
Publ. Math. Debrecen

94/1-2 (2019), 1–19

DOI: 10.5486/PMD.2019.8103

On a family of biquadratic fields that do not admit
a unit power integral basis

By JAPHET ODJOUMANI (Dangbo), ALAIN TOGBÉ (Westville)
and VOLKER ZIEGLER (Salzburg)

Abstract. In this paper, we consider the following family of biquadratic fields:

K = Q(
√

18n2 + 17n + 4,
√

2n2 + n), and show that provided that 18n2 + 17n + 4 and

2n2 +n are both square-free, K does not admit a power integral basis consisting of units.

1. Introduction

In the 1960’s, Jacobson [10] observed that Q(
√

2) and Q(
√

5) have the

property that every algebraic integer can be written as a sum of distinct units.

Jacobson conjectured that these two fields are the only quadratic fields with this

property. This conjecture was later proved by Śliwa [12]. Moreover, Śliwa proved

that the conjecture of Jacobson did not concern pure cubic felds. Belcher [2]

showed that there is an infinite number of quartic fields with the property that

every algebraic integer can be written as a sum of distinct units. Belcher [3]

obtained a sufficient condition for a field to have this property and applied this test

to cubic fields. Recently, the classification of all such totally imaginary quartic

fields was almost solved by Hajdu and Ziegler [9] and Dombek, Masáková

and Ziegler [7].

Jacobson’s problem is also closely related to the problem of finding all number

fields whose maximal order is generated by units as a Z-module. Let us call such

fields unit generated or UG for short. For the classification problem of UG-fields,
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answers are known only in the case of number fields with unit rank ≤ 1 (see

e.g., [1] for an overview). However, a number field that admits a power integral

basis consisting of units is clearly UG. We call a power integral basis consisting

of units UPIB for short. We are interested in the following problem:

Problem 1. For which number fields does there exist a power integral basis

consisting of units?

The idea of solving this problem is quite simple. Let K be a number field of

degree n, and ZK be the maximal order of K. Assume that B = {1, β2, . . . , βn} is

an integral basis of ZK, and let θ = x1 + x2β2 + · · · + xnβn ∈ ZK. Furthermore,

we define F (x2, . . . , xn) := [ZK : Z[θ]]. Then, we consider the index form equation

F (x2, . . . , xn) = 1. (1)

Note that (x2, . . . , xn) satisfies equation (1) if and only if ZK = Z[θ], i.e.,

if and only if {1, θ, . . . , θn−1} is a power integral basis (or PIB for short) of K.

Now, assume θ ∈ Z∗K yields a solution (x2, . . . , xn) to index equation (1). Then,

θ−1 = x′1 + x′2β2 + · · ·+ x′nβn also yields a solution (x′2, . . . , x
′
n) to equation (1).

In general, the solutions corresponding to θ and θ−1 are distinct. Now, the idea

of showing that a UPIB does not exist consists in proving that equation (1) has

at most two solutions, say (x2, . . . , xn) and (y2, . . . , yn), and that no algebraic

integers of the form θ = x1 + x2β2 + · · · + xnβn and ξ = y1 + y2β2 + · · · + ynβn
satisfy θ = ± 1

ξ . This idea has been applied successfully in the case of maximal

orders of biquadratic number fields by Pethő and Ziegler [11]. In the case of

biquadratic number fields, we only have a criterion which can be hard to apply.

In particular, Pethő and Ziegler showed that no biquadratic number field of the

form Q(
√
n,
√

(n− 1)/4) admits a UPIB, provided that n ≡ 1 (mod 4), but

could only show that for at most finitely many n, the family Q(
√

18n2 + 17n+ 4,√
2n2 + n) of biquadratic number fields admits a UPIB. The purpose of this paper

is to consider this example more closely and to prove the following theorem:

Theorem 1. Assume that n is odd and 18n2 + 17n + 4 and 2n2 + n are

square-free. Then, K = Q(
√

18n2 + 17n+ 4,
√

2n2 + n) is a quartic field and

does not admit a UPIB.

The proof of Theorem 1 follows closely the strategy due to Pethő and Ziegler

in [11]. However, we have to sharpen considerably the bounds found in [11]

to obtain Theorem 1. Let us give a short overview of the strategy. We start

in the next section by presenting some useful facts on biquadratic fields and

their maximal orders. In Section 3, we apply the hypergeometric method due to
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Bennett [4] to prove upper bounds for a possible third solution to (1). After-

wards, we apply a gap principle (see Section 4) in order to show that a third

solution to (1) would be large, thus we conclude that if no small solution exists,

the index form equation (1) has at most two solutions. In the final section, we

show that the potential two solutions to (1) cannot come both from θ and θ−1,

so we are left to consider only “small” solutions. However, by the vast improve-

ments in this paper, the bounds are considerably smaller than those provided

in [11], and we succeed in proving Theorem 1.

