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Orlicz spaces on hypergroups

By VISHVESH KUMAR (Delhi), RITUMONI SARMA (Delhi)
and N. SHRAVAN KUMAR(Delhi)

Abstract. For a locally compact hypergroup K and a Young function ϕ, we study

the Orlicz space Lϕ(K) and provide a sufficient condition for Lϕ(K) to be an algebra

under convolution of functions. We show that a closed subspace of Lϕ(K) is a left ideal

if and only if it is left translation invariant. We apply the basic theory developed here

to characterize the space of multipliers of the Morse–Transue space Mϕ(K). We also

investigate the multipliers of Lϕ(S, πK), where S is the support of the Plancherel mea-

sure πK associated to a commutative hypergroup K.

1. Introduction

Hypergroups are generalization of groups. Here we deal with hypergroups

which are analogous to locally compact groups. It is needless to say that Lp-spaces

on locally compact groups are central objects in harmonic analysis and have

plenty of applications in mathematics and otherwise. Orlicz spaces are natural

generalizations of Lp-spaces. In fact, the index p is replaced by a continuous

function ϕ with certain properties. Orlicz spaces on locally compact groups have

been studied extensively by a large number of authors. In this note, a study of

Orlicz spaces on hypergroups is attempted.

A hypergroup is a locally compact space with a convolution product which

maps each pair of points to a probability measure with compact support. The

notion of hypergroups is a probabilistic generalization of locally compact groups
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wherein the convolution of two points corresponds to the point mass measure at

their product. Hypergroups are independently created by Dunkl [7], Jewett [10]

and Spector [17] with the purpose of doing standard harmonic analysis. We fol-

low Jewett [10] for basic notation and terminology of hypergroups. For details of

hypergroups, one can refer to ([3], [7], [10]–[11], [17]).

Let K be a hypergroup with the Haar measure m, and let L1(K) be its

hypergroup algebra. The study of L1(K) has been extensively carried out by

many researchers. The Banach space Lp(K) for 1 < p < ∞ is a Banach algebra

if and only if K is a compact hypergroup.

To find more on Orlicz spaces, one can refer to [1]–[2], [9], [12] and [14]–[15].

M. M. Rao commented in [14, p. 3613] that a study of Orlicz spaces for hyper-

groups would be interesting. This motivates us to work on this topic.

Section 2 contains basic definitions and results related to Orlicz spaces on

hypergroups in the form we need. In Section 3, we give a sufficient condition for

Lϕ(K) to become a Banach algebra, and show existence of a bounded approximate

identity for Lϕ(K) in L1-norm which is used further to characterize closed left

ideals of the Orlicz algebra Lϕ(K). In Section 4, as an application of the theory

developed in Section 3, we study the multiplier space CVϕ(K) of Mϕ(K), the

norm closure of Cc(K) in Lϕ(K), and prove that it can be identified with the

dual of nicely described space denoted by Ǎϕ(K). In the last section, we give

a characterization of multipliers of Lϕ(S, πK), where S is the support of the

Plancherel measure πK when the hypergroup K is commutative.

2. Preliminaries

Let K be a locally compact hypergroup with a left Haar measure m. Denote

the set of all complex valued m-measurable functions on K by L0(K). A non-

zero convex function ϕ : R → [0,∞] is called a Young function if it is even,

left continuous with ϕ(0) = 0 and is not identically infinity. Here we note that

every Young function is an integral of a non-decreasing left continuous function

[13, Theorem 1]. Thus ϕ′ is non-decreasing, and hence ϕ is increasing for x ≥ 0.

A Young function ϕ is called a nice Young function or N -function if it satisfies

the following conditions:

lim
x→0

ϕ(x)

x
= 0 and lim

x→∞

ϕ(x)

x
=∞.

For any Young function ϕ, and y ∈ R, define,

ψ(y) = sup{x|y| − ϕ(x) : x ≥ 0}.
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It can easily be seen that ψ is also a Young function. This is called the compli-

mentary Young function to ϕ. Further, it turns out that ϕ is the complimentary

Young function to ψ. The pair (ϕ,ψ) is called a complimentary pair of Young

functions.

A Young function ϕ is ∆2-regular if there exists a constant C > 0 and x0 > 0

such that ϕ(2x) ≤ Cϕ(x) for all x ≥ x0 when K is compact, and ϕ(2x) ≤
Cϕ(x) for all x ≥ 0 when K is noncompact. We write ϕ ∈ ∆2 if ϕ satisfies the

∆2-regularity condition. Given a Young function ϕ, the modular function ρϕ :

L0(K) → R is defined by ρϕ(f) :=
∫
K
ϕ(|f |) dm. For a given Young function ϕ,

the Orlicz space is defined by

Lϕ(K) :=
{
f ∈ L0(K) : ρϕ(af) <∞, for some a > 0

}
.

