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Orlicz spaces on hypergroups

By VISHVESH KUMAR (Delhi), RITUMONI SARMA (Delhi)
and N. SHRAVAN KUMAR(Delhi)

Abstract. For a locally compact hypergroup K and a Young function ¢, we study
the Orlicz space L¥(K) and provide a sufficient condition for L¥(K) to be an algebra
under convolution of functions. We show that a closed subspace of L¥(K) is a left ideal
if and only if it is left translation invariant. We apply the basic theory developed here
to characterize the space of multipliers of the Morse-Transue space M¥?(K). We also
investigate the multipliers of L¥ (S, wk ), where S is the support of the Plancherel mea-
sure g associated to a commutative hypergroup K.

1. Introduction

Hypergroups are generalization of groups. Here we deal with hypergroups
which are analogous to locally compact groups. It is needless to say that LP-spaces
on locally compact groups are central objects in harmonic analysis and have
plenty of applications in mathematics and otherwise. Orlicz spaces are natural
generalizations of LP-spaces. In fact, the index p is replaced by a continuous
function ¢ with certain properties. Orlicz spaces on locally compact groups have
been studied extensively by a large number of authors. In this note, a study of
Orlicz spaces on hypergroups is attempted.

A hypergroup is a locally compact space with a convolution product which
maps each pair of points to a probability measure with compact support. The
notion of hypergroups is a probabilistic generalization of locally compact groups
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wherein the convolution of two points corresponds to the point mass measure at
their product. Hypergroups are independently created by DUNKL [7], JEWETT [10]
and SPECTOR [17] with the purpose of doing standard harmonic analysis. We fol-
low Jewett [10] for basic notation and terminology of hypergroups. For details of
hypergroups, one can refer to ([3], [7], [10]-[11], [17]).

Let K be a hypergroup with the Haar measure m, and let L!'(K) be its
hypergroup algebra. The study of L!(K) has been extensively carried out by
many researchers. The Banach space LP(K) for 1 < p < oo is a Banach algebra
if and only if K is a compact hypergroup.

To find more on Orlicz spaces, one can refer to [1]-]2], [9], [12] and [14]-[15].
M. M. Rao commented in [14, p. 3613] that a study of Orlicz spaces for hyper-
groups would be interesting. This motivates us to work on this topic.

Section 2 contains basic definitions and results related to Orlicz spaces on
hypergroups in the form we need. In Section 3, we give a sufficient condition for
L?(K) to become a Banach algebra, and show existence of a bounded approximate
identity for L?(K) in Li-norm which is used further to characterize closed left
ideals of the Orlicz algebra L¥(K). In Section 4, as an application of the theory
developed in Section 3, we study the multiplier space Cy, (K) of M¥(K), the
norm closure of C.(K) in L¥(K), and prove that it can be identified with the
dual of nicely described space denoted by Av(K ). In the last section, we give
a characterization of multipliers of L?(S,7k), where S is the support of the
Plancherel measure mx when the hypergroup K is commutative.

2. Preliminaries

Let K be a locally compact hypergroup with a left Haar measure m. Denote
the set of all complex valued m-measurable functions on K by L°(K). A non-
zero convex function ¢ : R — [0,00] is called a Young function if it is even,
left continuous with ¢(0) = 0 and is not identically infinity. Here we note that
every Young function is an integral of a non-decreasing left continuous function
[13, Theorem 1]. Thus ¢’ is non-decreasing, and hence ¢ is increasing for = > 0.
A Young function ¢ is called a nice Young function or N-function if it satisfies
the following conditions:

lim@ =0 and lim M =00
x—0 X T—>00 X

For any Young function ¢, and y € R, define,

P(y) = sup{zly| — p(z) : © > 0}
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It can easily be seen that v is also a Young function. This is called the compli-
mentary Young function to ¢. Further, it turns out that ¢ is the complimentary
Young function to 1. The pair (p,v) is called a complimentary pair of Young
functions.