2. Some auxiliary results

Let us start with the following useful conventions for biquadratic number

fields.

Definition 1. We say that the biquadratic field K = Q(
√
dñ,
√
dm) is given

in canonic form if

(1) d,m, ñ are square-free integers that are relatively prime such that m and ñ

are odd and dm 6= 1, dñ 6= 1 and mñ 6= 1;

(2) dm ≡ dñ (mod 4);

(3) if dm ≡ dñ ≡ 1 (mod 4), then d > 0, m > ñ and d ≤ min{|m|, |ñ|}.
Moreover, δ is defined by mñ ≡ (−1)δ (mod 4).

With these conventions, Gras and Tanoé [8] showed that K admits a PIB

if and only if the system of Pell equations

z22δm− y22δñ = 4s, z22−δd− x22δñ = s, y22−δd− x22δm = s, (2)

with s ∈ {±1} has at least one solution. To be more precise, let us recall the

results due to Williams [13] and Gras and Tanoé [8]. We start with the following

lemma [13].

Lemma 1. If K = Q(
√
dm,
√
dñ) is given in canonic form, then two cases

may occur:

• Assume that dm ≡ dñ ≡ 1 (mod 4), and choose λ = ±1 such that d ≡ m ≡
ñ ≡ λ (mod 4). Then

BK =

{
1,

1 +
√
mñ

2
,

1 +
√
dñ

2
,

1 + λ
√
mñ+

√
dm+

√
dñ

2

}

is an integral basis, and dK = (dmñ)2 is the field discriminant.
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• Assume that dm ≡ dñ ≡ 2 or 3 (mod 4). Then,

BK =

{
1,

1− δ + 2δ
√
mñ

2
,
√
dñ,

√
dm+

√
dñ

2

}

is an integral basis, and dK = (2δ+2dmñ)2 is the field discriminant.

With these notations, the result due to Gras and Tanoé [8] is the following.

Proposition 1. Let K = Q(
√
dm,
√
dñ) be given in canonic form. If dm ≡

dñ ≡ 1 (mod 4), then K admits no PIB, and hence no UPIB. In the other cases,

K admits a PIB if and only if (2) has a solution, say (x, y, z). In this case,

{1, α, α2, α3} is a PIB, where α has coordinates (a, x, y−z2 , z) with respect to the

integral basis BK.

In our particular case, we have d = 2n + 1, m = 9n + 4 and ñ = n if n ≡ 1

(mod 4), and d = n, m = 9n + 4 and ñ = 2n + 1 if n ≡ 3 (mod 4). Note that

in the case of n ≡ 3 (mod 4), we have that dñ ≡ dm ≡ 1 (mod 4), thus by

Proposition 1 we may assume that n ≡ 1 (mod 4). Also let us note that if n = 5,

then m = 49 is not square-free, if n = 9, then ñ = 9 is not square-free, and if

n = 13, then d = 27 is not square-free. Therefore, we may assume that n = 1 or

n ≥ 17. But we can also exclude the case that n = 1 and obtain the following

result.

Lemma 2. If K admits a UPIB, then n ≥ 17.

Proof. We are left to deal with the case that n = 1. But, in this case,

we have that n = ñ = 1, m = 13 and d = 3. Since ñ = 1, we may apply

a result due to Pethő and Ziegler [11, Theorem 2], and deduce that if K admits

a UPIB, then d = 1, 2. Since this is not the case, we deduce that K does not

admit a UPIB. �

Therefore, we will assume that n ≥ 17 for the rest of the paper.

According to Proposition 1, we have to consider the following system of Pell

equations: (note that ñm ≡ 1 (mod 4) if n ≡ 1 (mod 4), thus δ = 0)

(9n+4)z2−ny2 = ±4, (2n+1)z2−nx2 = ±1, (2n+1)y2−(9n+4)x2 = ±1, (3)

where all the signs are either “+” or “−”.

Let us have a closer look on the first Pell equation.
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Lemma 3. Assume that n ≥ 17 and that K admits a UPIB. Then, all

solutions to the first equation of (3) are given by

z
√

9n+ 4 + y
√
n = 2

(√
9n+ 4 + 3

√
n

2

)k
,

with k odd. Moreover, all solutions satisfy

(9n+ 4)z2 − ny2 = 4,

and there exist ρ = zρ
√

2n+ 1 + xρ
√
n and η = yη

√
2n+ 1 + xη

√
9n+ 4 such

that all solutions to the second and third equations of (3) are of the form

z
√

2n+ 1 + x
√
n = ρj

and

y
√

2n+ 1 + x
√

9n+ 4 = ηl.