Then the Orlicz space is a Banach space with respect to the Orlicz norm ‖ · ‖ϕ
defined for f ∈ Lϕ(K) by

‖f‖ϕ = sup

{∫
K

|fg| dm :

∫
K

ψ(|g|) ≤ 1

}
where ψ is the complimentary Young function to ϕ. Another norm ‖ · ‖0ϕ on

Lϕ(K) called Luxemburg norm is defined as

‖f‖0ϕ := inf

{
r > 0 :

∫
K

ϕ

(
|f |
r

)
dm ≤ 1

}
.

It is known that these two norms are equivalent. In fact, ‖ · ‖0ϕ ≤ ‖ · ‖ϕ ≤ 2 ‖ · ‖0ϕ
and ‖f‖0ϕ ≤ 1 if and only if ρϕ(f) ≤ 1. If (ϕ,ψ) is a complementary pair of

∆2-functions, then it is a complementary pair of N-Young functions. If (ϕ,ψ)

is a complementary pair of N-Young functions and ϕ ∈ ∆2, then the dual space

of (Lϕ(K), ‖ · ‖ϕ) is (Lψ(K), ‖ · ‖0ψ). In fact, the duality is given by 〈f, g〉 =∫
K
f(x) g(x) dm(x). Let Cc(K) denote the space of continuous functions with

compact support on K. The closure of Cc(K) inside Lϕ(K) is denoted by Mϕ(K).

If ϕ ∈ ∆2, then Lϕ(K) = Mϕ(K) so that Cc(K) is dense in Lϕ(K). If f ∈ Lϕ(K)

and g ∈ Lψ(K) where ψ is complimentary Young function to ϕ, then fg ∈ L1(K)

and the following Hölder’s inequality [13, Remark 1, p. 62] holds:∫
K

|f(t)g(t)| dm(t) ≤ ‖f‖0ϕ ‖g‖ψ. (1)

For more details on Orlicz spaces, see [13].
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Let K be a locally compact hypergroup, and let M(K) denote the corre-

sponding (associative) measure algebra of all complex regular Borel measures

on K. We call a locally compact hypergroup simply a hypergroup if no confusion

arises. The involution of an element s ∈ K is denoted by š. Let ps be the unit

point mass at s. If f is a Borel function on K and x, y ∈ K, the right translate

fy (also denoted by Ly(f)) is defined by

fy(x) = Ly(f)(x) =

∫
K

f d(px ∗ py),

whenever the integral exists. We shall also denote this by f(x ∗ y), although x ∗ y
may not represent a point in K.

If µ ∈M(K), the convolutions µ ∗ f and f ∗ µ are defined by

µ ∗ f(x) =

∫
K

f(y̌ ∗ x) dµ(y) and f ∗ µ(x) =

∫
K

f(x ∗ y̌) dµ(y).

If f and g are Borel functions, their convolution f ∗ g is defined by

f ∗ g(x) =

∫
K

f(x ∗ y)g(y̌) dm(y),

whenever it makes sense. Throughout this article, K denotes a hypergroup with

a fixed Haar measure m.

3. Orlicz algebra on hypergroups

In this section, we develop some basic results related to Orlicz spaces for

hypergroups. We provide a sufficient condition for the Orlicz space Lϕ(K) to

become a Banach algebra and characterize the closed left ideals of the Banach

algebra Lϕ(K).

Lemma 3.1. The Orlicz space Lϕ(K) is translation invariant, i.e., f ∈
Lϕ(K) implies fs ∈ Lϕ(K) for every s ∈ K.

Proof. If f ∈ L0(G), then it is clear from [10, Lemma 3.1D] that fs ∈
L0(G). Now, let f ∈ Lϕ(K), i.e., ρϕ(af) =

∫
K
ϕ(a|f |) dm < ∞ for some a > 0.

Then

ρϕ(afs) =

∫
K

ϕ

(∣∣∣∣∫
K

af(z) d(ps ∗ pt)(z)
∣∣∣∣) dm(t)

≤
∫
K

ϕ

(∫
K

|af(z)| d(ps ∗ pt)(z)
)
dm(t).
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By using Jensen’s inequality [13, Proposition 5, p. 62], we get

ρϕ(afs) ≤
∫
K

(∫
K

ϕ (a|f |) (z) d(ps ∗ pt)(z)
)
dm(t) =

∫
K

ϕ (a|f |)s (t) dm(t)

=

∫
K

ϕ (a|f |) (t) dm(t) = ρϕ(af) <∞,

where the penultimate equality follows from [10, Lemma 3.3 F]. �

Corollary 3.2. Let K be a hypergroup, and let ϕ be a Young function such

that ϕ ∈ ∆2. Then, for any s ∈ K and f ∈ Lϕ(K), we have ‖fs‖ϕ ≤ ‖f‖ϕ.

For ϕ(x) = |x|p
p for 1 ≤ p <∞, Corollary 3.2 turns into [10, Lemma 3.3 B].

Lemma 3.3. Let K be a hypergroup, and let ϕ be a Young function. Then

Lϕ(K) ⊂ L1(K) if and only if there exists d > 0 such that ‖f‖1 ≤ d ‖f‖ϕ for all

f ∈ Lϕ(K).

