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On a family of biquadratic fields that do not admit
a unit power integral basis

By JAPHET ODJOUMANI (Dangbo), ALAIN TOGBE (Westville)
and VOLKER ZIEGLER (Salzburg)

Abstract. In this paper, we consider the following family of biquadratic fields:
K = Q(V18n2 + 17n + 4,v/2n2 + n), and show that provided that 18n2 4+ 17n + 4 and
2n2 +n are both square-free, K does not admit a power integral basis consisting of units.

1. Introduction

In the 1960’s, JACOBSON [10] observed that Q(v/2) and Q(+/5) have the
property that every algebraic integer can be written as a sum of distinct units.
Jacobson conjectured that these two fields are the only quadratic fields with this
property. This conjecture was later proved by SLiwa [12]. Moreover, Sliwa proved
that the conjecture of Jacobson did not concern pure cubic felds. BELCHER [2]
showed that there is an infinite number of quartic fields with the property that
every algebraic integer can be written as a sum of distinct units. BELCHER [3]
obtained a sufficient condition for a field to have this property and applied this test
to cubic fields. Recently, the classification of all such totally imaginary quartic
fields was almost solved by HAJDU and ZIEGLER [9] and DOMBEK, MASAKOVA
and ZIEGLER [7].

Jacobson’s problem is also closely related to the problem of finding all number
fields whose maximal order is generated by units as a Z-module. Let us call such
fields unit generated or UG for short. For the classification problem of UG-fields,
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answers are known only in the case of number fields with unit rank < 1 (see
e.g., [1] for an overview). However, a number field that admits a power integral
basis consisting of units is clearly UG. We call a power integral basis consisting
of units UPIB for short. We are interested in the following problem:

Problem 1. For which number fields does there exist a power integral basis
consisting of units?

The idea of solving this problem is quite simple. Let K be a number field of
degree n, and Zg be the maximal order of K. Assume that B = {1, fs,...,8,} is
an integral basis of Zg, and let 6 = x1 + x282 + - -+ + 8, € Zg. Furthermore,
we define F(xa,...,x,) := [Zx : Z[f]]. Then, we consider the index form equation

F(zo,...,x,) = 1. (1)

Note that (xa,...,z,) satisfies equation (1) if and only if Zxg = Z[0], ie.,
if and only if {1,6,...,0" 1} is a power integral basis (or PIB for short) of K.
Now, assume 6 € Zf yields a solution (x9,...,,) to index equation (1). Then,
0~ =2 + 4B + -+ + 2!, 3, also yields a solution (z4,...,z’) to equation (1).
In general, the solutions corresponding to # and = are distinct. Now, the idea
of showing that a UPIB does not exist consists in proving that equation (1) has
at most two solutions, say (z2,...,x,) and (ya,...,yn), and that no algebraic
integers of the form 6 = x1 + z2fs+ -+ .0, and £ =y1 + y2P82 + -+ + YnOn
satisfy 6 = :l:%. This idea has been applied successfully in the case of maximal
orders of biquadratic number fields by PETHO and ZIEGLER [11]. In the case of
biquadratic number fields, we only have a criterion which can be hard to apply.
In particular, Pethé and Ziegler showed that no biquadratic number field of the
form Q(y/n,+/(n —1)/4) admits a UPIB, provided that n = 1 (mod 4), but
could only show that for at most finitely many n, the family Q(v/18n2 + 17n + 4,
V2n? + n) of biquadratic number fields admits a UPIB. The purpose of this paper

is to consider this example more closely and to prove the following theorem:

Theorem 1. Assume that n is odd and 18n2 + 17n + 4 and 2n? + n are
square-free. Then, K = Q(+/18n2 + 17n +4,v/2n2 +n) is a quartic field and
does not admit a UPIB.

The proof of Theorem 1 follows closely the strategy due to Pethd and Ziegler
in [11]. However, we have to sharpen considerably the bounds found in [11]
to obtain Theorem 1. Let us give a short overview of the strategy. We start
in the next section by presenting some useful facts on biquadratic fields and
their maximal orders. In Section 3, we apply the hypergeometric method due to
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BENNETT [4] to prove upper bounds for a possible third solution to (1). After-
wards, we apply a gap principle (see Section 4) in order to show that a third
solution to (1) would be large, thus we conclude that if no small solution exists,
the index form equation (1) has at most two solutions. In the final section, we
show that the potential two solutions to (1) cannot come both from @ and §~!,
so we are left to consider only “small” solutions. However, by the vast improve-
ments in this paper, the bounds are considerably smaller than those provided
in [11], and we succeed in proving Theorem 1.

