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Finite groups with some subgroups of
Sylow subgroups weakly H-embedded

By MOHAMED ASAAD (Cairo)

Abstract. Let G be a finite group and H a subgroup of G. We say that H is

an H-subgroup in G if NG(H) ∩ Hg ≤ H, for all g ∈ G. The subgroup H is called

weakly H-embedded in G if G has a normal subgroup K such that HG = HK and

H ∩ K is an H-subgroup in G, where HG is the normal closure of H in G, that is,

HG =< Hg : g ∈ G >. Using this concept, we improve and extend Theorem 1.6 and

Corollary 1.9 of [3] and Theorem 3.1 of [17].

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite

group. A class of groups F is a formation if it contains all homomorphic images

of a group in F, and if G/M and G/N are both in F, then G/(M ∩ N) is also

in F for any normal subgroups M and N of G. A formation F is said to be

saturated if G/Φ(G) ∈ F implies that G ∈ F. For more details about saturated

formations, see [8]. Let U be the class of all supersolvable groups. It is known

that U is a saturated formation. Let ZU(G) denote the U-hypercenter of G, where

ZU(G) is the product of all normal subgroups H of G such that every chief factor

of G below H has prime order. Clearly, Z∞(G) ≤ ZU(G), where Z∞(G) is the

hypercenter of G, that is, Z∞(G) is the largest term of the upper central series

of G. The generalized Fitting subgroup F ∗(G) of G is the set of all elements x

of G which induce an inner automorphism on every chief factor of G (see [16,

Chapter X, Section 13]). A subgroup H of G is said to be c-normal in G if there
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exists a normal subgroup K of G such that G = HK and H ∩K 6 HG, where

HG is the largest normal subgroup of G contained in H (see [18]). A subgroup

H of G is said to be an H-subgroup of G if NG(H) ∩ Hg 6 H for all g ∈ G

(see [5]). The set of all H-subgroups of G will be denoted by H(G). It is easy

to note that the Sylow subgroups of a normal subgroup of G belong to H(G).

A subgroup H of G is said to be a weakly H-subgroup of G if G has a normal

subgroup K such that G = HK and H ∩ K ∈ H(G) (see [2]). A subgroup H

of G is said to be weakly H-embedded in G if G has a normal subgroup K such

that HG = HK and H ∩ K ∈ H(G), where HG is the normal closure of H

in G, that is, HG =< Hg : g ∈ G >, (see [3]). Clearly, c-normal subgroups,

H-subgroups and weakly H-subgroups are weakly H-embedded. The converse is

not true (see [3, Examples 1.3, 1.4 and 1.5]). Using the above concepts, many

interesting results have been obtained. For example, Li and Qiao [17] proved

the following statement: Let p be an odd prime dividing the order of G, and P

a Sylow p-subgroup of G. Suppose that there exists a subgroup D of P with

1 < |D| = d < |P | such that every subgroup H of P with |H| = d is a weakly

H-subgroup of G and NG(H) is p-nilpotent. Then G is p-nilpotent. In [3], the

authors proved that if P is a Sylow p-subgroup of G, then G is p-nilpotent if

and only if NG(P ) is p-nilpotent and every maximal subgroup of P is weakly

H-embedded in G. Moreover, working within the framework of formation theory,

they proved: Let F be a saturated formation containing U, and G a group with

a normal subgroup E such that G/E ∈ F. If, for every Sylow subgroup P of

F ∗(E), every maximal subgroup of P is weakly H-embedded in G, then G ∈ F.

For more results in this direction of study, see [2]–[4], [6]–[7], [11]–[12], [17]–[19],

and [21].

In this paper, we go further in studying the influence of weakly H-embedded

subgroups on the structure of finite groups. More precisely, we prove:

Theorem 1.1. Let G be a group, and P a Sylow p-subgroup of G. Sup-

pose that there exists a subgroup D of P with 1 < |D| = d < |P | such that

every subgroup H of P with |H| = d is weakly H-embedded in G and NG(H) is

p-nilpotent. Then G is p-nilpotent.

Theorem 1.2. Let F be a saturated formation containing U, and E a normal

subgroup of G with G/E ∈ F. For every prime p dividing |E| and every Sylow

p-subgroup Ep of E, suppose that Ep has a subgroup D with 1 < |D| = d < |Ep|
and every subgroup of Ep of order pnd (n = 0, 1) is weakly H-embedded in G.