Proof. The “if” part is apparent. For the converse, assume that Lϕ(K) ⊂
L1(K). Note that Lϕ(K) is also a Banach space with the norm ‖·‖ := ‖·‖ϕ+‖·‖1.

The identity map I : (Lϕ(K), ‖ · ‖) → (Lϕ(K), ‖ · ‖ϕ) is a continuous bijection.

Therefore, by the open mapping theorem, there exists d > 0 such that ‖f‖ ≤
d ‖f‖ϕ. Thus, we have ‖f‖1 ≤ d ‖f‖ϕ for all f ∈ Lϕ(K). �

Lemma 3.4. Let ϕ be a finite Young function. If (K,m) is a finite measure

space or the right derivative ϕ′(0) > 0, then Lϕ(K) ⊂ L1(K). In particular,

the conclusion holds if K is a compact hypergroup.

Proof. Suppose that the right derivative ϕ′(0) > 0. Then we have

|u|ϕ′(0) ≤ ϕ(|u|) for all u ∈ R. Indeed, |u|ϕ′(0) =
∫ |u|

0
ϕ′(0)dx ≤

∫ |u|
0

ϕ′(x)dx =

ϕ(|u|), where the penultimate inequality holds as ϕ′ is increasing. Thus, for

f ∈ Lϕ(K), we get ‖f‖1 ≤ 1
ϕ′(0)‖f‖ϕ so that Lϕ(K) ⊂ L1(K).

Next, assume that m(K) < ∞. Since ϕ is convex, there exist c > 0 and

u0 > 0 such that ϕ(u) ≥ c u for all u ≥ u0. If f ∈ Lϕ(K), then ρϕ(af) < ∞ for

some a > 0. Set N := {s ∈ K : a|f(s)| < u0}. Then

∫
K

|f(s)| dm(s) =
1

a

(∫
N

|af(s)| dm(s) +

∫
K\N

|af(s)| dm(s)

)

≤ 1

a

(
u0m(K) +

1

c
ρϕ(f)

)
<∞.

Thus f ∈ Lϕ(K) implies that f ∈ L1(K). �
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The following Theorem provides a sufficient condition on the Banach space

Lϕ(K) to become a Banach algebra.

Theorem 3.5. Let K be a hypergroup, and let ϕ be a Young function.

If Lϕ(K) ⊂ L1(K), then the Orlicz space Lϕ(K) is a Banach algebra under con-

volution of functions. If K is commutative, then algebra Lϕ(K) is commutative.

Proof. Suppose that Lϕ(K) ⊂ L1(K) holds. Then by Lemma 3.3, there

exists d > 0 such that

‖f‖1 ≤ d ‖f‖ϕ (2)

for all f ∈ Lϕ(K). In fact, we can choose d = 1 by replacing ‖·‖ϕ by an equivalent

norm, denoted by ‖ · ‖ϕ again. Let f, g ∈ Lϕ(K). By Fubini’s Theorem we have

‖f ∗ g‖ϕ = sup

{∫
K

|(f ∗ g)h| : ρψ(h) ≤ 1

}
≤ sup

{∫
K

|f(s)|
∫
K

|g(š ∗ t)h(t)|dm(t) dm(s) : ρψ(h) ≤ 1

}
≤ ‖f‖1‖gš‖ϕ ≤ ‖f‖ϕ‖g‖ϕ,

where the last inequality follows from (2) and Corollary 3.2. Therefore Lϕ(K) is

a Banach algebra. �

The converse of Lemma 3.4 (that Lϕ(K) is a Banach algebra if K is compact),

is the well-known Lp-conjecture when ϕ(x) = |x|p
p . This was established by

Saeki [16] in 1990 for a locally compact group. Tabatabaie and Haghighifar

claimed that Lp-conjecture is true for the locally compact hypergroups [18].

Lemma 3.6. Let K be a hypergroup, and let ϕ be a finite Young function.

Then Lϕ(K) is a left Banach M(K)-module. In particular, Lϕ(K) is a left Banach

L1(K)-module.

Proof. Let µ be a bounded positive measure such that µ(K) < ∞, and

let f ∈ Lϕ(K) be a positive function. For the complimentary function ψ of ϕ,

if h ∈ Lψ(K), then

〈µ ∗ f, h〉 =

∫
K

∫
K

f(š ∗ t)h(t)dµ(s)dm(t) =

∫
K

∫
K

f(t)hs(t) dm(t)dµ(s).

Thus, by Hölder’s inequality (1), we get

〈µ ∗ f, h〉 ≤
∫
K

‖f‖0ϕ‖hs‖ϕdµ(s).

By Corollary 3.2, 〈µ∗f, h〉 ≤ ‖f‖0ϕ‖h‖ϕ‖µ‖, which is finite. Hence, the proposition

follows from [13, Proposition IV(1)]. �
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Theorem 3.7. Let K be a hypergroup, and let ϕ be a Young function such

that ϕ ∈ ∆2. Then the map s 7→ fs from K to Lϕ(K) is continuous.