Proof. The statement concerning the second and third equations of (3) is

already contained in [11, Lemma 2]. Therefore, we only have to consider the

first equation. However, due to [11, Lemma 2], we know that all solutions are

given in the form z
√

9n+ 4 + y
√
n = 2εk, with k odd and ε = z0

√
9n+4+y0

√
n

2 .

Obviously, we have y0 = 3 and z0 = 1. Clearly, ε has to be a unit in K. Since

2
(√

9n+4+3
√
n

2

)k
yields for every odd k a solution, we deduce that

εr =

√
9n+ 4 + 3

√
n

2
,

for some integer r. However, estimating the absolute Weil height of ε, we obtain

that

h(ε) ≥ 1

2
log

(√
9n+ 4

2

)
.

On the other hand, we compute

h

(√
9n+ 4 + 3

√
n

2

)
=

1

2
log

(√
9n+ 4 + 3

√
n

2

)
,

and thus

|r| ≤
log
(√

9n+4+3
√
n

2

)
log(
√

9n+ 4/2)
≤

log
(√

157+3
√
17

2

)
log(
√

157/2)
< 1.375.

Therefore, we obtain that r = ±1, and the proof of the lemma is complete. �
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For the rest of the paper, we will concentrate on the following subsystem of

Pell equations:

(9n+ 4)z2 − ny2 = 4, (2n+ 1)y2 − (9n+ 4)x2 = 1. (4)

A pair (k, l) of integers such that (x, y, z) is a positive solution of (4) given by

z
√

9n+ 4+y
√
n = 2

(√
9n+4+3

√
n

2

)k
and y

√
2n+ 1+x

√
9n+ 4 = ηl will be called

exponents of the solution (x, y, z).

3. The hypergeometric method

Let us start this section by recalling the following result due to Bennett [4,

Theorem 3.2].

Theorem 2. If ai, pi, q and N are integers for 0 ≤ i ≤ 2, with a0 < a1 < a2,

aj = 0 for some 0 ≤ j ≤ 2, q nonzero and 0 < M9 < N , where

M = max
0≤i≤2

{|ai|},

then we have

max
0≤i≤2

{∣∣∣∣√1 +
ai
N
− pi
q

∣∣∣∣} > (130NΥ)−1q−λ,

where

λ = 1 +
log(33NΥ)

log
(

1.7N2
∏

0≤i<j≤2(ai − aj)−2
)

and

Υ =


(a2−a0)2(a2−a1)2

2a2−a0−a1 , if a2 − a1 ≥ a1 − a0,

(a2−a0)2(a1−a0)2
a1+a2−2a0 , if a2 − a1 < a1 − a0.

We will use the above result to prove the next proposition.

Proposition 2. Suppose that n ≥ 17 and that there are two solutions

to (4) with y1
√
n + z1

√
9n+ 4 = 2

(
ε
2

)k1
, y2
√
n + z2

√
9n+ 4 = 2

(
ε
2

)k2
, and

ε =
√

9n+ 4 + 3
√
n. If k1 ≥ 9, then k2 < 72.58k1 holds.

Before proving the proposition, we need to find a lower bound for y, where

(y, z) is a solution of the Pell equation

(9n+ 4)z2 − ny2 = 4. (5)

In particular, we start with proving the following lemma.
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Lemma 4. For k ≥ 4, we have

y >
381

128
(9n)

k−1
2 . (6)

Proof. Due to Lemma 3, we know that all (positive) solutions to equa-

tion (5) satisfy

z
√

9n+ 4 + y
√
n = 2

( ε
2

)k
,

Put ε̄ =
√

9n+ 4− 3
√
n. One has εε̄ = 4 and

y =
εk − ε̄k

2k
√
n

=
(3
√
n)k

2k
√
n

(√1 +
4

9n
+ 1

)k
−

(√
1 +

4

9n
− 1

)k .
Hence, we deduce that

y >
(3
√
n)k

2k
√
n

(
2k − 2−k

)
=

(3
√
n)k√
n

(
1− 4−k

)
,

and we obtain

y >
381

128
(3
√
n)k−1 > 2.97(9n)

k−1
2 ,

provided that k ≥ 4. �

Let (x1, y1, z1) and (x2, y2, z2) be solutions in positive integers of (4). We have

y1
√
n + z1

√
9n+ 4 = 2

(
ε
2

)k1
and y2

√
n + z2

√
9n+ 4 = 2

(
ε
2

)k2
according to

Lemma 3. To apply Theorem 2, we make the following choices:

N = n(2n+ 1)y21 , a2 = 4(2n+ 1), a1 = 0, a0 = −n,
p2 = (9n+ 4)(2n+ 1)z1z2, p0 = n(9n+ 4)x1x2, p1 = q = n(2n+ 1)y1y2.

