

On additive arithmetical functions with values in topological groups III

By IMRE KÁTAI (Budapest) and BUI MINH PHONG (Budapest)

This paper is dedicated to Professor Zoltán Daróczy on his 80th anniversary

Abstract. We prove that if G is an additively written Abelian topological group with the translation invariant metric ρ and

$$\frac{1}{\log x} \sum_{n \leq x} \frac{\rho(\varphi(n), \varphi(n+1))}{n} \rightarrow 0 \quad (x \rightarrow \infty),$$

where $\varphi : \mathbb{N} \rightarrow G$ is a completely additive function, then the extension $\varphi : \mathbb{R}_x \rightarrow G$ is a continuous homomorphism, where \mathbb{R}_x is the multiplicative group of positive real numbers.

1. Introduction

We shall use the following standard notation: \mathbb{N} = natural numbers, \mathbb{Z} = integers, \mathbb{Q}_x = multiplicative group of positive rationals, \mathbb{Q} = additive group of rationals, T = one dimensional circle group (torus). Let us consider them in the usual topology.

Let G be an Abelian group. A mapping $\varphi : \mathbb{N} \rightarrow G$ is completely additive, if

$$\varphi(nm) = \varphi(n) + \varphi(m), \quad \forall n, m \in \mathbb{N}.$$

Mathematics Subject Classification: 11A07, 11A25, 11N25, 11N64.

Key words and phrases: Abelian topological group, completely additive function, continuous homomorphism.

Let \mathcal{A}_G^* be the set of completely additive functions.

If G is considered as a multiplicative (commutative) group, then the mapping $V : \mathbb{N} \rightarrow G$ satisfying the relation

$$V(nm) = V(n)V(m), \quad \forall n, m \in \mathbb{N},$$

is called a completely multiplicative function. \mathcal{M}_G^* denotes the set of these functions.

We can extend the domain of φ and V to \mathbb{Q}_x by the relations

$$\varphi\left(\frac{m}{n}\right) = \varphi(m) - \varphi(n) \quad \text{and} \quad V\left(\frac{m}{n}\right) = V(m)(V(n))^{-1} \quad (1)$$

uniquely.

Furthermore, the relations

$$\begin{aligned} \varphi(rs) &= \varphi(r) + \varphi(s), \quad \forall r, s \in \mathbb{Q}_x, \\ V(rs) &= V(r)V(s), \quad \forall r, s \in \mathbb{Q}_x, \end{aligned}$$

hold.

Let now G be an Abelian topological group, and $\varphi : \mathbb{Q}_x \rightarrow G$ be a homomorphism. We shall say that φ is continuous at the point 1 if $r_\nu \rightarrow 1$ implies that

$$\varphi(r_\nu) \rightarrow 0.$$

Let \mathbb{R}_x be the multiplicative group of positive real numbers.

Lemma 1. *Let G be an additively written closed Abelian topological group, and $\varphi : \mathbb{Q}_x \rightarrow G$ be a homomorphism that is continuous at the point 1. Then its domain can be extended to \mathbb{R}_x by the relation*

$$\varphi(\alpha) := \lim_{\substack{r_\nu \rightarrow \alpha \\ r_\nu \in \mathbb{Q}_x}} \varphi(r_\nu) \quad (2)$$

uniquely. Obtained in this way $\varphi : \mathbb{R}_x \rightarrow G$ is a continuous homomorphism, consequently,

$$\varphi(\alpha\beta) = \varphi(\alpha) + \varphi(\beta), \quad \forall \alpha, \beta \in \mathbb{R}_x.$$

Lemma 1 is proved in [1].

E. WIRSING [7] and E. WIRSING, TANG YUANSHENG, SHAO PINTSUNG [8] proved the following important theorem, which is quoted now as

Lemma 2. Let $T = \{z \in \mathbb{C} \mid |z| = 1\}$ be the unit circle, and let $V : \mathbb{N} \rightarrow T$ be a completely multiplicative function, such that

$$\delta(V(n)) := V(n+1)(V(n))^{-1} \rightarrow 1, \quad \text{as } n \rightarrow \infty.$$

Then $V(n) = n^{i\tau}$, where $\tau \in \mathbb{R}$.

Hence, in [1], it was deduced

Theorem A. Let G be an additively written metrically compact Abelian topological group. Let $\varphi \in \mathcal{A}_G^*$ satisfy the condition

$$\Delta(\varphi(n)) := \varphi(n+1) - \varphi(n) \rightarrow 0, \quad \text{as } n \rightarrow \infty.$$

Then its extension $\varphi : \mathbb{Q}_x \rightarrow G$ defined by (1) is continuous at 1, consequently, its extension $\varphi : \mathbb{R}_x \rightarrow G$ defined by (2) is a continuous homomorphism.