Proof. Let f ∈ Cc(K), and let S = supp(f), the support of f , which is the

closure of the set of points of K which are not mapped to zero under f . Suppose

s0 ∈ K and Vs0 is a compact neighbourhood s0. Note that supp(fs) ⊂ s ∗ S
for all s ∈ Vs0 . Set W = Vs0 ∪ {s} ∗ S ∪ Vs0 ∗ S. Because W is a compact set,

from Lemma 3.4, we have Lψ(W ) ⊂ L1(W ) where ψ is a complementary Young

function to ϕ. By Lemma 3.3, there exists d > 0 such that

‖gχW ‖1 ≤ d‖gχW ‖ψ ≤ 2d ‖gχW ‖0ψ ≤ 2d‖g‖0ψ ≤ 2d, (3)

for every g ∈ Lψ(K) satisfying ρψ(g) ≤ 1. By (3), for all s ∈ Vs0 ,

‖fs − fs0‖ϕ = sup

{∫
K

|(fs − fs0)g| dm : ρψ(g) ≤ 1

}
≤ ‖fs−fs0‖∞ sup

{∫
W

|g|dm : ρψ(g)≤1

}
(since supp (fs−fs0)⊂W )

≤ 2d‖fs − fs0‖∞.

Then by [3, Lemma 1.2.28], ‖fs − fs0‖∞ < ε
2d for a neighbourhood Us0 ⊂ Vs0

of s0. Therefore, it follows that for f ∈ Cc(K), the map s 7→ fs is continuous.

Now, suppose that f ∈ Lϕ(K) is an arbitrary function. Since ϕ ∈ ∆2, Cc(K)

is dense in Lϕ(K), the continuity of s 7→ fs, for f ∈ Lϕ(K), can be shown by

using a density argument. Indeed, for any ε > 0, there exists h ∈ Cc(K) such that

‖f −h‖ϕ < ε
4 . Also from the first part of the proof, there exists a neighbourhood

Us0 of s0 such that ‖hs − hs0‖ϕ < ε
2 for all s ∈ Us0 . Therefore, for all s ∈ Us0 ,

‖fs − fs0‖ϕ ≤ ‖fs − hs‖ϕ + ‖hs − hs0‖ϕ + ‖hs0 − fs0‖ϕ.

Thus by Corollary 3.2, ‖fs−fs0‖ϕ ≤ 2‖f−h‖ϕ+‖hs−hs0‖ϕ < ε
2 + ε

2 = ε. Hence,

s 7→ fs is continuous. �

It is apparent that the above results hold true if each left translation is

replaced by the corresponding right translation. Symbolically, for any f ∈ Lϕ(K),

we have, fs ∈ Lϕ(K), ‖fs‖ϕ ≤ ‖f‖ϕ and the map s 7→ fs is continuous.

Theorem 3.8. Let K be a hypergroup, and let ϕ be a ∆2-regular Young

function. If Lϕ(K) is an algebra, then it has a left bounded approximate identity

which is bounded in L1-norm.
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Proof. Since Cc(K) is contained in Lϕ(K), for every symmetric compact

neighbourhood V of identity e ∈ K, there exists eV (≥ 0) ∈ Lϕ(K) with

supp(eV ) ⊂ V such that ‖eV ‖1 = 1. Let V denote the collection of all neigh-

bourhoods of identity. Then V is a directed set with respect to inclusion of sets,

and (eV )V ∈V is a left approximate identity of Lϕ(K).

Indeed, for any ε > 0, by Theorem 3.7, there exists a symmetric relatively

compact neighbourhood W ∈ V such that ‖fť − f‖ϕ < ε for all t ∈ W . Then for

all V ≥W with V ∈ V, we have∫
K

|(eV ∗ f − f)h|dm

=

∫
K

∣∣∣∣(∫
K

eV (t)f(ť ∗ s) dm(t)− f(s)

∫
K

eV (t) dm(t)

)
h(s)

∣∣∣∣ dm(s)

≤
∫
K

eV (t)

∫
K

|fť(s)− f(s)||h(s)| dm(s) dm(t)

≤
∫
K

eV (t)‖h‖ψ‖fť − f‖0ϕ dm(t) (by Hölder’s inequality (1)),

for all h ∈ Lψ(K) where ψ is the complementary Young function of ϕ.

Now, by taking the supremum over h ∈ Lψ(K) with ρψ(h) ≤ 1, we get

‖eV ∗ f − f‖ϕ < ε.

Therefore, (eV )V ∈V is a left approximate identity. �

Theorem 3.9. Let ϕ be a Young function such that ϕ ∈ ∆2, and let the

Orlicz space Lϕ(K) be an algebra. Then a closed subset I of Lϕ(K) is a left ideal

if and only if it is a left translation invariant subspace of Lϕ(K).

Proof. Let I be a closed left ideal. Let f ∈ I and s ∈ K. Using Theo-

rem 3.8, we pick a bounded approximate identity (eα) of Lϕ(K). Then, for any

ε > 0, there exists α0 such that ‖eα∗f−f‖ϕ < ε for every α ≥ α0. By Lemma 3.1,

it follows that (eα)s ∗ f ∈ I. Hence, by Corollary 3.2,

‖(eα)s ∗ f − fs‖ ≤ ‖eα ∗ f − f‖ϕ < ε.