With this notation, we have the following lemma.

Lemma 5. Assume that n ≥ 17. With the above choices, we have

max
0≤i≤2

{∣∣∣∣√1 +
ai
N
− pi
q

∣∣∣∣} ≤ 4.052

ny22
. (7)

Proof. With our choices of N, a0, a1, a2, p0, p2, and q, we have∣∣∣∣√1 +
a0
N
− p0

q

∣∣∣∣ =

∣∣∣∣∣
√

1− 1

(2n+ 1)y21
− (9n+ 4)x1x2

(2n+ 1)y1y2

∣∣∣∣∣ (8)
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and ∣∣∣∣√1 +
a2
N
− p2

q

∣∣∣∣ =

∣∣∣∣∣
√

1 +
4

ny21
− (9n+ 4)z1z2

ny1y2

∣∣∣∣∣ . (9)

Let us consider (8) first. From (2n+ 1)y21 − (9n+ 4)x21 = 1, one has

1− (9n+ 4)x21
(2n+ 1)y21

=
1

(2n+ 1)y21
,

i.e.,

1− 1

(2n+ 1)y21
=

(9n+ 4)x21
(2n+ 1)y21

. (10)

By using (10), we have

(9n+ 4)2x21
(2n+ 1)2y21

=
9n+ 4

2n+ 1

(
1− 1

(2n+ 1)y21

)
<

9n+ 4

2n+ 1
.

Thus, we obtain∣∣∣∣√1 +
a0
N
− p0

q

∣∣∣∣ =
x1
y1

∣∣∣∣∣
√

9n+ 4

2n+ 1
− (9n+ 4)x2

(2n+ 1)y2

∣∣∣∣∣ =
(9n+ 4)x1
(2n+ 1)y1

∣∣∣∣∣
√

2n+ 1

9n+ 4
− x2
y2

∣∣∣∣∣
<

√
9n+ 4

2n+ 1

∣∣∣∣∣
√

2n+ 1

9n+ 4
− x2
y2

∣∣∣∣∣ .
As (2n+ 1)y22 − (9n+ 4)x22 = 1, one has the following equalities:

1

(9n+ 4)y22
=

2n+ 1

9n+ 4
− x22
y22

=

(√
2n+ 1

9n+ 4
+
x2
y2

)(√
2n+ 1

9n+ 4
− x2
y2

)

=

√
2n+ 1

9n+ 4

(
1 +

x2
y2

√
9n+ 4

2n+ 1

)(√
2n+ 1

9n+ 4
− x2
y2

)
.

Therefore, we get∣∣∣∣∣
√

2n+ 1

9n+ 4
− x2
y2

∣∣∣∣∣ =

√
9n+ 4

(9n+ 4)
√

2n+ 1 y22

∣∣∣∣∣1 +
x2
y2

√
9n+ 4

2n+ 1

∣∣∣∣∣
−1

<
1

y22
√

(9n+ 4)(2n+ 1)
,
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since
∣∣∣1 + x2

y2

√
9n+4
2n+1

∣∣∣−1 < 1. Hence, we obtain

∣∣∣∣√1 +
a0
N
− p0

q

∣∣∣∣ <
√

9n+ 4

2n+ 1
× 1

y22
√

(9n+ 4)(2n+ 1)
=

1

(2n+ 1)y22
<

0.5

ny22
.

Now, we consider (9), and from ny21−(9n+4)z21 = −4, we have 1− (9n+4)z21
ny21

=
−4
ny21

, i.e.,

1 +
4

ny21
=

(9n+ 4)z21
ny21

. (11)

Since (y1, z1) is a solution in positive integers of ny21 − (9n+ 4)z21 = −4, one can

see that y1 ≥ 3. So using (11), we get

(9n+ 4)2z21
n2y21

=
9n+ 4

n

(
1 +

4

ny21

)
<

9n+ 4

n

(
1 +

4

153

)
<

157

153

(
9n+ 4

n

)
.