A Young function ¢ is Ag-regular if there exists a constant C' > 0 and ¢ > 0
such that ¢(2z) < Co(z) for all z > zp when K is compact, and p(2z) <
Cp(z) for all z > 0 when K is noncompact. We write ¢ € Ay if ¢ satisfies the
Ao-regularity condition. Given a Young function ¢, the modular function p, :
L°(K) — R is defined by p,(f) := [ (| f]) dm. For a given Young function ¢,
the Orlicz space is defined by

LY (K) = {f € L°(K) : py(af) < oo, for some a >0} .

Then the Orlicz space is a Banach space with respect to the Orlicz norm || - ||,
defined for f € L¥Y(K) by

||fgo=sup{/ng|dm:/K¢(lg|)§1}

where 1 is the complimentary Young function to ¢. Another norm [ - [|% on
L¥(K) called Luzemburg norm is defined as

171 ::inf{r>0:/Kgo<|£) dm<1},

It is known that these two norms are equivalent. In fact, || - |2 < |- [l, <2 - [
and ||f||8, < 1 if and only if p,(f) < 1. If (¢,7) is a complementary pair of
Ao-functions, then it is a complementary pair of N-Young functions. If (p,)
is a complementary pair of N-Young functions and ¢ € A,, then the dual space
of (LY(K),| - |ly) is (L¥(K),]| - ”2&) In fact, the duality is given by (f,g) =
S f(z) g(xz) dm(z). Let C.(K) denote the space of continuous functions with
compact support on K. The closure of C,.(K) inside L¥(K) is denoted by M¥(K).
If ¢ € Ag, then LP(K) = M¥?(K) so that C.(K) is dense in L¥(K). If f € L¥(K)
and g € L¥(K) where ¢ is complimentary Young function to ¢, then fg € L*(K)
and the following Hoélder’s inequality [13, Remark 1, p. 62] holds:

/K [f(B)g®) dm(t) < |FIIS lgllw- (1)

For more details on Orlicz spaces, see [13].



34 Vishvesh Kumar, Ritumoni Sarma and N. Shravan Kumar

Let K be a locally compact hypergroup, and let M(K) denote the corre-
sponding (associative) measure algebra of all complex regular Borel measures
on K. We call a locally compact hypergroup simply a hypergroup if no confusion
arises. The involution of an element s € K is denoted by §. Let ps; be the unit
point mass at s. If f is a Borel function on K and x,y € K, the right translate
1Y (also denoted by LY(f)) is defined by

() = LV(f) () = /K J dpa *py),

whenever the integral exists. We shall also denote this by f(z *y), although z xy
may not represent a point in K.
If w € M(K), the convolutions u * f and f * p are defined by

px f(z) = /K f@*z) du(y) and  fpl) = /K f(@+*g) duly).

If f and g are Borel functions, their convolution f * g is defined by

fgle) = /K f(@* y)g(@) dm(y),

whenever it makes sense. Throughout this article, K denotes a hypergroup with
a fixed Haar measure m.

3. Orlicz algebra on hypergroups

In this section, we develop some basic results related to Orlicz spaces for
hypergroups. We provide a sufficient condition for the Orlicz space L¥(K) to
become a Banach algebra and characterize the closed left ideals of the Banach
algebra L¥(K).

Lemma 3.1. The Orlicz space L¥(K) is translation invariant, ie., f €
L¥(K) implies fs € L¥(K) for every s € K.

ProoF. If f € L%@), then it is clear from [10, Lemma 3.1D] that f, €
LO(G). Now, let f € L¥(K), i.e., py(af) = [, ¢(alf])dm < oo for some a > 0.