Since I is closed, we get fs ∈ I.
Conversely, suppose that I is a closed left translation invariant subspace.

Suppose that I is not an ideal, that is, there exist f ∈ Lϕ(K) and g ∈ I such

that f ∗ g /∈ I. Hence, by the Hahn–Banach Theorem, there exists a bounded

linear functional Λ on Lϕ(K) such that Λ|I = 0 and Λ(f ∗ g) 6= 0. Since ϕ ∈ ∆2,
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the dual of Lϕ(K) is Lψ(K) where ψ is the complimentary Young function to ϕ.

Hence, the continuous linear functional Λ ∈ (Lϕ(K))∗ is uniquely determine by

g1 ∈ Lψ(K), such that

Λ(h) =

∫
K

hg1 dm (∀h ∈ Lϕ(K)).

Thus,

Λ(f ∗ g) =

∫
K

(∫
K

f(t)g(ť ∗ s) dm(t)

)
g1(s) dm(s)

=

∫
K

(∫
K

g1(s)gť(s) dm(s)

)
f(t)dm(t) =

∫
K

f(t)Λ(gť) dm(t) = 0,

as I is left translation invariant and Λ|I = 0, which is a contradiction. Hence I is

a left ideal. �

By considering ϕ(x) = |x|p
p for 1 ≤ p < ∞ in Theorem 3.9, we get the

following new result for Lebesgue algebra Lp(K). The case p = 1 was established

by Chilana and Ross [4] for commutative hypergroups, and by Litvinov [11]

for general hypergroups.

Theorem 3.10. If Lp(K) is a Banach algebra for 1 < p <∞, then a closed

subspace I of Lp(K) is a left ideal if and only if it is left translation invariant.

Proposition 3.11. Let ϕ be a Young function such that the right derivative

ϕ′(0) > 0. Then Lϕ(K) is a left ideal of L1(K).

4. The space of multipliers of Mϕ(K)

Suppose ϕ is a Young function. The set of all measurable functions f such

that ρϕ(af) < ∞ for all a > 0 is denoted by Mϕ(K). It is well-known that

Mϕ(K) 6= 0 if and only if ϕ is finite. Moreover, if ϕ is finite, then Mϕ(K) is

a subspace of Lϕ(K), and in fact, Mϕ(K) is the norm closure of Cc(K) in Lϕ(K).

In this case, Mϕ(K) is called the subspace of finite elements or Morse–Transue

space. For more details, see [9] and [13]. Throughout this section, we will deal

with only finite Young functions.

A bounded linear operator T on Mϕ(K) is called a convolutor or a multiplier

if T (f ∗ g) = T (f) ∗ g for all f, g ∈ Cc(K). The space of multipliers CVϕ(K) is

a closed subspace of B(Mϕ(K)).
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Suppose C(K) is the set of all compact neighbourhoods of e ∈ K. For

P ∈ C(K), define

Ǎϕ,P (K) :=

{
u ∈ Cc(K) : u =

∞∑
n=1

gn ∗ f̌n, (fn) ⊂Mϕ(P ), (gn) ⊂Mψ(P ),

with

∞∑
n=1

‖fn‖0ϕ‖gn‖0ψ <∞

}
.

The norm of u ∈ Ǎϕ,P (K) is given by

‖u‖Ǎϕ,P (K) = inf

{ ∞∑
n=1

‖fn‖0ϕ‖gn‖0ψ : u =

∞∑
n=1

gn ∗ f̌n

}
.

Set Ǎϕ(K) =
⋃

P∈C(K)

Ǎϕ,P (K). Then Ǎϕ(K) is a subspace of Cc(K), and for

u ∈ Ǎϕ(K),

‖u‖Ǎϕ(K) = inf{‖u‖Ǎϕ,P (K) : u ∈ Ǎϕ,P (K), P ∈ C(K)}.

It can be proved as in the group case, with ϕ(x) = |x|p/p (see [5]), that

Ǎϕ(K) is a normed space with the above norm. This space need not be an

algebra under pointwise multiplication. For instance, for ϕ(x) = |x|2
2 , Vrem

[19, Example 4.12] showed that for a hypergroup [10, 9.1C] with three elements,

A2(K) is not a normed algebra.

Lemma 4.1. Let K be a hypergroup, and let ϕ be an N -function. If T ∈
CVϕ

, then there exists a net (eα) ∈ Cc(K) with ‖eα‖1 = 1 such that if we set

Tα(f) = T (eα ∗ f) for every f ∈Mϕ(K), then

(i) for each α, ‖Tα‖ ≤ ‖T‖; and

(ii) lim
α
‖Tα(f)− T (f)‖0ϕ = 0 for each f ∈ Cc(K).