Then, we obtain∣∣∣∣√1 +
a2
N
− p2

q

∣∣∣∣ =
z1
y1

∣∣∣∣∣
√

9n+ 4

n
− (9n+ 4)z2

ny2

∣∣∣∣∣ =
(9n+ 4)z1

ny1

∣∣∣∣√ n

9n+ 4
− z2
y2

∣∣∣∣
< 1.013

√
9n+ 4

n

∣∣∣∣√ n

9n+ 4
− z2
y2

∣∣∣∣ .
Furthermore, the equation ny22 − (9n+ 4)z22 = −4 implies∣∣∣∣ −4

(9n+ 4)y22

∣∣∣∣ =

∣∣∣∣ n

9n+ 4
− z22
y22

∣∣∣∣ =

∣∣∣∣√ n

9n+ 4
+
z2
y2

∣∣∣∣ · ∣∣∣∣√ n

9n+ 4
− z2
y2

∣∣∣∣
=

√
n

9n+ 4

∣∣∣∣∣1 +
z2
y2

√
9n+ 4

n

∣∣∣∣∣ ·
∣∣∣∣√ n

9n+ 4
− z2
y2

∣∣∣∣ ,
and therefore we have∣∣∣∣∣

√
2n

9n+ 4
− z2
y2

∣∣∣∣∣ =
4
√

9n+ 4

(9n+ 4)
√
n y22

∣∣∣∣∣1 +
z2
y2

√
9n+ 4

n

∣∣∣∣∣
−1

<
4

y22
√
n(9n+ 4)

,

since
∣∣∣1 + z2

y2

√
9n+4
n

∣∣∣−1 < 1. Hence, we get

∣∣∣∣√1 +
a2
N
− p2

q

∣∣∣∣ ≤ 1.013

√
9n+ 4

n
× 4

y22
√
n(9n+ 4)

=
4.052

ny22
.
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Thus, we obtain

max

{∣∣∣∣√1 +
a0
N
− p0

q

∣∣∣∣ , ∣∣∣∣√1 +
a2
N
− p2

q

∣∣∣∣} <
4.052

ny22
.

This completes the proof of the lemma. �

Now we are ready to prove Proposition 2.

Proof of Proposition 2. First, let us recall that in order to prove the

proposition, we may assume that n ≥ 17 and k1 ≥ 9. In order to prove Proposi-

tion 2, we apply Theorem 2 with our choices of N, a0, a1, a2, p0, p2, and q, made

above. Since a2 − a1 = 4(2n+ 1) > a1 − a0 = n, we get

Υ =
(a2 − a0)2(a2 − a1)2

2a2 − a0 − a1
=

16(2n+ 1)2(9n+ 4)2

17n+ 8

=
16× 4n2 × 81n2(1 + 1

2n )2(1 + 4
9n )2

17n+ 8
=

5184

17
n3

:=R(n)︷ ︸︸ ︷
(1 + 1

2n )2(1 + 4
9n )2

1 + 8
17n

.

Next, we compute

130NΥ = 130× n(2n+ 1)× y21 ×
5184

17
n3R(n) =

1347840

17
n5y21

:=R̃(n)︷ ︸︸ ︷
R(n)× (1+

1

2n
),

and

λ = 1 +
log
(

342144
17 n5y21R̃(n)

)
log
(

1.7×n2×(2n+1)2×y41
16×n2×(2n+1)2×(9n+4)2

)
= 1 +

2 log y1 + 5 log n+ log
(
342144

17

)
+ log(R̃(n))

4 log y1 − 2 log n− log
(
12960
17

)
− 2 log

(
1 + 4

9n

) .
Since the function f(x) = a log x+b

c log x−d is decreasing when ad+ bc > 0, and since the

condition is obviously satisfied in our case, we can insert the lower bound for y1
obtained in Lemma 4 in order to get an upper bound for λ:

λ < 1 +
2 log

(
381
128 · (9n)

k1−1
2

)
+ 5 log n+ log

(
342144

17

)
+ log(R̃(n))

4 log
(

381
128 · (9n)

k1−1
2

)
− 2 log n− log

(
12960
17

)
− 2 log

(
1 + 4

9n

)
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= 1 +
k1 log(9n) + 4 log(9n) + log

(
177419
58752

)
+ log(R̃(n))

2k1 log(9n)− 4 log(9n)− log
(

42949672960
358219170657

)
− 2 log

(
1 + 4

9n

)
< 1 +

k1 + 4 + 1.1052
log(9n) + log R̃(n)

log(9n)

2k1 − 4 + 2.1211
log(9n) −

2 log(1+ 4
9n )

log(9n)

< 1 +
k1 + 4 + 1.1052

log(9n) + log R̃(17)
log(153)

2k1 − 4 + 2.1211
log(9n) −

2 log(1+ 4
153 )

log(153)

< 1 +
k1 + 4.242

2k1 − 3.588
.