Then
potar) = [ 90(‘ [ a5t )2 ) it

)=
< [o( [ es@law @) dmo,




Orlicz spaces on hypergroups 35

By using Jensen’s inequality [13, Proposition 5, p. 62], we get

peter) < [ ( [ et d(ps*p»(z)) n(t) = [ o (alr), () dm()
- /K o (al f1) (£) dm(t) = po(af) < oo,

where the penultimate equality follows from [10, Lemma 3.3 FJ. O

Corollary 3.2. Let K be a hypergroup, and let ¢ be a Young function such
that ¢ € Ay. Then, for any s € K and f € L?(K), we have || fs|lo < || f|lo-

For p(z) = % for 1 < p < oo, Corollary 3.2 turns into [10, Lemma 3.3 B].

Lemma 3.3. Let K be a hypergroup, and let ¢ be a Young function. Then
L?(K) C L*(K) if and only if there exists d > 0 such that ||f||; < d||f]|, for all
feL?(K).

PROOF. The “if” part is apparent. For the converse, assume that L¥(K) C
L'(K). Note that L¥(K) is also a Banach space with the norm ||-|| := |||, +]|[]1-
The identity map I : (L¥(K),| - |]) = (L¥(K),| -|l,) is a continuous bijection.
Therefore, by the open mapping theorem, there exists d > 0 such that [|f| <
d||f|le- Thus, we have ||f||1 < d||f]|, for all f € LY(K). O

Lemma 3.4. Let ¢ be a finite Young function. If (K, m) is a finite measure
space or the right derivative ¢'(0) > 0, then L¥(K) C L'(K). In particular,
the conclusion holds if K is a compact hypergroup.

PROOF. Suppose that the right derivative ¢'(0) > 0. Then we have
lule’(0) < @(Jul) for all w € R. Indeed, |ul¢’(0) = Olu\ ¢ (0)dz < folu‘ o (z)dx =
©(|u]), where the penultimate inequality holds as ¢’ is increasing. Thus, for
§ € L#(K), we get ||l < =k |l so that LP(K) © L!(K).

Next, assume that m(K) < oco. Since ¢ is convex, there exist ¢ > 0 and
ug > 0 such that ¢(u) > cu for all u > wg. If f € L¥(K), then p,(af) < oo for

some a > 0. Set N := {s € K : a|f(s)] <wuo}. Then

( /N laf(s)] dm(s) + /K ) dm<s>>

(wom(s) + 20,1)) < .

J rldn) -

<

QI Q=

Thus f € L?(K) implies that f € L(K). O
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The following Theorem provides a sufficient condition on the Banach space
L¥(K) to become a Banach algebra.

Theorem 3.5. Let K be a hypergroup, and let ¢ be a Young function.
If L¥(K) C L' (K), then the Orlicz space L¥(K) is a Banach algebra under con-
volution of functions. If K is commutative, then algebra L¥(K) is commutative.

PROOF. Suppose that L¥(K) C L'(K) holds. Then by Lemma 3.3, there
exists d > 0 such that

£l < dllflle (2)

for all f € L¥(K). In fact, we can choose d = 1 by replacing || -||,, by an equivalent
norm, denoted by || - ||, again. Let f,g € L¥(K). By Fubini’s Theorem we have

uf*gu¢=sup{/°Kf*gvu:mﬂh>g1}

<swp{ [ 176 [ lotsx on@ldm(eyan(s): por <1}
< lhllgsllo < 1 Folgle:

where the last inequality follows from (2) and Corollary 3.2. Therefore L?(K) is
a Banach algebra. O

The converse of Lemma 3.4 (that L¥(K) is a Banach algebra if K is compact),
is the well-known LP-conjecture when ¢(x) = %. This was established by
SAEKI [16] in 1990 for a locally compact group. TABATABAIE and HAGHIGHIFAR
claimed that LP-conjecture is true for the locally compact hypergroups [18].

Lemma 3.6. Let K be a hypergroup, and let ¢ be a finite Young function.
Then L¥?(K) is a left Banach M (K )-module. In particular, L¥(K) is a left Banach
L'(K)-module.