2. Some auxiliary results

Let us start with the following useful conventions for biquadratic number
fields.

Definition 1. We say that the biquadratic field K = Q(vdn, vdm) is given
in canonic form if

(1) d,m,n are square-free integers that are relatively prime such that m and 7
are odd and dm # 1, din # 1 and mn # 1;

(2) dm =dn (mod 4);
(3) ifdmn=dn =1 (mod 4), then d > 0, m > 7 and d < min{|m|, |7}
Moreover, § is defined by mn = (—1)° (mod 4).

With these conventions, GRAS and TANOE [8] showed that K admits a PIB
if and only if the system of Pell equations

222°m — %200 = 4s, 222704 — 2227 = s, y?27%d — 222%m = s, (2)

with s € {£1} has at least one solution. To be more precise, let us recall the
results due to WILLIAMS [13] and Gras and Tanoé [8]. We start with the following
lemma [13].

Lemma 1. If K = Q(vdm,vdn) is given in canonic form, then two cases
may occur:

o Assume that dm = din =1 (mod 4), and choose A = £1 such that d =m =
n =X\ (mod 4). Then

5 {1 1+ vVmn 1+ Vdn 1+)\\/mﬁ+\/dm+\/dﬁ}
K — 5 ) )

2 2 2

is an integral basis, and dx = (dmn)? is the field discriminant.
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o Assume that dm = din =2 or 3 (mod 4). Then,

5+ 9/mn Jdm 4 an
BKZ{l,l §+22 rnn’\/(%7 dm;— dn}

is an integral basis, and dg = (2°T2dm)? is the field discriminant.
With these notations, the result due to Gras and Tanoé [8] is the following.

Proposition 1. Let K = Q(v/dm,/dn) be given in canonic form. If dm =
dn =1 (mod 4), then K admits no PIB, and hence no UPIB. In the other cases,
K admits a PIB if and only if (2) has a solution, say (x,y,z). In this case,
{1,a,0% &} is a PIB, where « has coordinates (a,z, Y5*, z) with respect to the
integral basis B.

In our particular case, we have d =2n+1, m=9n+4andn=nifn=1
(mod 4), and d =n, m =9n+4 and n = 2n+ 1 if n = 3 (mod 4). Note that
in the case of n = 3 (mod 4), we have that di = dm = 1 (mod 4), thus by
Proposition 1 we may assume that n =1 (mod 4). Also let us note that if n = 5,
then m = 49 is not square-free, if n = 9, then 7 = 9 is not square-free, and if
n = 13, then d = 27 is not square-free. Therefore, we may assume that n = 1 or
n > 17. But we can also exclude the case that n = 1 and obtain the following
result.

Lemma 2. If K admits a UPIB, then n > 17.

PrROOF. We are left to deal with the case that n = 1. But, in this case,
we have that n = n = 1, m = 13 and d = 3. Since n = 1, we may apply
a result due to Pethd and Ziegler [11, Theorem 2|, and deduce that if K admits
a UPIB, then d = 1,2. Since this is not the case, we deduce that K does not
admit a UPIB. 0

Therefore, we will assume that n > 17 for the rest of the paper.
According to Proposition 1, we have to consider the following system of Pell
equations: (note that im =1 (mod 4) if n =1 (mod 4), thus 6 = 0)

(In+4)22—ny® = +4, (2n+1)z°—nz? = £1, (2n+1)y*—(In+4)2? = £1, (3)

“_»

where all the signs are either “+” or
Let us have a closer look on the first Pell equation.
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Lemma 3. Assume that n > 17 and that K admits a UPIB. Then, all
solutions to the first equation of (3) are given by

f———— k

with k odd. Moreover, all solutions satisfy
(9n +4)2% —ny? = 4,

and there exist p = z,v/2n+ 1+ x,y/n and n = y,v/2n + 1 + ,/9n + 4 such

that all solutions to the second and third equations of (3) are of the form
2n+1+avn=p

and

y\/2n+1—|—x\/9n+4:7yl.