In particular, we have λ < 1.919. Therefore, we obtain

max
0≤i≤2

{∣∣∣∣√1 +
ai
N
− pi
q

∣∣∣∣} > (130NΥ)−1q−λ >
n−5 y−21

88616
[n(2n+ 1)y1y2]

−1.919

>
n−8.838y−3.9191 y−1.9192

354280
. (12)

From Lemma 5 (in particular from (12)) and (7), one concludes that

4.052

ny22
>
n−8.838y−3.9191 y−1.9192

354280
,

which is equivalent to

1435543n7.838y3.9191 > y0.0812 . (13)

But due to Lemma 4, we also have that

n <

(
128

381

)1/4
1

9
y
1/4
1 .

Inserting this upper bound for n in (13), we obtain

0.0057y5.87851 > y0.0812

which implies that log y2
log y1

< 72.58.

Therefore, we are left to show that

log y2 >
k2
k1

log y1.
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We assume that k2 = σ k1 for some number σ > 1, and since

y =
εk + εk

2k
√
n

=
εk − ε−k

2k
√
n

=
1√
n

[( ε
2

)k
−
( ε

2

)−k]
,

we get

y2
yσ1

= (
√
n)σ−1

( ε
2

)k2−σ k1 [
1−

( ε
2

)−2k2]
×
[
1−

( ε
2

)−2k1]−σ
= n

σ−1
2

[
1−

( ε
2

)−2k2]
×
[
1−

( ε
2

)−2k1]−σ
and

log
y2
yσ1

=
σ − 1

2
log(n) + log

[
1−

( ε
2

)−2k2]
− σ log

[
1−

( ε
2

)−2k1]
≥ log

[
1−

( ε
2

)−2k2]
− σ log

[
1−

( ε
2

)−2k1]
> −(σ − 1) log

[
1−

( ε
2

)−2k1]
≥ (σ − 1)

( ε
2

)−2k1
> 0

as x ≤ − log(1− x) for all x < 1, i.e.,

log y2 >
k2
k1

log y1.

This completes the proof of Proposition 2. �

4. A gap principle

The aim of this section is to continue our study of systems of Pell equations

of the form

ax2 − by2 = ±4e1 , cx2 − dz2 = ±4e2 , (14)

where e1, e2 ∈ {0, 1} and to establish a gap principle similarly to those obtained

in [5]–[6], [11].

First, we state the following result due to Cipu and Mignotte [6].

Lemma 6. Let (k1, l1) be the exponents of the smallest positive solution of

system (14) and let (k, l) be the exponents of a further positive solution to (14).

Then we have k1|k and l1|l.



On a family of biquadratic fields 13

For a proof, see [11, Lemma 5] and also [6, Lemma 5 (a) and Lemma 6].

Next, we consider the system of Pell equations (4). Due to Lemma 3, we have

y =
ηl + η−l

2
√

2n+ 1
=

(ε/2)k − (ε/2)−k√
n

. (15)

Let t, u be real numbers such that ηl = et and (ε/2)k = eu. Note that (15) im-

plicitly defines u as a function depending on t and vice versa. Therefore, it makes

sense to consider quantities such as du
dt and d2u

dt2 .

Lemma 7. Assume that n ≥ 17 and k ≥ 9. Then with the notations above

we have

0 < u− t+
3

2
log 2 +

1

2
log

(
35

34

)
< 0.015. (16)

Moreover, we have 0 < du
dt < 1 and 0 < d2u

dt2 <
1

1+e−2u .

Proof. We start by rewriting equation (15) and obtain

sinh(u) = cosh(t)

√
n

8n+ 4
. (17)

Note that

eu − et
√

n

8n+ 4
= e−u + e−t

√
n

8n+ 4
> 0,

which implies that

t < u+
1

2
log

(
8n+ 4

n

)
< u+

:=µ︷ ︸︸ ︷
1

2
log 8 +

1

2
log

(
35

34

)
. (18)

Next, we observe that u is bounded from below by

u = k log(ε/2) > k log(
√

9n) >
9

2
log(153) > 22.63.

Equality (17) and the fact that sinh(x) is increasing with x yield

cosh(t) = sinh(u)

√
8 +

4

n
> sinh(22.63)

√
8,

and therefore we obtain the lower bound

t > cosh−1
(√

8 sinh(22.63)
)
> 23.66.
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Equality (17) also implies

du

dt
=

sinh(t)

cosh(u)

√
n

8n+ 4
= tanh(u) tanh(t),

and we conclude that

0 <
du

dt
< 1.

Taking the logarithm of both sides of (17) yields

log

(
eu − e−u

et + e−t

)
=

1

2
log

(
n

8n+ 4

)
.

Since 2x+ log(1− x) ≥ 0 for all x ∈ (0, 3/4), we get

u− t+
1

2
log

(
8n+ 4

n

)
= − log

(
1− e−2t + e−2u

1 + e−2t

)
< 2 · e

−2t + e−2u

1 + e−2t
=

2 + 2e2(t−u)

1 + e2t
<

2 + 2e2µ

1 + e2t
.