Proof. By Theorem 3.8, we can choose a net (eα) ⊂ Cc(K) with ‖eα‖1 = 1

such that lim
α
‖eα ∗ f − f‖0ϕ = 0 for any f ∈ Mϕ(K). Suppose Tα is as in the

statement of the Lemma. Since Tα is a multiplier and ‖Tα(f)‖0ϕ ≤ ‖T‖ ‖f‖0ϕ for

any f ∈Mϕ(K), we get ‖Tα‖ ≤ ‖T‖. Further,

lim
α
‖Tα(f)− T (f)‖0ϕ = lim

α
‖T (eα ∗ f − f)‖0ϕ = ‖T‖lim

α
‖eα ∗ f − f‖0ϕ = 0. �

The next result is an obvious analogue of a theorem of Cowling [5, Theo-

rem 2] in the context of Orlicz spaces on hypergroups. One can find a generaliza-

tion of Cowling’s result in [1] for Orlicz spaces on locally compact groups.
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Theorem 4.2. Let K be a hypergroup, and let (ϕ,ψ) be a complementary

pair of N -functions. Suppose ϕ is ∆2-regular. Then the dual of Ǎϕ(K) can be

identified with CVϕ(K) as Banach spaces.

Proof. Let T ∈ CVϕ(K), h ∈ Ǎϕ(K). Then for some P ∈ C(K), h =∑∞
n=1 gn ∗ f̌n with fn, gn ∈ Cc(K) and supp(fn), supp(gn) ⊂ P . Define ΦT :

Ǎϕ(K)→ C by

ΦT (h) =

∞∑
n=1

〈Tfn, gn〉.

Then, ΦT is linear and

|ΦT (h)| ≤ 2

∞∑
n=1

‖Tfn‖0ϕ‖gn‖0ϕ ≤ 2‖T‖
∞∑
n=1

‖fn‖0ϕ‖gn‖0ϕ <∞. (4)

To see that ΦT (h) is independent of the representation of h, it is enough to show

that ΦT (h) = 0 whenever h = 0.

Suppose that P ∈ C(K) and h ∈ Ǎϕ(K) with h =
∑∞
n=1 gn ∗ f̌n = 0.

By Lemma 4.1, there exists a net (eα) ⊂ Cc(K) such that for f ∈Mϕ(K),

T (eα ∗ f) = (Teα) ∗ f = Tαf.

For each α we have,∣∣∣∣∣
∞∑
n=1

〈Tαfn, gn〉

∣∣∣∣∣ ≤ 2

∞∑
n=1

‖Tαfn‖0ϕ‖gn‖0ϕ ≤ 2‖Tα‖
∞∑
n=1

‖fn‖0ϕ‖gn‖0ϕ

≤ 2‖T‖
∞∑
n=1

‖fn‖0ϕ‖gn‖0ϕ <∞.

Thus, the series
∑∞
n=1〈Tαfn, gn〉 converges uniformly in α, and we get ‖ΦT ‖ ≤

2‖T‖. Therefore,

lim
α

∞∑
n=1

〈Tαfn, gn〉 =

∞∑
n=1

lim
α
〈Tαfn, gn〉 =

∞∑
n=1

〈Tfn, gn〉.

On the other hand,

∞∑
n=1

〈Tαfn, gn〉 =

∞∑
n=1

〈(Teα) ∗ fn, gn〉 =

∞∑
n=1

〈χP1
· Teα, gn ∗ f̌n〉 (with P1 = P ∗ P̌ )

=

〈
χP1
· Teα,

∞∑
n=1

gn ∗ f̌n

〉
= 0.
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Therefore, ΦT (h) = 0. Hence, ΦT is a well-defined linear functional on Ǎϕ(K).

Moreover,
‖T‖ = sup{‖Tf‖0ϕ : f ∈ Cc(K), ‖f‖0ϕ ≤ 1}

≤ sup{|〈Tf, g〉| : f, g ∈ Cc(K), ‖f‖0ϕ ≤ 1, ‖g‖ψ ≤ 1}

≤ sup{|ΦT (h)| : h = g ∗ f̌ , ‖h‖Ǎϕ
≤ 1} ≤ ‖ΦT ‖.

Now, it remains to show that Φ : T 7→ ΦT is surjective. For F ∈ (Ǎϕ)∗ and

f ∈ Cc(K), define Ff as Ff (g) = F (g ∗ f̌) for g ∈ Cc(K). Then,

|Ff (g)| = |F (g ∗ f̌)| ≤ ‖F‖‖f‖0ϕ‖g‖ψ <∞.

Thus Ff is a linear functional on a dense subspace of Mψ(K). Since both ϕ,ψ

are N -functions and ϕ is ∆2-regular, we have (Mψ(K))∗ = Lϕ(K) = Mϕ(K).

Therefore, there exists a unique function T (f) ∈Mϕ(K) such that

Ff (g) = F (g ∗ f̌) = 〈Tf, g〉 for each g ∈ Cc(K).

