.7, G has a normal subgroup K such that L¢ = LK
and L N K is normal in G. As N is a minimal normal subgroup of GG, we have
N = L% = LK and LN K = 1. Then K is a normal subgroup of G such
that 1 < K < N, a contradiction. Thus |N| < d. By Lemma 2.1(2), every
subgroup L/N with |L| = d is weakly H-embedded in G/N. By Lemma 2.2,
Ng/n(L/N) = Ng(L)/N is p-nilpotent. Then G/N satisfies the hypothesis of
the theorem. Hence, by the minimal choice of G, G/N is p-nilpotent, and so G is
p-solvable.
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(8) G has a unique minimal normal subgroup N and ®(G) = 1.

See the argument of Part (6) used in the proof of [17, Theorem 3.1].

(9) N = 0y(G) = Ca(N).

See the argument of Part (7) used in the proof of [17, Theorem 3.1].

(10) |P] > pd.

Suppose that |P| < pd. By the hypothesis of the theorem, |P| > pd. Then
|P| = pd. By (9), P is not normal in G. By (2), Ng(P) is p-nilpotent. Then,
by Lemma 2.4, G is p-nilpotent, a contradiction.

(11) The final contradiction.

By (6), (9) and (7), G/N = G/O,(G) is p-nilpotent and |N| < d. Then G
has a normal subgroup M such that |G/M| = p. By (10), |P N M| > d, where
PN M is a Sylow p-subgroup of M. Then, by (2), M is p-nilpotent, and so G is
p-nilpotent, a contradiction. ([

Corollary 3.1. Let p be a prime dividing the order of G, and P a Sylow
p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < |D| =
d < |P| such that every subgroup H of P of order d is c-normal in G and N¢(H)
is p-nilpotent. Then G is p-nilpotent.

Corollary 3.2. Let p be a prime dividing the order of G and P a Sylow
p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < |D| =
d < |P| such that every subgroup H of P of order d belongs to H(G) and N¢(H)
is p-nilpotent. Then G is p-nilpotent.

We now prove:

Theorem 3.3. Let P be a nontrivial normal p-subgroup of G. If every
maximal subgroup of P is weakly H-embedded in G, then P < Zy(G).

PROOF. Suppose that the theorem is false and consider a counterexample
(G, P) for which |G| + | P| is minimal. Then

(1) ®(P) = 1.

Suppose that ®(P) # 1. Then, by Lemmas 2.1(2), (G/®(P), P/®(P)) satis-
fies the hypothesis of the theorem. Hence, by the minimal choice of (G, P), the
theorem is true for (G/®(P), P/®(P)), and so P/®(P) < Zy(G/®(P)). Applying
Lemma 2.8, P < Zy(G), a contradiction.

(2) Let N be a minimal normal subgroup of G with N < P. Then N # P.

Suppose that N = P. Let L be a maximal subgroup of N = P. Then, by the
hypothesis of the theorem, L is weakly H-embedded in G. Hence, by Lemma 2.7,
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G has a normal subgroup K such that LY = LK and LN K is normal in G. Since
L is not normal in G, it follows that K # 1. As N = P is a minimal normal
subgroup of G, we have N = K. Then LN K = LN P = L is normal in G,

a contradiction.

(3) Let H be a normal subgroup of G contained in P. If |H| = p, then
P < Zy(G).

By Lemma 2.1(2), (G/H, P/ H) satisfies the hypothesis of the theorem. Then,
by the minimal choice of (G, P), the theorem is true for (G/H,P/H), and so
P/H < Zy(G/H). Hence P < Zy(G).

(4) Let N be a minimal normal subgroup of G with N < P. Then there
exists a maximal subgroup L of P such that L is not normal in G and N £ L.

By (2), N # P. By (1), ®(P) = 1. Then there exists a maximal subgroup L
of P such that N £ L, and so P = NL. Suppose that L is normal in G. Then
LN N =1, and so |[N| =p. By (3), P < Zy(G), a contradiction.

(5) The final contradiction.

By (4), P possesses a minimal normal subgroup N of G, and there exists
a maximal subgroup L of P such that L is not normal in G and N « L. By the
hypothesis of the theorem, L is weakly H-embedded in G. By Lemma 2.7, G has
a normal subgroup K such that LY = LK and L N K is normal in G. As L is
not normal in G, we have L < L% and so L¢ = P. If LN K = 1, then |K| = p,
and so, by (3), P < Zy(G), a contradiction. Thus LN K # 1. As N £ L,
we have NN(LNK) = 1. By Lemma 2.1(2), (G/(LNK), P/(LNK)) satisfies the
hypothesis of the theorem. Hence, by the minimal choice of (G, P), the theorem is
true for (G/(LNK), P/(LNK)), and so P/(LNK) < Zy(G/(LNK)). Since N(LN
K)/(LNK) < P/(LNK) < Zy(G/(LNK)), it follows easily that N(LNK)/(LNK)
is of order p, and so |[N| = p. Then, by (3), P < Zy(G), a contradiction. O

We need the following lemma:

Lemma 3.4. Let P be a normal p-subgroup of G of exponent p. If every
subgroup of P of order p is weakly H-embedded in G, then P < Zy(G).

