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Abstract. We prove that if G is an additively written Abelian topological group

with the translation invariant metric ρ and

1

log x

∑
n≤x

ρ(ϕ(n), ϕ(n+ 1))

n
→ 0 (x→ ∞),

where ϕ : N → G is a completely additive function, then the extension ϕ : Rx → G

is a continuous homomorphism, where Rx is the multiplicative group of positive real

numbers.

1. Introduction

We shall use the following standard notation: N = natural numbers, Z =

integers, Qx = multiplicative group of positive rationals, Q = additive group of

rationals, T = one dimensional circle group (torus). Let us consider them in the

usual topology.

Let G be an Abelian group. A mapping ϕ : N→ G is completely additive, if

ϕ(nm) = ϕ(n) + ϕ(m), ∀ n,m ∈ N.
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Let A∗
G be the set of completely additive functions.

If G is considered as a multiplicative (commutative) group, then the mapping

V : N→ G satisfying the relation

V (nm) = V (n)V (m), ∀ n,m ∈ N,

is called a completely multiplicative function. M∗
G denotes the set of these func-

tions.

We can extend the domain of ϕ and V to Qx by the relations

ϕ
(m
n

)
= ϕ(m)− ϕ(n) and V

(m
n

)
= V (m)(V (n))−1 (1)

uniquely.

Furthermore, the relations

ϕ(rs) = ϕ(r) + ϕ(s), ∀ r, s ∈ Qx,

V (rs) = V (r)V (s), ∀ r, s ∈ Qx,

hold.

Let now G be an Abelian topological group, and ϕ : Qx → G be a homomor-

phism. We shall say that ϕ is continuous at the point 1 if rν → 1 implies that

ϕ(rν)→ 0.

Let Rx be the multiplicative group of positive real numbers.

Lemma 1. Let G be an additively written closed Abelian topological group,

and ϕ : Qx → G be a homomorphism that is continuous at the point 1. Then its

domain can be extended to Rx by the relation

ϕ(α) := lim
rν→α
rν∈Qx

ϕ(rν) (2)

uniquely. Obtained in this way ϕ : Rx → G is a continuous homomorphism,

consequently,

ϕ(αβ) = ϕ(α) + ϕ(β), ∀ α, β ∈ Rx.

Lemma 1 is proved in [1].

E. Wirsing [7] and E. Wirsing, Tang Yuansheng, Shao Pintsung [8]

proved the following important theorem, which is quoted now as



On additive arithmetical functions. . . 51

Lemma 2. Let T = {z ∈ C
∣∣∣|z| = 1} be the unit circle, and let V : N → T

be a completely multiplicative function, such that

δ(V (n)) := V (n+ 1)(V (n))−1 → 1, as n→∞.

Then V (n) = niτ , where τ ∈ R.

Hence, in [1], it was deduced

Theorem A. Let G be an additively written metrically compact Abelian

topological group. Let ϕ ∈ A∗
G satisfy the condition

∆(ϕ(n)) := ϕ(n+ 1)− ϕ(n)→ 0, as n→∞.

Then its extension ϕ : Qx → G defined by (1) is continuous at 1, consequently,

its extension ϕ : Rx → G defined by (2) is a continuous homomorphism.

O. Klurman proved in [4]

Theorem B. Let V : N→ T, V ∈M∗
T such that

1

x

∑
n≤x

|V (n+ 1)− V (n)| → 0, as x→∞. (3)

Then V (n) = niτ (n ∈ N), where τ ∈ R.

In a letter [5] written to us, O. Klurman proved the more general assertion

(see [6]), namely

Theorem C. If V ∈M∗
T such that

1

log x

∑
n≤x

|V (n+ 1)− V (n)|
n

→ 0, as x→∞,

then V (n) = niτ (n ∈ N), where τ ∈ R.

Our purpose in this short paper is to prove

Theorem 1. Let G be an additively written Abelian topological group with

the translation invariant metric ρ. Let ϕ ∈ A∗
G for which

1

log x

∑
n≤x

ρ(ϕ(n), ϕ(n+ 1))

n
→ 0, as x→∞.