Then G ∈ F.



Finite groups with some subgroups. . . 477

Theorem 1.3. Let F be a saturated formation containing U, and E a normal

subgroup of G with G/E ∈ F. For every prime p dividing |F ∗(E)| and every Sylow

p-subgroup P of F ∗(E), suppose that P has a subgroup D with 1 < |D| = d < |P |
and every subgroup of P of order pnd (n = 0, 1) is weaklyH-embedded in G. Then

G ∈ F.

Clearly, Theorems 1.1, 1.2 and 1.3 improve and extend the above-mentioned

results and many new related results in the literature.

Remark. Theorems 1.2 and 1.3 are false if we assume n = 0 only as the

following examples show:

Example 1.4. Write G = SL(2, 3). Then G is the split extension of a quater-

nion group of order 8 by the cyclic group of order 3. Clearly, the center of G is

a unique subgroup of order 2, and so it is weakly H-embedded in G. Then G/P

satisfies the hypothesis of Theorems 1.2 and 1.3 when n = 0, but G /∈ U.

Example 1.5. Let H =< a, b : a5 = b5 = 1, ab = ba > and α be an auto-

morphism of H of order 3 satisfying that aα = b, bα = a−1b−1. Let H = H1,

H2 =< a8, b8 > be two copies of H, and denote by G = [H1 × H2] < α > the

corresponding semidirect product. Then G has at least four distinct minimal nor-

mal subgroups Hi (i = 1, 2, 3, 4) of G of order 25, and so G is not supersolvable

and if A is any subgroup of order 25, then there exists i ∈ {1, 2, 3, 4} such that

A ∩Hi = 1 (see [15]). Now it is easy to note that every subgroup of H1 ×H2 of

order 53 is not normal in G, so G contains nonnormal subgroups of order 52. Let

A be any nonnormal subgroup of G of order 25. Then A < AG = H1×H2 = AHi

for some i ∈ {1, 2, 3, 4}, that is, A is weakly H-embedded in G and, since normal

subgroups of order 52 are weakly H-embedded in G, we have every subgroup of

order 52 is weakly H-embedded in G, but G /∈ U.

All unexplained notation and terminology are standard (see [10], [13]–[14]).

2. Preliminaries

Lemma 2.1 ([3, Lemma 2.2]). Let H be a subgroup of G. Then:

(1) IfH is weaklyH-embedded inG,H ≤M ≤ G, thenH is weaklyH-embedded

in M .

(2) Let N be a normal subgroup of G and N ≤ H. Then H is weakly H-
embedded in G if and only if H/N is weakly H-embedded in G/N .
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(3) Let H be a p-subgroup of G for some prime p, and N a normal p′-subgroup

of G. If H is weakly H-embedded in G, then HN/N is weakly H-embedded

in G/N .

Lemma 2.2 ([13, Lemma 3.6.10]). Let K be a normal subgroup of G, and

P be a p-subgroup ofG. If P1 is a Sylow p-subgroup of PK, thenNG/K(PK/K) =

NG(P1)K/K.

Lemma 2.3 ([10, Theorem 8.3.1]). If P is a Sylow p-subgroup of G, with

p odd, and if NG(Z(J(P ))) is p-nilpotent, then G is p-nilpotent.

Lemma 2.4 ([3, Theorem 1.6]). Let p be a prime dividing the order of G,

and P a Sylow p-subgroup of G. Then G is p-nilpotent if and only if NG(P ) is

p-nilpotent and every maximal subgroup of P is weakly H-embedded in G.

Lemma 2.5 ([9, Corollary B3]). If H is a 2-subgroup of G such that H ∈
H(G) and NG(H)/CG(H) is a 2-group, then H is a Sylow 2-subgroup of HG.

Lemma 2.6 ([5, Theorem 6(2)]). Let H be an H-subgroup of G. If H is

subnormal in G, then H is normal in G.

Lemma 2.7. Let P be a nontrivial normal p-subgroup of G and L ≤ P .

Then L is weakly H-embedded in G if and only if G has a normal subgroup K

such that LG = LK and L ∩K is normal in G.

Proof. If G has a normal subgroup K such that LG = LK and L ∩ K is

normal in G, then L is weakly H-embedded in G. Conversely, let L be a weakly

H-embedded in G. Then G has a normal subgroup K such that LG = LK and

L ∩K ∈ H(G). It is clear that L ∩K is subnormal in G. Then, by Lemma 2.6,

L ∩K is normal in G. �

Lemma 2.8 ([20, Theorem 7.19, Chapter 1]). Let H be a normal subgroup

of G. Then H ≤ ZU(G) if and only if H/Φ(H) ≤ ZU(G/Φ(H)).