PROOF. Let 1 be a bounded positive measure such that p(K) < oo, and
let f € L¥(K) be a positive function. For the complimentary function ¢ of ¢,
if h € LY(K), then

(o £, 1) / /fs*t H)dp(s)dm(t /”/f m(t)d(s).

Thus, by Holder’s inequality (1), we get

(ux f.h) L/|unuhu¢mu>

By Corollary 3.2, (u f, h) < [|f[|%[|hllolull, which is finite. Hence, the proposition
follows from [13, Proposition IV(1)]. |
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Theorem 3.7. Let K be a hypergroup, and let ¢ be a Young function such
that ¢ € Ay. Then the map s — f, from K to L¥(K) is continuous.

PrOOF. Let f € C.(K), and let S = supp(f), the support of f, which is the
closure of the set of points of K which are not mapped to zero under f. Suppose
so € K and V;, is a compact neighbourhood sg. Note that supp(fs) C s* S
for all s € V,. Set W =V, U {s} x SUV;, *S. Because W is a compact set,
from Lemma 3.4, we have LY(W) C L'(W) where 1 is a complementary Young
function to . By Lemma 3.3, there exists d > 0 such that

loxwlls < dllgxwlly < 2d[lgxwlly, < 2d|g|l} < 2d, (3)

for every g € L¥(K) satisfying py(g) < 1. By (3), for all s € Vj,,

Vo= foullo = sup{/K ((Fa— Fuo)aldm : pylg) < 1}

< 1fo— fon oo 5D { | g ﬂw(g)Sl} (since supp (fu—fo,) CIV)
< 2y — forllo.

Then by [3, Lemma 1.2.28], ||fs — fslloo < 53 for a neighbourhood Uy, C Vi,
of sg. Therefore, it follows that for f € C.(K), the map s — f, is continuous.
Now, suppose that f € L?(K) is an arbitrary function. Since ¢ € Ag, C.(K)
is dense in L¥(K), the continuity of s — fs, for f € L¥(K), can be shown by
using a density argument. Indeed, for any € > 0, there exists h € C.(K) such that
|f —nhl|l, < §. Also from the first part of the proof, there exists a neighbourhood
Us, of s such that ||hs — hs,||l, < § for all s € U,,. Therefore, for all s € Uy,

S0

1fs = Faolle < Nfs = hsllo + [1hs = hsolle + 1hsy = Faolle-

Thus by Corollary 3.2, || fs — fsolle < 2| f =hllo+[lhs —hs,ll, < §+ 5 = €. Hence,
s — fs is continuous. a

It is apparent that the above results hold true if each left translation is
replaced by the corresponding right translation. Symbolically, for any f € L¥(K),
we have, f* € LY(K), || f°ll, < ||fll, and the map s — f* is continuous.

Theorem 3.8. Let K be a hypergroup, and let ¢ be a As-regular Young
function. If L?(K) is an algebra, then it has a left bounded approximate identity
which is bounded in L'-norm.



38 Vishvesh Kumar, Ritumoni Sarma and N. Shravan Kumar

PROOF. Since C.(K) is contained in L?(K), for every symmetric compact
neighbourhood V' of identity e € K, there exists ey (> 0) € L¥(K) with
supp(ev) C V such that |ley|; = 1. Let V denote the collection of all neigh-
bourhoods of identity. Then V is a directed set with respect to inclusion of sets,
and (ey)yey is a left approximate identity of L?(K).

Indeed, for any € > 0, by Theorem 3.7, there exists a symmetric relatively
compact neighbourhood W' € V such that || f; — f||, < € for all t € W. Then for
all V > W with V € V, we have

[ Vv = igam
K

:/K‘(/Kev(t)f(f*s)dm(t)—f(s)/Kev(t)dm(t)> h(s)
< [ v [ 1) = FlInts) ) dmt

dm(s)

< / ev (Ol fi — FICdm(t)  (by Holder's inequality (1)),
K

for all h € LY (K) where ¢ is the complementary Young function of .
Now, by taking the supremum over h € LY (K) with py(h) < 1, we get

llev = f = fllo <e.
Therefore, (ey)vey is a left approximate identity. |

Theorem 3.9. Let ¢ be a Young function such that ¢ € Ay, and let the
Orlicz space L?(K) be an algebra. Then a closed subset I of L¥(K) is a left ideal
if and only if it is a left translation invariant subspace of L¥(K).