PRrROOF. The statement concerning the second and third equations of (3) is
already contained in [11, Lemma 2]. Therefore, we only have to consider the
first equation. However, due to [11, Lemma 2], we know that all solutions are
given in the form zv/9n +4 + y/n = 2¢*, with k odd and € = @.
Obviously, we have yg = 3 and zy = 1. Clearly, € has to be a unit in K. Since

— k
2 (w) yields for every odd k a solution, we deduce that

VI Fd+3vn
-2

for some integer r. However, estimating the absolute Weil height of ¢, we obtain

that
1 In+4
> —1 .
h(e)_20g< 5 )

On the other hand, we compute

(SR L (L)

)

and thus
log (7¢9n+3+d\/ﬁ) log (7@)

log(Von 1 4/2) ~ log(vI157/2)

Therefore, we obtain that » = +1, and the proof of the lemma is complete. [

Ir| < 1.375.
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For the rest of the paper, we will concentrate on the following subsystem of
Pell equations:
(9n +4)2% —ny® = 4, (2n + 1)y? — (9n + 4)2% = 1. (4)
A pair (k,l) of integers such that (z,y, z) is a positive solution of (4) given by

k
2/9n + d4yy/n =2 (7W) and yv/2n + 14+2v/9n + 4 = 1! will be called
exponents of the solution (x,y, z).

3. The hypergeometric method
Let us start this section by recalling the following result due to BENNETT [4,
Theorem 3.2].

Theorem 2. Ifa;,p;,q and N are integers for 0 < i < 2, with ag < a1 < as,
a; = 0 for some 0 < j < 2, ¢ nonzero and 0 < M? < N, where

M = max {]a;[},

then we have

oz, {‘1 [1+ % - % } > (130NY) "¢,
where
N log(33NTY)
log (17N [Tyccjcalai — a;)~2)
and

(az—a0)*(az—a1)*

San—ag—a, if az — a1 > a1 — ao,

T:

o 2 _ 2 .
(a2=a0) (a1 -a0)” afi)az(flgaf(]) ) if ag —a1 < a1 — ap.
We will use the above result to prove the next proposition.

Proposition 2. Suppose that n > 17 and that there are two solutions

to (4) with y1v/n + z1v/9n+4 = 2 (%)kl, yav/n + 299+ 4 = 2(§)k2, and
e=+VIn+4+3yn. Ifky > 9, then ko < 72.58k; holds.

Before proving the proposition, we need to find a lower bound for y, where
(y, z) is a solution of the Pell equation

(9n + 4)2% — ny® = 4. (5)

In particular, we start with proving the following lemma.



On a family of biquadratic fields 7

Lemma 4. For k > 4, we have

y>"—(9n)7 . (6)

PROOF. Due to Lemma 3, we know that all (positive) solutions to equa-
tion (5) satisfy

k
Z\/9n+4+y\/ﬁ:2(§) ,

Put € = v9n + 4 — 3y/n. One has e€ = 4 and

ek — ek 3/n)* 4 ; 4 ’
v= Qk\/ﬁ:(Q’zCrZz (\/ngﬁl) ‘(H‘Q

Hence, we deduce that

BV (i yry - BV () ey

>
LTV n
and we obtain 381
k—1
— 2. T
Y> 153 (3v/n)" ' >2.97(9n) 7,
provided that k > 4. O

Let (z1,y1,21) and (22, Y2, 22) be solutions in positive integers of (4). We have

yivn + 217V +4 = 2(%)’“1 and yo/n + 220/ +4 = 2 (g)]€2 according to

Lemma 3. To apply Theorem 2, we make the following choices:
N=n@2n+1)y? a=402n+1), a1 =0, ay=—n,

p2= (I +4)(2n+1)z122, po=n(In+4)z172, p1=q=n(2n+ yiys.
With this notation, we have the following lemma.
Lemma 5. Assume that n > 17. With the above choices, we have