On the other hand, by (18) we have

0 < u− t+
1

2
log 8 +

1

2
log

(
35

34

)
<

2 + 2e2µ

1 + e2t
+

1

2
log

(
35

34

)
<

2 + 2e2µ

e2t
+

1

2
log

(
35

34

)
< 2e−47.32 + 2e2µ−47.32 +

1

2
log

(
35

34

)
< 0.015,

which is the first statement of the lemma.

Finally, we consider the second derivative of u with respect to t and get

d2u

dt2
= (1− tanh2(u))

du

dt
· tanh(t) + tanh(u) · (1− tanh2(t))

=
du

dt
· tanh(t)−

(
du

dt

)2

tanh(u) + tanh(u)− du

dt
· tanh(t)

=

[
1−

(
du

dt

)2
]

tanh(u).

As 0 <
(
du
dt

)2
< 1, also 0 < 1−

(
du
dt

)2
< 1, we get

0 <
d2u

dt2
<

1

1 + e−2u
. �
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Next, we prove the following lemma

Lemma 8. Assume that n ≥ 17 and that the system of Pell equations (4)

has three solutions (xi, yi, zi), i = 1, 2, 3 with exponents 9 ≤ k1 < k2 < k3,

1 ≤ l1 < l2 < l3. Then, we have

l3 − l2 >
log(9n) k1l1

0.015
.

Proof. Similarly as in the proof of Lemma 7, we have

yi =
ηli + η−li

2
√

2n+ 1
=

(ε/2)ki − (ε/2)−ki√
n

and write ηli = eti and (ε/2)ki = eui for i = 1, 2, 3.

Applying Lemma 7, we obtain

0 <
u3−u2

t3−t2 −
u2−u1

t2−t1
t3 − t1

<
1

1 + e−2u3
,

and furthermore

0 <
u3 − u2
t3 − t2

− u2 − u1
t2 − t1

. (19)

Moreover, we have u3−u2

t3−t2 < 1 and u2−u1

t2−t1 < 1 since du
dt < 1. Thus, we get

u2 − t2 < u1 − t1. From (16), we deduce

0 < u2 − t2 +
3

2
log 2 +

1

2
log

(
35

34

)
< u1 − t1 +

3

2
log 2 +

1

2
log

(
35

34

)
< 0.015,

which yields

0 < u1 − u2 + t2 − t1 < 0.015,

and

0 < 1− u2 − u1
t2 − t1

<
0.015

t2 − t1
.

Thus, using (19) we get

0 <
u3 − u2
t3 − t2

− u2 − u1
t2 − t1

<
0.015

t2 − t1
.

Since ui = ki log(ε/2) and ti = li log(η) for i = 1, 2, 3, we obtain

0 <
k3 − k2
l3 − l2

− k2 − k1
l2 − l1

<
0.015

(l2 − l1) log(ε/2)
.
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Put ∆ =

∣∣∣∣∣k3 − k2 k2 − k1
l3 − l2 l2 − l1

∣∣∣∣∣ and since log(ε/2) > log(
√

9n), one obtains

∆

l3 − l2
<

0.015

log(ε/2)
<

0.015× 2

log(9n)
.

Moreover, ∆ > 2k1l1 (see [5, Lemma 2.2]). Thus, we finally get

k1l1
l3 − l2

<
0.015

log(9n)
. �

We are now in a position to prove the most important result of this section.

Proposition 3. Assume that n ≥ 17. If there is no solution to the system

of Pell equations (4) with exponent 1 ≤ k ≤ 8, then the system has at most two

solutions (xi, yi, zi), i = 1, 2 with exponents (ki, li) that satisfy k2 = qk1, for some

positive integer q with q ≤ 72.

Proof. We assume that there is no solution to the system (4) with exponent

1 ≤ k ≤ 8 and that there are at least three solutions. Then, from Proposition 2

and Lemma 6, one has k3 = qk1 < 72.58k1 for a positive integer q, i.e., q ≤ 72.

Due to Lemma 7 we know that

li log η < ki log(ε/2) + µ (i = 1, 2, 3),

with µ = 3
2 log 2 + 1

2 log
(
35
34

)
. Since log η ≥ log(

√
18n+ 9) and log(ε/2) <

log(
√

9n+ 4), we have

li < ki
log(ε/2)

log η
+

µ

log η
< ki

log(
√

9n+ 4)

log(
√

18n+ 9)
+

µ

log(
√

18n+ 9)

< ki +
µ

log(
√

18n+ 9)
< ki +

2µ

log(315)
< ki + 0.367.