PrOOF. Let I be a closed left ideal. Let f € I and s € K. Using Theo-
rem 3.8, we pick a bounded approximate identity (e,) of L¥(K). Then, for any
€ > 0, there exists ag such that ||eq * f — f||, < € for every & > . By Lemma 3.1,
it follows that (en)s * f € I. Hence, by Corollary 3.2,

l(ea)s * f— fsll < llea *f_fHLp <e

Since I is closed, we get fs € I.

Conversely, suppose that I is a closed left translation invariant subspace.
Suppose that I is not an ideal, that is, there exist f € L?(K) and g € I such
that f g ¢ I. Hence, by the Hahn—-Banach Theorem, there exists a bounded
linear functional A on L¥(K) such that A|; =0 and A(f * g) # 0. Since ¢ € Ay,
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the dual of L?(K) is LY (K) where 9 is the complimentary Young function to (.
Hence, the continuous linear functional A € (L¥(K))*
g1 € L¥(K), such that

is uniquely determine by

A(h):/thldm (Vh € L?(K)).

Thus,
Mo = [ ( / f(t)g(f*S)dm(t)> g1(5) dm(s)

— [ ([ svrastsrans) soamt) = [ sat0 dmte o

as I is left translation invariant and A|; = 0, which is a contradiction. Hence I is
a left ideal. O

z|P

By considering ¢(z) = v for 1 < p < oo in Theorem 3.9, we get the
following new result for Lebesgue algebra LP(K). The case p = 1 was established
by CHILANA and RoSs [4] for commutative hypergroups, and by LiTviNOV [11]
for general hypergroups.

Theorem 3.10. If LP(K) is a Banach algebra for 1 < p < oo, then a closed
subspace I of LP(K) is a left ideal if and only if it is left translation invariant.

Proposition 3.11. Let ¢ be a Young function such that the right derivative
©'(0) > 0. Then L¥(K) is a left ideal of L'(K).

4. The space of multipliers of M¥(K)

Suppose ¢ is a Young function. The set of all measurable functions f such
that py(af) < oo for all @ > 0 is denoted by M¥(K). It is well-known that
M¥(K) # 0 if and only if ¢ is finite. Moreover, if ¢ is finite, then M¥(K) is
a subspace of L¥(K), and in fact, M¥(K) is the norm closure of C,.(K) in L¥(K).
In this case, M¥(K) is called the subspace of finite elements or Morse—Transue
space. For more details, see [9] and [13]. Throughout this section, we will deal
with only finite Young functions.

A bounded linear operator T on M¥(K) is called a convolutor or a multiplier
if T(f xg) =T(f)*gforall f,g € C(K). The space of multipliers Cy, (K) is
a closed subspace of B(M¥(K)).
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Suppose €(K) is the set of all compact neighbourhoods of e € K. For
P € ¢(K), define

Ay p(K) = {u € Ce(K):u=Y gn* fn,(fa) C M?(P),(gn) C MY (P),

o0
with Y || £allS a3 < OO} ~
n=1

The norm of u € A, p(K) is given by

Hu”A%p(K) = inf{z an”&”gn”?b ‘U= Zgn * fn} .
n=1 n=1
Set A,(K) = U A, p(K). Then A,(K) is a subspace of C.(K), and for

Pee(K)

u € Ay (K),
lull 4, ) = mf{[ull 4, o) =1 € Ap p(K), P € €(K)}

It can be proved as in the group case, with ¢(z) = |z|?/p (see [5]), that
A,(K) is a normed space with the above norm. This space need not be an
algebra under pointwise multiplication. For instance, for ¢(x) = %, VREM
[19, Example 4.12] showed that for a hypergroup [10, 9.1C] with three elements,
As(K) is not a normed algebra.