} < 4. 052 1)

nyQ

az
max
0<i<2

PRrROOF. With our choices of N, ag, a1, as, pg, p2, and ¢, we have

(9n + 4)x 29
(2n+ 1)y (2n + 1)y1y2
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4 In+4
| iy 4 Ontdaz
nyy nyYy1y2

and

' 142 2

. 9
z ©
Let us consider (8) first. From (2n + 1)y — (9n + 4)z? = 1, one has
1 (9n + 4)2? _ 1
2n+1)yt  (2n+ 1)y
ie.,
1 4)x?
1— _ = Ont ey (10)
2n+1)yi  @2n+1)y;

By using (10), we have

(n+4)%x7  9In+4 B 1 <9n+4
(2n+1)2¢92  2n+1 (2n + 1)y? 2n+1

Thus, we obtain
In+4  (9n+4)zs
Von+1 ™ @n+ Dy
<\/9n+4 \/Qn—l—l_acg
n+1|VIn+4 1y
As (2n + 1)y3 — (9n + 4)2% = 1, one has the following equalities:
1 _2n—|—1_x7%_ 2n—|—1+@ 2n+1
On+4)y3  Im+4 y3 \VIn+4d gy VIn+4 y
[2n +1 xg\/9n+4 \/2n+1 T2
= 1+ — .
In+4

Z1

(In+4)z,
Y1

(2n+ Dy

2n+1 T2
V 9n +4

Y2

y2 V20 + 1 In+4 oy

Therefore, we get

/2n+1_ﬂ B vVIn+4 +@ /9n+4_
In+4 1y _(9n+4)\/2n+1y§ y2 V 2n+1

1
< y2/(On+4)2n + 1)
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since ’1 + Z2 ,/3211" < 1. Hence, we obtain

‘ ao In + 4 " 1 B 1 - 0.5
417 42 /On+4)2n+1) (Cn+1ys  nys
N : 2 2 _ Ontd)zf _
ow, we consider (9), and from ny7 — (9n+4)z7 = —4, we have 1— =
1
=4 i.e
ny%’ Ty
4 9 4)z
14— & (11)
nyj nyi
Since (yi, 21) is a solution in positive integers of nyf — (9n + 4)z} = —4, one can

see that y; > 3. So using (11), we get

In+4)%27 9n+4 4 9n + 4 4 157 (9n+4
(n—i;Q)zlz n -+ 14 <i I 1) ntd)
n2y; n ny? n 153 153 n

Then, we obtain

ag B In+4  (On+4)z|  On+4)xn n 22
n nys o ny, In+4 1y
In+4 n
< 1.0134/ v/ - =
n ’ 9n +4
Furthermore, the equation nys — (9n + 4)232 = —4 implies
—4 2’2
(9n + 4)y3 9n+4 2 9n+4 9n+4
zo |In+4
=4/ 1 1 / v/
9n +4 + ‘ In+4
and therefore we have
490 + 4 On+4| 4
9n +4 9n + 4)fy2 Yo n y3\/n(9n + 4) ’
-1
since ‘1 + ;—z\/%’ < 1. Hence, we get
In+4 4 ~ 4.052

<1.013

==

X = .
no yd/n(On+4)  ny3
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Thus, we obtain

ag Po as P2 4.052
14+ = —= — —=|r < .
max{‘ + N N P } ny%
This completes the proof of the lemma. O

Now we are ready to prove Proposition 2.

PrROOF OF PROPOSITION 2. First, let us recall that in order to prove the
proposition, we may assume that n > 17 and k1 > 9. In order to prove Proposi-
tion 2, we apply Theorem 2 with our choices of N, ag, a1, as,po, p2, and ¢, made
above. Since ag —a; =4(2n+ 1) > a1 — ag = n, we get

as —ap)*(ag —a1)?  16(2n + 1)%(9n + 4)?

. _
2a0 — ag — aq 1Tn + 8

:=R(n)

16 x 402 X SI0(1 4 £+ ) mist (1 P+ )
= — n
17n +8 17 1+ 2

Next, we compute
::R(n)

5184 1
2
1 -
X (1450),

130NT =130 x n(2n+1) x y7 X 17

1347840
———n%’R

HSR(H) = 17 i R(n)

and

log (242144752 R(n))
log ( 1.7xn2 X (2n+1)2 Xyt )

A=1+

16xn2x(2n+1)2 X (9n+4)?