Thus ‖Tf‖0ϕ = ‖Ff‖0ϕ ≤ ‖F‖‖f‖0ϕ so that ‖T‖ ≤ ‖F‖. Since ϕ ∈ ∆2, Cc(K)

is dense in Mϕ(K), and hence, T can be extended to Mϕ(K) with ‖T‖ ≤ ‖F‖.
Now, for f, g ∈ Cc(K) and ∀h ∈ Lψ(K),

〈(Tf) ∗ g, h〉 = 〈Tf, h ∗ ǧ〉 = Ff (h ∗ ǧ) = F (h ∗ ǧ ∗ f̌) = 〈T (f ∗ g), h〉.

Hence, T ∈ CVϕ(K). �

5. The multiplier space of Lϕ(S, π)

In this section, we characterize the multiplier space of Lϕ(S, π) where S is

the support of the Plancherel measure πK on the dual of a commutative hyper-

group K, and obtain a relation between the multiplier spaces of Lϕ(S, π) and

Lψ(S, π) where (ϕ,ψ) is a pair of complementary Young functions. We begin this

section with a few basic definitions to make it self-contained.

Let K be a commutative hypergroup with the Haar measure m. Denote the

space of complex valued continuous bounded function defined on K by Cb(K).

The dual of K is defined by K̂ = {χ ∈ Cb(K) : χ(x ∗ y) = χ(x)χ(y), χ(x̌) =

χ(x) and χ(e) = 1 ∀ x, y ∈ K}. Equip K̂ with the compact-open topology so that

K̂ is a locally compact Hausdorff space. In general, K̂ may not have a naturally

defined hypergroup structure. The Fourier transform of f ∈ L1(K) is defined by

f̂(χ) =

∫
K

f(x)χ(x) dm(x), ∀ χ ∈ K̂.
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There exists a unique positive Borel measure πK on K̂ called the Plancherel

measure such that∫
K

|f(x)|2 dx =

∫
K̂

|f̂(χ)|2 dπK(χ), ∀ f ∈ L2(K) ∩ L1(K).

Note that the support S of πK , unlike the group case, need not be the whole of K̂

[3, Example 2.2.49]. The extension of the Fourier transform from L1(K)∩L2(K)

to L2(K) is called the Plancherel transform. We denote the Plancherel transform

of f ∈ L2(K) by p(f). The Plancherel transform is an isometric isomorphism

from L2(K,m) onto L2(S, πK) [3, p. 91]. Thus, for f, g ∈ L2(K,m),∫
K

f(s) g(s) dm(s) =

∫
S
p(f)(χ) p(g)(χ) dπK(χ),

and hence ∫
K

f(s) g(s) dm(s) =

∫
S
p(f)(χ) p(g)(χ) dπK(χ),

which is called the Plancherel identity.

If K̂ is not a hypergroup, we can’t talk of translation map, and therefore, the

usual definition of multiplier does not work. The notion of multiplier is generalised

to Lϕ(S, πK) by means of the Plancherel transform.

A bounded linear operator T on Lϕ(S, πK) is called a multiplier if there exists

a function h ∈ L∞(K,m) such that T (g) = p(hp−1g) for every g ∈ Lϕ(S, πK) ∩
L2(S, πK). The uniqueness of the Fourier transform ensures that T is well-defined.

We denote the set of all multipliers of Lϕ(S, πK) by M(Lϕ(S, πK)), and the set

of corresponding functions by M(Lϕ(S, πK)).

Theorem 5.1. Let (ϕ,ψ) be a pair of complementary Young functions which

are ∆2-regular. The multiplier spaces of Lϕ(S, πK)) and Lψ(S, πK)) are isomet-

rically isomorphic.

Proof. Let T ∈M(Lϕ(S, πK)). Then, by definition, there exists a bounded

function h ∈ L∞(K,m) such that T (g) = p(hp−1g) for all g ∈ Lϕ(S, πK) ∩
L2(S, πK). For f ∈ Cc(S) ∩ Lψ(S, πK), define

Ff (g) =

∫
S
Tf(χ)g(χ) dπK(χ), for all g ∈ Cc(S).

Note that, by the Plancherel identity, it follows that
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Ff (g) =

∫
S
p(hp−1f)(χ) g(χ) dπK(χ) =

∫
K

(hp−1f)(s) (p−1g)(s) dm(s)

=

∫
S
p(hp−1g)(χ) f(χ) dπK(χ) =

∫
S
Tg(χ)f(χ) dπK(χ).

Therefore, by Hölder’s inequality,

|Ff (g)| =
∣∣∣∣∫
S
Tg(χ)f(χ) dπK(χ)

∣∣∣∣ ≤ ‖Tg‖ϕ ‖f‖0ψ ≤ ‖T‖ϕ‖g‖ϕ ‖f‖0ψ.
Since ϕ is ∆2-regular, Cc(S) is dense in Lϕ(S, πK). Therefore, Ff can be extended

to Lϕ(S, πK) without changing the norm. Again, as (ϕ, ψ) is ∆2-regular (hence

N -functions), by duality of Lϕ(S, πK) and Lψ(S, πK), Tf ∈ Lψ(S, πK), and

moreover,

‖Tf‖ψ = ‖Ff‖ ≤ ‖T‖ϕ ‖f‖0ψ.