Lemma 2.9 ([10, Theorem 5.3.13]). For an odd prime p, a p-group P pos-

sesses a characteristic subgroup D of class at most 2 and of exponent p such that

every nontrivial p′-automorphism of P induces a nontrivial automorphism of D.

Lemma 2.10 ([6, Lemma 2.10]). Let P be a normal p-subgroup of a groupG.

Let D be a characteristic subgroup of P such that every nontrivial p′-automor-

phism of P induces a nontrivial automorphism of D. If D ≤ ZU(G), then P ≤
ZU(G).

Lemma 2.11 ([10, Theorem 7.6.1]). Let P be a Sylow p-subgroup of G,

where p is the smallest prime dividing |G|. If P is cyclic, then G is p-nilpotent.
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Lemma 2.12 ([4, Theorem A]). Let P be a noncyclic Sylow p-subgroup of G,

where p is the smallest prime dividing |G|. Suppose that there exists a subgroupD
of P with 1 < |D| = d < |P |, and every subgroup of P of order pnd (n = 0, 1) is

weakly H-embedded in G. Then G is p-nilpotent.

Lemma 2.13 ([20, Theorem 6.3, Appendix C]). Let P be a normal

p-subgroup of G such that |G/CG(P )| is a power of p. Then P ≤ Z∞(G).

Lemma 2.14. Let P be a normal 2-subgroup of G. Suppose that P has

a subgroup D with 1 < |D| = d < |P |, and every subgroup of P of order 2nd

(n = 0, 1) is weakly H-embedded in G. Then P ≤ Z∞(G).

Proof. Let Q be any Sylow subgroup of G with (2, |Q|) = 1. Then, by

Lemmas 2.11 and 2.12, PQ is 2-nilpotent, and so PQ = P × Q. Hence, by

Lemma 2.13, P ≤ Z∞(G). �

Lemma 2.15 ([1, Lemma 2.19]). Le F be a saturated formation containing U.

Let P be a normal p-subgroup of G with G/P ∈ F. If P ≤ ZU(G), then G ∈ F.

Lemma 2.16 ([16, Chapter X]). Let G be a group. Then:

(1) If F ∗(G) is solvable, then F ∗(G) = F (G).

(2) CG(F ∗(G)) ≤ F (G).

Lemma 2.17 ([20, Theorem 7.15, Chapter 1]). Let H be a normal subgroup

of G and H ≤ ZU(G). Then G/CG(H) is supersolvable.

3. Proofs

Proof of Theorem 1.1. Suppose that the theorem is false, and let G be

a counterexample of minimal order. Then

(1) Op′(G) = 1.

Suppose that Op′(G) 6= 1. Then, by Lemmas 2.1(3) and 2.2, G/Op′(G)

satisfies the hypothesis of the theorem. Hence, by the minimal choice of G,

G/Op′(G) is p-nilpotent, and so G is p-nilpotent, a contradiction.

(2) If K is a proper subgroup of G and P1 6 K, where P1 is a Sylow

p-subgroup of K such that P1 ≤ P and |P1| > d, then K is p-nilpotent.

By Lemma 2.1(1), every subgroup H of P1 with |H| = d is weakly H-

embedded in K. Since NK(H) ≤ NG(H), it follows that NK(H) is

p-nilpotent. Then K satisfies the hypothesis of the theorem. The minimal choice

of G implies that K is p-nilpotent.
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(3) If p > 2, then Op(G) 6= 1.

Suppose that Op(G)=1. Then P ≤NG(Z(J(P )))<G. By (2), NG(Z(J(P )))

is p-nilpotent. Hence, by Lemma 2.3, G is p-nilpotent, a contradiction.

(4) If p = 2 and O2(G) = 1, then |P | > 2d.

Suppose that |P | 6 2d. By the hypothesis of the theorem, |P | ≥ 2d. Then

|P | = 2d. By (2), NG(P ) is 2-nilpotent. Hence, by Lemma 2.4, G is 2-nilpotent,

a contradiction.

(5) If p = 2, then O2(G) 6= 1.