Then the extension ϕ : Rx → G defined by (2) is a continuous homomorphism.
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2. Proof of Theorem 1

Proof. Let χ : G→ T be any continuous character,

V (n) := χ(ϕ(n)).

Since χ is a continuous character,

|V (n+ 1)− V (n)| ≤ Cρ(ϕ(n), ϕ(n+ 1)),

therefore, from (3) we have

1

x

∑
n≤x

|V (n+ 1)− V (n)| → 0, as x→∞,

and so from Theorem C we obtain that V (n) = niτ (n ∈ N), τ ∈ R.

Repeating the argument used in [1, page 289], we get the theorem.

We prove that ϕ : Qx → G is continuous at 1. Let Nj/Mj → 1, Nj ,Mj ∈ N
(j → ∞). We consider Aj = ϕ(Nj) − ϕ(Mj). Since G is metrically compact,

it is also sequentially compact. Then, there exists a convergent subsequence

Aji → B(∈ G). So χ(Aji)→ χ(B) and

χ(Aj`) = χ

(
ϕ

(
Nj`
Mj`

))
= V

(
Nj`
Mj`

)
=

(
Nj`
Mj`

)iτ
= exp

(
iτ log

Nj`
Mj`

)
→ 1.

Thus χ(B) = 1 for each continuous character χ, consequently, B = 0 (∈ G),

and so ϕ : Qx → G is continuous at 1. Lemma 1 implies the theorem. �

3. Theorem 2

Theorem 2. Let F : T → T , |F (u) − F (v)| < C|u − v|, u, v ∈ T , and let

C be a constant. Assume that F (T ) = T . Let V ∈ M∗
T , V (n) be uniformly

distributed on T . Assume that

1

log x

∑
n≤x

|V (n+ 1)− F (V (n))|
n

→ 0, as x→∞. (4)

Let k ≥ 2 be such an integer for which V (k) = 1. Then V (n) = niτ for every

n ∈ N, where τ ∈ R.
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Proof. From (4), we can easily deduce that

1

log x

∑
n≤x

|V (n+ `)− F (`)(V (n))|
n

→ 0, as x→∞, (5)

for every fixed ` ∈ N. Here F (`) is the `-fold iterate of F . Let A` = V (`).

From (5), summing in it only for n dividing by `, we obtain that

1

log x

∑
n≤x

|A`F (V (n))− F (`)(A`V (n))|
n

→ 0, as x→∞. (6)

Since V (n) is uniformly distributed on T , (6) implies that A`F (ξ) = F (`)(A`ξ)

holds for every ξ ∈ T and for ` = 1, 2, . . .. Since Ak = 1, we have

F (x) = F (k−1)(F (x)) (x ∈ T ),

and since F−1(T ) = T , we obtain that

y = F (k−1)(y) (∀y ∈ T ),

and so

1

log x

∑
n≤x

|V (n+ k − 1)− F (k−1)(V (n))|
n

=
1

log x

∑
n≤x

|V (n+ k − 1)− V (n)|
n

→ 0, as x→∞.

Summing over only on integers n(k − 1)( instead of n), we obtain that

1

log x

∑
n≤x

|V (n+ 1)− V (n)|
n

→ 0, as x→∞.

We can apply Theorem C. �

Remark 1. Let V (p) = e2πif(p), f(p) ∈ [0, 1). Let f be extended for every

n to be a completely additive function. It is obtained that: V being uniformly

distributed on T is equivalent to the assertion that f (mod 1) is uniformly dis-

tributed. A necessary and sufficient condition for additive functions to be uni-

formly distributed (mod 1) can be found in P. D. T. A. Elliott [3].

Conjecture 1. Let F : T → T be continuous, F (T ) = T , V : N → T ,

V ∈M∗
T ,

1

log x

∑
n≤x

|V (n+ 1)− F (V (n))|
n

→ 0, as x→∞.

Then V (n) = niτ for every n ∈ N, where τ ∈ R.
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