Lemma 4.1. Let K be a hypergroup, and let ¢ be an N-function. If T €
Cv,, then there exists a net (eq) € C.(K) with |leq|1 = 1 such that if we set
To(f) =T(eq = f) for every f € M?(K), then

(i) for each a, | T4|| < ||T|; and
(i) Tim || To(f) — T(f)||2, = 0 for each f € Co(K).

PRrROOF. By Theorem 3.8, we can choose a net (e,) C C.(K) with |leq|1 =1
such that lim|le, * f — || = 0 for any f € M¥(K). Suppose T, is as in the
statement of the Lemma. Since Ty, is a multiplier and ||To ()| < [T [ ]2, for
any f € M¥(K), we get | To|| < ||T||. Further,

tim |7, ()~ T(F)% = lim | T(ea » £~ )% = |T|lim fleq « £~ FIS =0. O

The next result is an obvious analogue of a theorem of COWLING [5, Theo-
rem 2] in the context of Orlicz spaces on hypergroups. One can find a generaliza-
tion of Cowling’s result in [1] for Orlicz spaces on locally compact groups.
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Theorem 4.2. Let K be a hypergroup, and let (¢,1)) be a complementary
pair of N-functions. Suppose ¢ is Ag-regular. Then the dual of A,(K) can be
identified with Cy, (K) as Banach spaces.

PROOF. Let T € Cy,(K), h € Ay(K). Then for some P € ¢(K), h =

Zflozl G * fn with f,,gn € C.(K) and supp(f,), supp(gn) C P. Define & :
A, (K) — C by

(I)T(h) = Z<Tfnagn>
n=1
Then, @7 is linear and
D0 (h) <2 T fallRllgnll < 20T M FallSllgnll} < oo (4)
n=1 n=1

To see that ®7(h) is independent of the representation of h, it is enough to show
that ®7(h) = 0 whenever h = 0.

Suppose that P € €(K) and h € A, (K) with h = >°° g, * f,, = 0.
By Lemma 4.1, there exists a net (e,) C C.(K) such that for f € M¥(K),

T(eax f) = (Ten) x [ =Tuf.

For each « we have,

Z (Tafr gn)

<22||T Fallgllgnlll < 207w HZIIan lgn
n=1

< 2|7 Z [ fallGllgnlly < oo

n=1

Thus, the series Y ° (T, fn, gn) converges uniformly in «, and we get ||| <
2||T||I. Therefore,

00 00
h;n Z<Tafnagn th (Tefrs gn) = Z Tfns Gn)-
n=1 n=1

On the other hand,

o0

Z<Tafnagn> :Z<<Tea fnagn XP1 'Teaagn*.fn> (With Py :P*P)
n=1
<XP1

8

n=1
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Therefore, ®r(h) = 0. Hence, ®r is a well-defined linear functional on Ag, (K).
Moreover,

|71l = sup{ITfIg : f € Ce(K), |If]l5 < 1}
<sup{[(Tf,9)| : f,9 € Ce(K), Ifllg < 1, llglly <1}

< sup{|Pr(h)| : h=gx f, [Ih] 1, <1} <|Pr].
Now, it remains to show that ® : T — ®r is surjective. For F' € (A,)* and
f € C.(K), define Fy as Fy(g) = F(g * f) for g € C.(K). Then,

[Er@)| = 1F(g+ HI < IFNIF12Nglls < oo

Thus Fy is a linear functional on a dense subspace of MY (K). Since both ¢,
are N-functions and ¢ is Ag-regular, we have (MY (K))* = L¥(K) = M¥(K).
Therefore, there exists a unique function T'(f) € M¥?(K) such that