Therefore, Lemma 8 implies that

log(9n) k1l1
0.015

< l3 − l2 < l3 < k3 + 0.367 = qk1 + 0.367,

and we get

q >
log(9n) l1

0.015
− 0.367

k1
>

log(9n)

0.015
− 0.367

9
> 66.6 log(9n)− 0.041 > 334.

But this contradicts our observation that q ≤ 72. Thus, there cannot be three

solutions. �
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5. Proof of Theorem 1

We turn now to the proof of Theorem 1. However, we start with the following

lemma.

Lemma 9. Let k be an integer such that the solution in positive integers

(y, z) to Pell equation (5) satisfies z
√

9n+ 4 + y
√
n = 2

(
ε
2

)k
and let k be the

exponent of the solution (y, z). Assume that k ≥ 9 and n ≥ 17, then we have

z > 6426n4.

Proof. Using Pell equation (5), we have that

z2 =
ny2 + 4

9n+ 4
>

ny2

9n+ 4
≥ 17

157
y2,

and now by Lemma 4 we deduce that

z >

√
17

157
× 381

128
(9n)(k−1)/2 > 6426n4. �

Now, assume that ZK = Z[θ] with θ ∈ Z∗K and let (x, y, z) and (xi, yi, zi) be

the only possible solutions of (3) corresponding to θ and θ−1 such that z ≤ zi.

From Proposition 3, the corresponding exponents k and ki satisfy k|ki. This

implies z|zi by [6, Lemmas 5 and 6].

By Lemma 1 and Proposition 1, we deduce that there exists a ∈ Z such that

θ = a+ x
1 +
√

9n2 + 4n

2
+
y − z

2

√
2n2 + n+ z

√
2n2 + n+

√
(2n+ 1)(9n+ 4)

2
.

Similarly, as in [11], we compute

±4zi = −4a2z− ny[(2n+ 1)yz− 2x2] + 4ax(ny− z) + z[(2n+ 1)(9n+ 4)z2 − x2],

and since z|zi we obtain

2zi ≡ nx(2a+ x)y (mod z).

By the first and second equations in (3), we deduce that gcd(nx, z) = 1 and if z is

even we get (z/2)|(2a+x) and if z is odd we get z|(2a+x). Next, we compute the

norm of θ modulo z and by using the fact that either (z/2)|(2a+ x) or z|(2a+ x)

we obtain

±1 ≡ N(θ) =
n2[(9n+ 4)x2 − (2n+ 1)y2]2

16
(mod z).
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This is equivalent to ±16 ≡ n2 (mod z) since (9n + 4)x2 − (2n + 1)y2 = ±1.

Therefore, n2± 16 ≡ 0 (mod z). This means that n2± 16 = 0 because z is larger

than n2± 16 (see Lemma 9). We get a contradiction since n = ±4 is not odd and

n2 +16 > 0. Therefore, θ comes from a solution to (3) with some exponent k ≤ 7.

We are left to check whether (4) has solutions for some exponent k = 1, 3, 5 or 7.

• In the case that k = 1, we have that y = 3 and inserting this into the second

equation of (3) we obtain that x2 = 2, which yields no solution.

• In the case that k = 3, we have that y = 27n+ 9 and inserting this into (3)

we obtain that x2 = (9n+ 4)(18n+ 5). Since

gcd(18n+ 5, 9n+ 4) = gcd(3, 9n+ 4) = gcd(3, 4) = 1

both 9n + 4 and 18n + 5 have to be squares. Write Y 2 = 9n + 4 and X2 =

18n + 5, then X2 − 2Y 2 = −3. However, the Pell equation X2 − 2Y 2 = −3

has no solution and therefore the case k = 3 yields no solution to (3).

• In the case that k = 5, we obtain that y = 243n2 + 135n + 15 and x2 =

(162n2 + 81n+ 8)(81n2 + 54n+ 7). Since the two factors of x2 are coprime

and 81n2 +54n+7 = (9n+3)2−2 cannot be a square, the case k = 5 cannot

yield a solution to (3).

• In the case that k = 7, we get y = 2187n3 + 1701n2 + 378n+ 21 and

x2 = (1458n3 + 1053n2 + 216n+ 11)(729n3 + 648n2 + 162n+ 10).

Computing the Legendre symbol(
(1458n3 + 1053n2 + 216n+ 11)(729n3 + 648n2 + 162n+ 10)

3

)
=

(
2

3

)
= −1,

we deduce that the expression found for x2 cannot be a square. Thus, the

case k = 7 also yields no solution.

This completes the proof of Theorem 1.
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UNIVERSITÉ D’ABOMEY-CALAVI

DANGBO

BENIN

E-mail: odjoumanij@yahoo.fr

ALAIN TOGBÉ
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