PROOF. Suppose that the lemma is false and consider a counterexample
(G, P) for which |G| + |P| is minimal. Then P £ Zy(G), and so P contains
a subgroup H of order p such that H ﬁ Zy(G). Then H is not normal in G. By the
hypothesis of the lemma, H is weakly H-embedded in G. Hence, by Lemma 2.7,
G has a normal subgroup K such that H® = HK and HN K = 1. Clearly,
HY < P. By Lemma 2.1(1), (G, K), satisfies the hypothesis of the lemma. Then,
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by the minimal choice of (G, P), the lemma is true for (G, K), and so K < Zy(G).
Hence HE < Zy(G), and so H < Zy(G), a contradiction. O

We now prove the following two results:

Lemma 3.5. Let P be a normal p-subgroup of G, where p > 2. If every
subgroup of P of order p is weakly H-embedded in G, then P < Zy(G).

ProoOF. By Lemma 2.9, P possesses a characteristic subgroup D of class
at most 2 and of exponent p such that every nontrivial p’-automorphism of P
induces a nontrivial automorphism of D. By Lemma 2.1(1), every subgroup of D
of order p is weakly H-embedded in G. Then, by Lemma 3.4, D < Zy(G). Hence,
by Lemma 2.10, P < Zy(G). O

Theorem 3.6. Let P be a normal p-subgroup of G, where p > 2. Suppose
that there exists a subgroup D of P with 1 < |D| = d < |P| such that every
subgroup of P of order p"d (n = 0,1) is weakly H-embedded in G. Then P <
Zy(@).

PROOF. Suppose that the theorem is false and consider a counterexample
(G, P) for which |G| + | P| is minimal. Then

(1) d > p.

Suppose that d = p. Then, by Lemma 3.5, P < Zy(G), a contradiction.

(2) [P| > pd.

Suppose that |P| < pd. But, by the hypothesis of the theorem, |P| > pd.
Then |P| = pd. Hence, by the hypothesis of the theorem, every maximal sub-
group of P is weakly H-embedded in G. Applying Theorem 3.3, P < Zy(G),
a contradiction.

(3) Let N be a minimal normal subgroup of G contained in P. Then N # P
and |N| > p.

Suppose that N = P. By (2), |P| > pd. Then P contains a proper
subgroup L with |L| = d. By the hypothesis of the theorem, L is weakly
H-embedded in G. Then, by Lemma 2.7, G has a normal subgroup K such
that L¢ = LK and L N K is normal in G. Clearly, LG < P. Since N = P is
a minimal normal subgroup of G, it follows that L& = P =N and LN K = 1.
Then K is a nontrivial normal subgroup of G with K < P, a contradiction. Thus
N # P. Suppose that |[N| = p. Then, by (1), d > p = |N|.
By Lemma 2.1(2), (G/N, P/N) satisfies the hypothesis of the theorem. Then,
by the minimal choice of (G, P), the theorem is true for (G/N, P/N), and so
P/N < Zy(G/N). Hence P < Zy(G), a contradiction. Thus |N| > p.
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(4) The final contradiction.

Let N be a minimal normal subgroup of G contained in P. Then, by (3),
N < P and |N| > p. Suppose that |[N| > pd. By Lemma 2.1(1), (G, N) satisfies
the hypothesis of the theorem. Then, by the minimal choice of (G, P), the theorem
is true for (G, N). Hence N < Zy(G), and so |N| = p, a contradiction. Suppose
now that |[N| < d. If |[N| < d, then, by Lemma 2.1(2), (G/N, P/N) satisfies the
hypothesis of the theorem, and so, by the minimal choice of (G, P), the theorem is
true for (G/N, P/N), and so P/N < Zy(G/N). Hence P/N contains a maximal
subgroup, say, L/N such that L/N is normal in G/N. By (2), |L| > d. Obviously,
(G, L) satisfies the hypothesis of the theorem. Then, by the minimal choice of
(G, P), the theorem is true for (G, L), and so L < Zy(G). Since N < L < Zy(G),
it follows that |N| = p, a contradiction. Thus |N| = d, and so, by Lemmas 2.1(2)
and 3.5, P/N < Zy(G/N). Let L/N be a minimal normal subgroup of G/N with
L/N < P/N. Since P/N < Zy(G/N), it follows that |L/N| = p, and so |L| = pd.
As above, L < Zy(G), and so |N| = p, a contradiction. O

PRrROOF OF THEOREM 1.2. Suppose that the theorem is false and consider a
counterexample (G, E) for which |G|+ |E| is minimal. If E = E,,, then, by Theo-
rem 3.6 and Lemma 2.14, E, < Zy(G). Hence, by Lemma 2.15, G € §, a contra-
diction. Thus, E, < E, and so by Lemmas 2.1(1) and 2.12, E possesses a Sylow
tower of supersolvable type. Then F, is normal in G, where p is the largest
prime dividing |E|. By Lemma 2.1(3), (G/E,, E/E,) satisfies the hypothesis of
the theorem. Then, by the minimal choice of (G, F), the theorem is true for
(G/E,,E/E,), and so G/E, € §. As above, G € §, a contradiction. O

PROOF OF THEOREM 1.3. By Lemmas 2.1(1) and 2.12, F*(E) possesses
a Sylow tower of supersolvable type, and so, by Lemma 2.16(1), we get that
F*(FE) = F(E). Hence, by Theorem 3.6 and Lemma 2.14, F(E) < Zy(G), and so,
by Lemma 2.17, G/Cq(F(E)) € 4. Since § is a formation containing &,
it follows that G/Cg(F(E)) = G/(Ca(F(E)) N E) € §. But, by Lemma 2.16(2),
Cp(F(F)) < F(E). Then G/F(FE) € §, and hence, by Theorem 1.2, G € 5. O
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