Suppose that O2(G) = 1. Let H be a subgroup of P of order d. Then, by the

hypothesis of the theorem, H is weakly H-embedded in G, and so G has a normal

subgroup K such that HG = HK and H ∩K ∈ H(G). As O2(G) = 1, we have

K 6= 1. Suppose that K 6= G. If PK < G, then, by (2), PK is 2-nilpotent,

and so K is 2-nilpotent. By (1), K is a normal 2-group, a contradiction. Hence

G = PK, and so P � K. As G is not 2-nilpotent, we have P ∩K 6= 1. Let P1

be a maximal subgroup of P such that P ∩K ≤ P1. Clearly, P1K < G. By (4),

|P1| > d. Then, by (2), P1K is 2-nilpotent, and so K is 2-nilpotent. Hence,

by (1), K is a normal 2-group, a contradiction. Thus K = G, so HG = K = G

and H ∈ H(G). By the hypothesis of the theorem, NG(H) is 2-nilpotent, and so

NG(H)/CG(H) is a 2-group. Hence, by Lemma 2.5, H is a Sylow 2-subgroup of

HG = G, a contradiction.

(6) Op(G) 6= 1, where p ≥ 2.

It follows from (3) and (5).

(7) Let N be a minimal normal subgroup of G such that N ≤ Op(G). Then

|N | < d, G/N is p-nilpotent and G is p-solvable.

Suppose that |N | ≥ d. If |N | = d, then, by the hypothesis of the theorem,

NG(N) = G is p-nilpotent, a contradiction. If |N | > d, then, by the hypothesis

of the theorem, every subgroup L of N with |L| = d is weakly H-embedded

in G. Then, by Lemma 2.7, G has a normal subgroup K such that LG = LK

and L ∩ K is normal in G. As N is a minimal normal subgroup of G, we have

N = LG = LK and L ∩ K = 1. Then K is a normal subgroup of G such

that 1 < K < N , a contradiction. Thus |N | < d. By Lemma 2.1(2), every

subgroup L/N with |L| = d is weakly H-embedded in G/N . By Lemma 2.2,

NG/N (L/N) = NG(L)/N is p-nilpotent. Then G/N satisfies the hypothesis of

the theorem. Hence, by the minimal choice of G, G/N is p-nilpotent, and so G is

p-solvable.
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(8) G has a unique minimal normal subgroup N and Φ(G) = 1.

See the argument of Part (6) used in the proof of [17, Theorem 3.1].

(9) N = Op(G) = CG(N).

See the argument of Part (7) used in the proof of [17, Theorem 3.1].

(10) |P | > pd.

Suppose that |P | ≤ pd. By the hypothesis of the theorem, |P | ≥ pd. Then

|P | = pd. By (9), P is not normal in G. By (2), NG(P ) is p-nilpotent. Then,

by Lemma 2.4, G is p-nilpotent, a contradiction.

(11) The final contradiction.

By (6), (9) and (7), G/N = G/Op(G) is p-nilpotent and |N | < d. Then G

has a normal subgroup M such that |G/M | = p. By (10), |P ∩M | > d, where

P ∩M is a Sylow p-subgroup of M . Then, by (2), M is p-nilpotent, and so G is

p-nilpotent, a contradiction. �

Corollary 3.1. Let p be a prime dividing the order of G, and P a Sylow

p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < |D| =

d < |P | such that every subgroup H of P of order d is c-normal in G and NG(H)

is p-nilpotent. Then G is p-nilpotent.

Corollary 3.2. Let p be a prime dividing the order of G and P a Sylow

p-subgroup of G. Suppose that there exists a subgroup D of P with 1 < |D| =

d < |P | such that every subgroup H of P of order d belongs to H(G) and NG(H)

is p-nilpotent. Then G is p-nilpotent.

We now prove:

Theorem 3.3. Let P be a nontrivial normal p-subgroup of G. If every

maximal subgroup of P is weakly H-embedded in G, then P ≤ ZU(G).

Proof. Suppose that the theorem is false and consider a counterexample

(G,P ) for which |G|+ |P | is minimal. Then

(1) Φ(P ) = 1.

Suppose that Φ(P ) 6= 1. Then, by Lemmas 2.1(2), (G/Φ(P ), P/Φ(P )) satis-

fies the hypothesis of the theorem. Hence, by the minimal choice of (G,P ), the

theorem is true for (G/Φ(P ), P/Φ(P )), and so P/Φ(P ) ≤ ZU(G/Φ(P )). Applying

Lemma 2.8, P ≤ ZU(G), a contradiction.