2logy1 + 5logn + log (242144 4 log(R(n))

+410gy17210gn log (1229 — 21og (1 + 5-)

Since the function f(x) = ‘Clllggg:fjs is decreasing when ad + bc > 0, and since the

condition is obviously satisfied in our case, we can insert the lower bound for g,
obtained in Lemma 4 in order to get an upper bound for A:

2log(i’gé (9 ) >+510gn+log(342144)+10g( (n))

k1—1

4log(§§é (9n) "= )fZIOgn log (12299 — 21og (1 + 5-)
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ki1 log(9n) + 4log(9n) + log (L2490 4 log(R(n))

2k1 log(9n) — 4log(9n) — log (3452892419961772(?66507) —2log (1 + %)

1.1052 log R(n)
<14 kl +4+ log(9n) + log(9n)
21211 2log(1+5%)
2k — 4+ log(9n) log(9n)
1.1052 log R(17)
<1+ ki + 44 log(9n) + logg(153) k1 +4.242
Oky — 4 4 21211 2log(1+125) 2k, — 3.588"
1 log(9n) log(153)

In particular, we have A < 1.919. Therefore, we obtain

max 142 Pl (130NY)"'g™* > 77175 v [n(2n+1) o
0<i<2 N ¢ q 33616 Y1y2
. 8888, =3.919, ~1.919 12
354280

From Lemma 5 (in particular from (12)) and (7), one concludes that

4.052 7’L—8'838y173‘919y271'919
ny2 354280 ’
which is equivalent to
1435543 n7.838y?.919 > yg.081. (13)

But due to Lemma 4, we also have that

128\ /"1 14
Inserting this upper bound for n in (13), we obtain

0-00573}?8785 > yg.()SI

which implies that 2542 < 72.58.
Therefore, we are left to show that

k
logys > 1?2 log y;.
1
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We assume that ks = o k1 for some number o > 1, and since

ek ek ek — ek € €\~
v= 2'::/5 T ok /n :\;ﬁ[(z)k_<2) k]’

we get

2 (5 -0 -G

and

IOg;L; _ 0;1 log(n) + log {1 B (;)2’62} oo {1 B <;>2k1}
al = (5) "] ()]
i) ) o

as ¢ < —log(l — x) for all z < 1, i.e.,

Lz

1 .
ey og Y1

logys >

This completes the proof of Proposition 2. O

4. A gap principle

The aim of this section is to continue our study of systems of Pell equations
of the form
az? —by? = 4%, cx® — dz? = +4°2, (14)

where e, es € {0,1} and to establish a gap principle similarly to those obtained
in [5]-[6], [11].
First, we state the following result due to C1pu and MIGNOTTE [6].

Lemma 6. Let (k1,l1) be the exponents of the smallest positive solution of
system (14) and let (k,l) be the exponents of a further positive solution to (14).
Then we have ki |k and [4]l.
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For a proof, see [11, Lemma 5] and also [6, Lemma 5 (a) and Lemma 6].
Next, we consider the system of Pell equations (4). Due to Lemma 3, we have

ottt (/2 = (¢/2)7F
VSTl 15)

Let ¢,u be real numbers such that ' = e* and (¢/2)¥ = e*. Note that (15) im-
plicitly defines u as a function depending on ¢ and vice versa. Therefore, it makes
du d*u

sense to consider quantities such as 77 and .

Lemma 7. Assume that n > 17 and k > 9. Then with the notations above
we have

3 1 35
0<u—t+§10g2+§log (34) < 0.015. (16)

1

du d’u
Moreover, we have 0 < <1 and 0 < a7 < Tre—m-

PrROOF. We start by rewriting equation (15) and obtain

n
inh = h(t . 17
sinh(u) = cos ()1/8n+4 (17)
u t n —u —t n
_ = 0
N2 ¢ T WEara Y

which implies that

Note that

=p

1 8n+4 1 1 35
-1 —1 -1 — . 1
t<u—|—2og< - ><u+20g8+20g<34> (18)

Next, we observe that u is bounded from below by
9
u = klog(e/2) > klog(v9n) > 3 log(153) > 22.63.