Fylg) = Flg# /) = (Tf,q) for cach g € Co(K).
Thus |T£]g = [F[Ig < [FIIIF]S so that [T < [[F|. Since ¢ € As, Ce(K)
is dense in M¥(K), and hence, T' can be extended to M¥(K) with || T| < || F|l.
Now, for f,g € Co(K) and Vh € LY (K),

(Tf)*g.h) =(Tf hxg) = Fp(h*g) = F(hxg*f) = (T(f *g),h).
Hence, T' € Cy,, (K). O

5. The multiplier space of L¥(S, )

In this section, we characterize the multiplier space of L?(S, ) where S is
the support of the Plancherel measure mx on the dual of a commutative hyper-
group K, and obtain a relation between the multiplier spaces of L?(S,7) and
LY (S, 7) where (p,) is a pair of complementary Young functions. We begin this
section with a few basic definitions to make it self-contained.

Let K be a commutative hypergroup with the Haar measure m. Denote the
space of complex valued continuous bounded function defined on K by C*(K).
The dual of K is defined by K = {x € C*(K) : x(z xy) = x(z)x(»), x() =
x(z) and x(e) =1V z,y € K}. Equip K with the compact-open topology so that
Kisa locally compact Hausdorff space. In general, K may not have a naturally
defined hypergroup structure. The Fourier transform of f € L!(K) is defined by

o) = /K f@X@ dm(z), Vxek.
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There exists a unique positive Borel measure mx on K called the Plancherel
measure such that

[ @ o= [ 150 ancto. v e ) LK)
K K

Note that the support S of 7, unlike the group case, need not be the whole of K
[3, Example 2.2.49]. The extension of the Fourier transform from L!(K)N L?*(K)
to L2(K) is called the Plancherel transform. We denote the Plancherel transform
of f € L3(K) by p(f). The Plancherel transform is an isometric isomorphism
from L?(K,m) onto L?(S, k) [3, p. 91]. Thus, for f,g € L*(K,m),

/ £(5) 9(5) dm(s) = / p(1)() P00 e (X)),
K S

and hence

/ £() g(s) dm(s) = /5 p(£)00) p(9) (X) dric ().

K
which is called the Plancherel identity.

If K is not a hypergroup, we can’t talk of translation map, and therefore, the
usual definition of multiplier does not work. The notion of multiplier is generalised
to L¥ (S, k) by means of the Plancherel transform.

A bounded linear operator T' on L?(S, 7k ) is called a multiplier if there exists
a function h € L>(K,m) such that T(g) = p(hp~1g) for every g € L¥(S,7x) N
L?(8, 7). The uniqueness of the Fourier transform ensures that T is well-defined.
We denote the set of all multipliers of L¥(S,7x) by M(L?(S,7k)), and the set
of corresponding functions by M(LP (S, 7k)).

Theorem 5.1. Let (p, 1) be a pair of complementary Young functions which
are Ag-regular. The multiplier spaces of L¥(S, 7)) and LY (S,7x)) are isomet-
rically isomorphic.

PROOF. Let T € M(L?(S,mk)). Then, by definition, there exists a bounded
function h € L°°(K,m) such that T(g) = p(hp~lg) for all g € L¥(S,7x) N
L%(S, 7). For f € C.(S)NLY(S,7k), define

Fy(g) = /5 TF(x)9(x) dr(x), for all g € Cu(S).

Note that, by the Plancherel identity, it follows that
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:/Sp(hp*lf)(x X) drie (x ) (p~"g)(s) dm(s)

= J o
=,

= /S p(hp~9)(X) f(x) dmi (x Tg(x)f(x) dmk (x).

Therefore, by Holder’s inequality,

Fy(g) = ] / To(0) £ () dmc (x >\ < ITgl IF1S < 1T N gl 1 F1.