(2) Let N be a minimal normal subgroup of G with N ≤ P . Then N 6= P .

Suppose that N = P . Let L be a maximal subgroup of N = P . Then, by the

hypothesis of the theorem, L is weakly H-embedded in G. Hence, by Lemma 2.7,
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G has a normal subgroup K such that LG = LK and L∩K is normal in G. Since

L is not normal in G, it follows that K 6= 1. As N = P is a minimal normal

subgroup of G, we have N = K. Then L ∩ K = L ∩ P = L is normal in G,

a contradiction.

(3) Let H be a normal subgroup of G contained in P . If |H| = p, then

P ≤ ZU(G).

By Lemma 2.1(2), (G/H,P/H) satisfies the hypothesis of the theorem. Then,

by the minimal choice of (G,P ), the theorem is true for (G/H,P/H), and so

P/H ≤ ZU(G/H). Hence P ≤ ZU(G).

(4) Let N be a minimal normal subgroup of G with N ≤ P . Then there

exists a maximal subgroup L of P such that L is not normal in G and N � L.

By (2), N 6= P . By (1), Φ(P ) = 1. Then there exists a maximal subgroup L

of P such that N � L, and so P = NL. Suppose that L is normal in G. Then

L ∩N = 1, and so |N | = p. By (3), P ≤ ZU(G), a contradiction.

(5) The final contradiction.

By (4), P possesses a minimal normal subgroup N of G, and there exists

a maximal subgroup L of P such that L is not normal in G and N � L. By the

hypothesis of the theorem, L is weakly H-embedded in G. By Lemma 2.7, G has

a normal subgroup K such that LG = LK and L ∩ K is normal in G. As L is

not normal in G, we have L < LG, and so LG = P . If L ∩K = 1, then |K| = p,

and so, by (3), P ≤ ZU(G), a contradiction. Thus L ∩ K 6= 1. As N � L,

we have N ∩ (L∩K) = 1. By Lemma 2.1(2), (G/(L∩K), P/(L∩K)) satisfies the

hypothesis of the theorem. Hence, by the minimal choice of (G,P ), the theorem is

true for (G/(L∩K), P/(L∩K)), and so P/(L∩K) ≤ ZU(G/(L∩K)). Since N(L∩
K)/(L∩K) ≤ P/(L∩K) ≤ ZU(G/(L∩K)), it follows easily that N(L∩K)/(L∩K)

is of order p, and so |N | = p. Then, by (3), P ≤ ZU(G), a contradiction. �

We need the following lemma:

Lemma 3.4. Let P be a normal p-subgroup of G of exponent p. If every

subgroup of P of order p is weakly H-embedded in G, then P ≤ ZU(G).

Proof. Suppose that the lemma is false and consider a counterexample

(G,P ) for which |G| + |P | is minimal. Then P � ZU(G), and so P contains

a subgroupH of order p such thatH � ZU(G). ThenH is not normal inG. By the

hypothesis of the lemma, H is weakly H-embedded in G. Hence, by Lemma 2.7,

G has a normal subgroup K such that HG = HK and H ∩ K = 1. Clearly,

HG ≤ P . By Lemma 2.1(1), (G,K), satisfies the hypothesis of the lemma. Then,
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by the minimal choice of (G,P ), the lemma is true for (G,K), and so K ≤ ZU(G).

Hence HG ≤ ZU(G), and so H ≤ ZU(G), a contradiction. �

We now prove the following two results:

Lemma 3.5. Let P be a normal p-subgroup of G, where p > 2. If every

subgroup of P of order p is weakly H-embedded in G, then P ≤ ZU(G).

Proof. By Lemma 2.9, P possesses a characteristic subgroup D of class

at most 2 and of exponent p such that every nontrivial p′-automorphism of P

induces a nontrivial automorphism of D. By Lemma 2.1(1), every subgroup of D

of order p is weakly H-embedded in G. Then, by Lemma 3.4, D ≤ ZU(G). Hence,

by Lemma 2.10, P ≤ ZU(G). �

Theorem 3.6. Let P be a normal p-subgroup of G, where p > 2. Suppose

that there exists a subgroup D of P with 1 < |D| = d < |P | such that every

subgroup of P of order pnd (n = 0, 1) is weakly H-embedded in G. Then P ≤
ZU(G).

Proof. Suppose that the theorem is false and consider a counterexample

(G,P ) for which |G|+ |P | is minimal. Then

(1) d > p.