Thus, T restricted to Cc(S) defines a bounded linear transformation of Cc(S)

into Lψ(S, πK). Since Cc(S) is dense in Lψ(S, πK), T restricted to Cc(S) can be

uniquely extended to a bounded linear operator of Lψ(S, πK) without changing

the norm. Denote this operator on Lψ(S, πK) by T̃ .

Suppose, f ∈ Lψ(S, πK) ∩ L2(S, πK), and let (fn) ⊂ Cc(S) be a sequence

such that lim
n
‖fn−f‖ψ = 0. Since T̃ is continuous, lim

n
‖Tfn−T̃ f‖ψ = lim

n
‖T̃ fn−

T̃ f‖ψ = 0. By the Plancherel identity, we have, for all g ∈ Cc(S),∫
S
T̃ f(χ) g(χ) dπK(χ)

= lim
n→∞

∫
S
Tfn(χ) g(χ) dπK(χ) = lim

n→∞

∫
S
p(hp−1fn)(χ) g(χ) dπK(χ)

= lim
n→∞

∫
K

h(s)(p−1fn)(s)p−1(g)(s) dm(s) = lim
n→∞

∫
S
fn(χ) p(hp−1g)(χ) dπK(χ)

=

∫
S
f(χ) p(hp−1g)(χ) dπK(χ) =

∫
K

h(s) (p−1f)(s)(p−1g)(s) dm(s)

=

∫
S
p(hp−1f)(χ) g(χ) dπK(χ).

Since Cc(S) is dense in Lϕ(S, πK), we conclude that T̃ (f) = p(hp−1(f)) for all

f ∈ Lψ(S, π) ∩ L2(S, πK). Therefore, T̃ ∈ M(Lψ(S, πK)) and ‖T̃‖ψ ≤ ‖T‖ϕ.

The inverse of T 7→ T̃ is obtained by interchanging the role of ϕ and ψ, which

shows that T 7→ T̃ is an isometric isomorphism. �
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Degenfeld-Schonburg [6] proved the above result for ϕ(x) = |x|p
p and

ψ(x) = |x|q
q , where 1 < p <∞ and 1

p + 1
q = 1.

Remark 1. By the proof of Theorem 5.1, it follows that if T is a bounded

linear operator on Lϕ(S, πK), the condition that T (f) = p(hp−1f) for all f ∈
Cc(S) and for some h ∈ L∞(K,m) is sufficient for T to be a multiplier.

Our next result generalizes a result of Hahn on a locally compact abelian

group with ϕ(x) = |x|p
p , 1 < p <∞ (see [8]). For a hypergroup, the case ϕ(x) =

|x|p
p , 1 < p <∞, was estabished by Degenfeld-Schonburg [6, Proposition 4.3.7].

Theorem 5.2. Let (ϕ,ψ) be a pair of ∆2-regular complementary Young

functions, and let h be a bounded measurable function on K. Then the following

statements are equivalent:

(i) h ∈M(Lϕ(S, πK)).

(ii) There exists a constant C such that∣∣∣∣∫
K

h(p−1f)(p−1g) dm

∣∣∣∣ ≤ C‖f‖0ϕ ‖g‖0ψ
for all f, g ∈ Cc(S).

Proof. Let h ∈ M(Lϕ(S, πK)) so that p(hp−1f) ∈ Lϕ(S, π) for all f ∈
Lϕ(S, π) ∩ L2(S, π). We define a bounded linear operator T from Cc(S) to

Lϕ(S, πK) by T (f) = p(hp−1f). Then,

‖T‖ = sup{‖p(hp−1f)‖ϕ : f ∈ Cc(S), ‖f‖ϕ ≤ 1}.

Since (ϕ,ψ) is a pair of complementary ∆2-regular functions (hence N -functions),

Lψ(S, πK) is the dual of Lϕ(S, πK) and Cc(S) is dense in Lψ(S, πK). Hence we

have

‖T‖ = sup

{∣∣∣∣∫
S

p(hp−1f)g dπK

∣∣∣∣ : f, g ∈ Cc(S), ‖f‖0ϕ ≤ 1, ‖g‖0ψ ≤ 1

}
.

By the Plancherel identity,

‖T‖ = sup

{∣∣∣∣∫
K

h(p−1f)p−1g dm

∣∣∣∣ : f, g ∈ Cc(S), ‖f‖0ϕ ≤ 1, ‖g‖0ψ ≤ 1

}
,

and thus (ii) holds with C = ‖T‖.
Conversely, assume that (ii) holds for a bounded measurable function defined

on K. If we reverse the above argument, we see that T : Cc(S)→ Lϕ(S, πK) de-

fined by Tf := p(hp−1f) has norm bounded by C. Therefore, T can be extended

to Lϕ(S, πK) with the same norm. By Remark 1, we have ‖h‖∞ ≤ ‖T‖ = C so

that h ∈M(Lϕ(S, πK)). �
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