Since ¢ is As-regular, C.(S) is dense in L¥ (S, 7). Therefore, Fy can be extended
to L¥(S, k) without changing the norm. Again, as (¢, ) is As-regular (hence
N-functions), by duality of L?(S, k) and L¥(S,7x), Tf € LY(S,7k), and
moreover,

1Tl = IS < 1T 110

Thus, T restricted to C.(S) defines a bounded linear transformation of C.(S)
into L¥(S, k). Since C.(8S) is dense in L¥(S, mk), T restricted to C.(S) can be
uniquely extended to a bounded linear operator of L¥(S, 7)) without changing
the norm. Denote this operator on L¥(S, k) by T

Suppose, f € LY(S,7x) N L?(S,7k), and let (f,) C C.(S) be a sequence
such that lign | fn—flly = 0. Since T is continuous, liyr]n T fp=Tf|ly = thLn | T fn—

ff||¢ = (0. By the Plancherel identity, we have, for all g € C.(S),

/S TF(x) 9(x) dri (x)
= Jin [ 7400900 dnc (0 = Jim [ w000 900 dric ()
S S
= i [ W67 L)@ @) dml) = T [ 50 w000 (0 dr ()
- / FOO (R~ 0) () drsc () = [ B (7 1) (E) 0 g) o) dm(s)

/ p(hp 1 £) () 90) drke ().

Since C,(S) is dense in L#(S, 7 ), we conclude that T(f) = p(hp~1(f)) for all
f e L¥(S,7) N L3S, mx). Therefore, T € M(LY(S,7)) and | T|ly < ||,
The inverse of T — T is obtained by interchanging the role of ¢ and 1, which
shows that T — T is an isometric isomorphism. |



Orlicz spaces on hypergroups 45

||”

p

and

DEGENFELD-SCHONBURG [6] proved the above result for ¢(x) =
Y(x) = |“;‘ Wherel<p<ooand +,71
Remark 1. By the proof of Theorem 5.1, it follows that if T is a bounded

linear operator on L¥(S,7x), the condition that T'(f) = p(hp~1f) for all f €
C¢(S) and for some h € L (K, m) is sufficient for T' to be a multiplier.

Our next result generalizes a result of HAHN on a locally compact abelian

group with p(z) = lm‘ , 1 <p< oo (see [8]). For a hypergroup, the case p(x) =

III

, 1< p< oo, was ebtablbhed by Degenfeld-Schonburg [6, Proposition 4.3.7].

Theorem 5.2. Let (p,v) be a pair of Ag-regular complementary Young
functions, and let h be a bounded measurable function on K. Then the following
statements are equivalent:

(i) h e M(L?(S, k).

(ii) There exists a constant C' such that

] / W) (p ) dm| < CIFIC gl
for all f, g € Cc(

PROOF. Let h € Em(L*"(S,ﬂK)) so that p(hp~1f) € L¥(S,m) for all f €
L?(S,m) N L*(S, 7). We define a bounded linear operator T from C.(S) to
L?(S,7x) by T(f) = p(hp~1f). Then,

IT|l = sup{llp(hp~" )l : f € Ce(S), [Ifll < 1}

Since (¢, %) is a pair of complementary As-regular functions (hence N-functions),
LY (S, 7k) is the dual of L?(S,mx) and C.(S) is dense in LY (S, mx). Hence we
have

7] = sup {’ / p(hp‘lf)gdw’  fg € CulS), 1710 < 1, lgll%, < 1}.

By the Plancherel identity,

||T|—sup{\/ P gdm' frg € ClS)IFI0 < 1, |g||¢<1}

and thus (ii) holds with C = ||T||.

Conversely, assume that (ii) holds for a bounded measurable function defined
on K. If we reverse the above argument, we see that T : C.(S) — L?(S, k) de-
fined by T'f := p(hp~!f) has norm bounded by C. Therefore, T' can be extended
to L¥(S, mk) with the same norm. By Remark 1, we have ||h||e < |T]| = C so
that h € M(LY (S, 7K)). O
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