Suppose that d = p. Then, by Lemma 3.5, P ≤ ZU(G), a contradiction.

(2) |P | > pd.

Suppose that |P | ≤ pd. But, by the hypothesis of the theorem, |P | ≥ pd.

Then |P | = pd. Hence, by the hypothesis of the theorem, every maximal sub-

group of P is weakly H-embedded in G. Applying Theorem 3.3, P ≤ ZU(G),

a contradiction.

(3) Let N be a minimal normal subgroup of G contained in P . Then N 6= P

and |N | > p.

Suppose that N = P . By (2), |P | > pd. Then P contains a proper

subgroup L with |L| = d. By the hypothesis of the theorem, L is weakly

H-embedded in G. Then, by Lemma 2.7, G has a normal subgroup K such

that LG = LK and L ∩ K is normal in G. Clearly, LG ≤ P . Since N = P is

a minimal normal subgroup of G, it follows that LG = P = N and L ∩ K = 1.

Then K is a nontrivial normal subgroup of G with K < P , a contradiction. Thus

N 6= P . Suppose that |N | = p. Then, by (1), d > p = |N |.
By Lemma 2.1(2), (G/N,P/N) satisfies the hypothesis of the theorem. Then,

by the minimal choice of (G,P ), the theorem is true for (G/N,P/N), and so

P/N ≤ ZU(G/N). Hence P ≤ ZU(G), a contradiction. Thus |N | > p.
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(4) The final contradiction.

Let N be a minimal normal subgroup of G contained in P . Then, by (3),

N < P and |N | > p. Suppose that |N | ≥ pd. By Lemma 2.1(1), (G,N) satisfies

the hypothesis of the theorem. Then, by the minimal choice of (G,P ), the theorem

is true for (G,N). Hence N ≤ ZU(G), and so |N | = p, a contradiction. Suppose

now that |N | ≤ d. If |N | < d, then, by Lemma 2.1(2), (G/N,P/N) satisfies the

hypothesis of the theorem, and so, by the minimal choice of (G,P ), the theorem is

true for (G/N,P/N), and so P/N ≤ ZU(G/N). Hence P/N contains a maximal

subgroup, say, L/N such that L/N is normal in G/N . By (2), |L| > d. Obviously,

(G,L) satisfies the hypothesis of the theorem. Then, by the minimal choice of

(G,P ), the theorem is true for (G,L), and so L ≤ ZU(G). Since N ≤ L ≤ ZU(G),

it follows that |N | = p, a contradiction. Thus |N | = d, and so, by Lemmas 2.1(2)

and 3.5, P/N ≤ ZU(G/N). Let L/N be a minimal normal subgroup of G/N with

L/N ≤ P/N . Since P/N ≤ ZU(G/N), it follows that |L/N | = p, and so |L| = pd.

As above, L ≤ ZU(G), and so |N | = p, a contradiction. �

Proof of Theorem 1.2. Suppose that the theorem is false and consider a

counterexample (G,E) for which |G|+ |E| is minimal. If E = Ep, then, by Theo-

rem 3.6 and Lemma 2.14, Ep ≤ ZU(G). Hence, by Lemma 2.15, G ∈ F, a contra-

diction. Thus, Ep < E, and so by Lemmas 2.1(1) and 2.12, E possesses a Sylow

tower of supersolvable type. Then Ep is normal in G, where p is the largest

prime dividing |E|. By Lemma 2.1(3), (G/Ep, E/Ep) satisfies the hypothesis of

the theorem. Then, by the minimal choice of (G,E), the theorem is true for

(G/Ep, E/Ep), and so G/Ep ∈ F. As above, G ∈ F, a contradiction. �

Proof of Theorem 1.3. By Lemmas 2.1(1) and 2.12, F ∗(E) possesses

a Sylow tower of supersolvable type, and so, by Lemma 2.16(1), we get that

F ∗(E) = F (E). Hence, by Theorem 3.6 and Lemma 2.14, F (E) ≤ ZU(G), and so,

by Lemma 2.17, G/CG(F (E)) ∈ U. Since F is a formation containing U,

it follows that G/CE(F (E)) = G/(CG(F (E)) ∩ E) ∈ F. But, by Lemma 2.16(2),

CE(F (E)) 6 F (E). Then G/F (E) ∈ F, and hence, by Theorem 1.2, G ∈ F. �
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