Equality (17) and the fact that sinh(z) is increasing with x yield

4
cosh(t) = sinh(u)4/8 + —> sinh(22.63)V/8,

and therefore we obtain the lower bound

t > cosh™? (\/é smh(22.63)) > 23.66.
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Equality (17) also implies

du  sinh(t) n
— = = tanh tanh(¢
dt  cosh(u)\ 8n+4 anh(u) tanh(t),
and we conclude that
du
0< — <1

dt
Taking the logarithm of both sides of (17) yields

lo ﬂ _110 n
g et+et ) 2 & Sn+4)"

Since 2z +log(1 — z) > 0 for all = € (0,3/4), we get
1 8n + 4 e 2t 4 e
672t +672u _ 2_|_2€2(t7u) _ 2+282'U‘
1+e 2t 14 e2 1+e2t”

<2

On the other hand, by (18) we have

1 1. /35

0<u—t+=log8+-log (o

<u +20g +20g(34)
9422 1 (35 242 1. (35
STIrem +20g(34>< et +20g<34>

1 35
< 271792 4 2272 4 S og == ] < 0.015,
2 34
which is the first statement of the lemma.
Finally, we consider the second derivative of u with respect to ¢ and get

d?u

2 du 2
o (1 — tanh (u))a -tanh(¢) + tanh(u) - (1 — tanh*(¢))

du du\ du
=7 - tanh(t) — <dt> tanh(u) + tanh(u) — T - tanh(t)

|- () ]

As 0 < (‘%)2 <l,also0<1— (%)2 <1, we get

o Pu 1
dt? 14+ e2u’
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Next, we prove the following lemma

Lemma 8. Assume that n > 17 and that the system of Pell equations (4)
has three solutions (z;,y;,2;), ¢ = 1,2,3 with exponents 9 < ki < ko < ks,
1<l <y <ls. Then, we have

log(9n) k1l4

Iy — 1
NI

PROOF. Similarly as in the proof of Lemma 7, we have

et (g2 gy
Yoyl Jn

and write n'i = e and (e/2)% = e fori=1,2,3.
Applying Lemma 7, we obtain

Uz —u2 _ U2—Uj 1
O < t3—to to—1t1 <
ty3 — 11 14 e—2us’
and furthermore
g3t Tl (19)
ts —ty to —t
Moreover, we have % < 1 and % < 1 since ‘é—;‘ < 1. Thus, we get

ug — to < uy — t1. From (16), we deduce

3 1 35 3 1 35
0<uQ7t2+§1og2+§log <34> <u17t1+§log2+§log <34) < 0.015,

which yields
0 <wuy —ug+1ty —1t; <0.015,
and 0.015
0<1- 27 o B9
to — 11 to — 11

Thus, using (19) we get

U3 — U Us — U 0.015
0< U 2 U2 L .
t3 —to to — 11 to — 11

Since u; = k;log(e/2) and ¢; = I;log(n) for i =1, 2,3, we obtain

ks —ka ko — k1 0.015

0< - < .
lg — 12 12 — ll (lg - ll) 10g(€/2)
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ks — ko ko — k1

Put A =
h ls—1ly lo—1

and since log(e/2) > log(v/9n), one obtains

A < 0.015 < 0.015 x 2
I3 —1y ~log(e/2) log(9n)

Moreover, A > 2kl (see [5, Lemma 2.2]). Thus, we finally get

kily 0.015
< .
I3 —1ls ~ log(9n)

O

We are now in a position to prove the most important result of this section.

Proposition 3. Assume that n > 17. If there is no solution to the system
of Pell equations (4) with exponent 1 < k < 8, then the system has at most two
solutions (x;, y;, zi), i = 1,2 with exponents (k;,l;) that satisfy ko = qk1, for some
positive integer q with g < 72.

PROOF. We assume that there is no solution to the system (4) with exponent
1 < k < 8 and that there are at least three solutions. Then, from Proposition 2
and Lemma 6, one has k3 = gk; < 72.58k; for a positive integer ¢, i.e., ¢ < 72.
Due to Lemma 7 we know that

l;logn < k;log(e/2) + u (1=1,2,3),

with g = 3log2 + Llog (g—i) Since logn > log(v/18n+9) and log(e/2) <
log(v/9n + 4), we have

I < kvlog(e/Q) A log(v/9n + 4) n i
C logn logn ~ ‘log(v/18n +9)  log(v/18n +9)
2
<ki+ K <+ —E < k4 0.367.

* " log(v/18n + 9) log(315)

Therefore, Lemma 8 implies that

log(9n) k114

I3 —1 l ks +0.367 = gk 0.367
0.015 <lg—la<l3 < kz+ qk1 + )

and we get

log(9n) 11 0.367 S log(9n)  0.367

66.6 log(9n) — 0.041 > 334.
0.015 o 0.015 g > 06:61og(9m) -

But this contradicts our observation that ¢ < 72. Thus, there cannot be three
solutions. 0
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5. Proof of Theorem 1

We turn now to the proof of Theorem 1. However, we start with the following
lemma.

Lemma 9. Let k be an integer such that the solution in positive integers
(y,2) to Pell equation (5) satisfies z/9n + 4 + yy/n = 2 (g)k and let k be the
exponent of the solution (y,z). Assume that k > 9 and n > 17, then we have
z > 6426n*.

PrOOF. Using Pell equation (5), we have that

2 2
2 _ 1Y —|—4> ny Z£y27
In+4  9n+4 "~ 157

and now by Lemma 4 we deduce that

17 381
z2 >4 —= X

5 ﬁs(gn)w*l)/z > 64260, 0

Now, assume that Zg = Z[0] with 0 € Zj; and let (z,y,2) and (x;,y;, 2;) be
the only possible solutions of (3) corresponding to 6 and #~! such that z < z;.
From Proposition 3, the corresponding exponents k and k; satisfy k|k;. This
implies z|z; by [6, Lemmas 5 and 6].

By Lemma 1 and Proposition 1, we deduce that there exists a € Z such that
VonZ +n+4/(2n+1)(9n + 4)

1+v9n2+14 —
x + ;”L+n+y i 2n24+n+z .

0:
a—+ 5 9

Similarly, as in [11], we compute
+4z; = —4a*z — ny[(2n + 1)yz — 22°] + dax(ny — 2) + 2[(2n + 1)(9n + 4)2* — 2],
and since z|z; we obtain

2zi =nx(2a + x)y (mod 2).

By the first and second equations in (3), we deduce that ged(nz, z) = 1 and if z is
even we get (z/2)|(2a+x) and if z is odd we get z|(2a+x). Next, we compute the
norm of # modulo z and by using the fact that either (2/2)|(2a + x) or z|(2a + z)
we obtain

~ n?[(9n+4)z? — (2n 4 1)y*]?

+1=N(0) = T (mod 2).
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This is equivalent to +16 = n? (mod 2) since (9n + 4)z? — (2n + 1)y? = +1.
Therefore, n? 16 = 0 (mod z). This means that n? 416 = 0 because z is larger
than n% 416 (see Lemma 9). We get a contradiction since n = 44 is not odd and
n?+16 > 0. Therefore, § comes from a solution to (3) with some exponent k < 7.
We are left to check whether (4) has solutions for some exponent k = 1,3,5 or 7.
¢ In the case that kK = 1, we have that y = 3 and inserting this into the second
equation of (3) we obtain that 2% = 2, which yields no solution.
o In the case that & = 3, we have that y = 27n 4+ 9 and inserting this into (3)
we obtain that 22 = (9n + 4)(18n + 5). Since

ged(18n +5,9n + 4) = ged(3,9n +4) = ged(3,4) =1

both 9n + 4 and 18n + 5 have to be squares. Write Y2 = 9n + 4 and X2 =
18n 4 5, then X2 — 2Y2 = —3. However, the Pell equation X2 —2Y?2 = —3
has no solution and therefore the case k = 3 yields no solution to (3).

e In the case that k = 5, we obtain that y = 243n2% + 135n + 15 and 22 =
(162n% + 81n + 8)(81n? + 54n + 7). Since the two factors of 22 are coprime
and 81n2+54n+7 = (9n+3)? — 2 cannot be a square, the case k = 5 cannot
yield a solution to (3).

o In the case that k = 7, we get y = 2187n> + 1701n2 + 378n + 21 and
2?2 = (145803 + 105302 + 2160 + 11)(729n3 + 648n% + 162n + 10).

Computing the Legendre symbol

<(1458n3 +1053n? 4 216n + 11)(729n® 4 648n? + 162n + 10)) _ (2)
3 _(z

we deduce that the expression found for z? cannot be a square. Thus, the
case k = 7 also yields no solution.

This completes the proof of Theorem 1.
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