O. KLURMAN proved in [4]

Theorem B. Let $V : \mathbb{N} \rightarrow T, V \in \mathcal{M}_T^*$ such that

$$\frac{1}{x} \sum_{n \leq x} |V(n+1) - V(n)| \rightarrow 0, \quad \text{as } x \rightarrow \infty. \quad (3)$$

Then $V(n) = n^{i\tau}$ ($n \in \mathbb{N}$), where $\tau \in \mathbb{R}$.

In a letter [5] written to us, O. KLURMAN proved the more general assertion (see [6]), namely

Theorem C. If $V \in \mathcal{M}_T^*$ such that

$$\frac{1}{\log x} \sum_{n \leq x} \frac{|V(n+1) - V(n)|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty,$$

then $V(n) = n^{i\tau}$ ($n \in \mathbb{N}$), where $\tau \in \mathbb{R}$.

Our purpose in this short paper is to prove

Theorem 1. Let G be an additively written Abelian topological group with the translation invariant metric ρ . Let $\varphi \in \mathcal{A}_G^*$ for which

$$\frac{1}{\log x} \sum_{n \leq x} \frac{\rho(\varphi(n), \varphi(n+1))}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty.$$

Then the extension $\varphi : \mathbb{R}_x \rightarrow G$ defined by (2) is a continuous homomorphism.

2. Proof of Theorem 1

PROOF. Let $\chi : G \rightarrow T$ be any continuous character,

$$V(n) := \chi(\varphi(n)).$$

Since χ is a continuous character,

$$|V(n+1) - V(n)| \leq C\rho(\varphi(n), \varphi(n+1)),$$

therefore, from (3) we have

$$\frac{1}{x} \sum_{n \leq x} |V(n+1) - V(n)| \rightarrow 0, \quad \text{as } x \rightarrow \infty,$$

and so from Theorem C we obtain that $V(n) = n^{i\tau}$ ($n \in \mathbb{N}$), $\tau \in \mathbb{R}$.

Repeating the argument used in [1, page 289], we get the theorem.

We prove that $\varphi : \mathbb{Q}_x \rightarrow G$ is continuous at 1. Let $N_j/M_j \rightarrow 1$, $N_j, M_j \in \mathbb{N}$ ($j \rightarrow \infty$). We consider $A_j = \varphi(N_j) - \varphi(M_j)$. Since G is metrically compact, it is also sequentially compact. Then, there exists a convergent subsequence $A_{j_i} \rightarrow B (\in G)$. So $\chi(A_{j_i}) \rightarrow \chi(B)$ and

$$\chi(A_{j_\ell}) = \chi\left(\varphi\left(\frac{N_{j_\ell}}{M_{j_\ell}}\right)\right) = V\left(\frac{N_{j_\ell}}{M_{j_\ell}}\right) = \left(\frac{N_{j_\ell}}{M_{j_\ell}}\right)^{i\tau} = \exp\left(i\tau \log \frac{N_{j_\ell}}{M_{j_\ell}}\right) \rightarrow 1.$$

Thus $\chi(B) = 1$ for each continuous character χ , consequently, $B = 0 (\in G)$, and so $\varphi : \mathbb{Q}_x \rightarrow G$ is continuous at 1. Lemma 1 implies the theorem. \square

3. Theorem 2

Theorem 2. *Let $F : T \rightarrow T$, $|F(u) - F(v)| < C|u - v|$, $u, v \in T$, and let C be a constant. Assume that $F(T) = T$. Let $V \in \mathcal{M}_T^*$, $V(n)$ be uniformly distributed on T . Assume that*

$$\frac{1}{\log x} \sum_{n \leq x} \frac{|V(n+1) - F(V(n))|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty. \quad (4)$$

Let $k \geq 2$ be such an integer for which $V(k) = 1$. Then $V(n) = n^{i\tau}$ for every $n \in \mathbb{N}$, where $\tau \in \mathbb{R}$.

PROOF. From (4), we can easily deduce that

$$\frac{1}{\log x} \sum_{n \leq x} \frac{|V(n + \ell) - F^{(\ell)}(V(n))|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty, \quad (5)$$

for every fixed $\ell \in \mathbb{N}$. Here $F^{(\ell)}$ is the ℓ -fold iterate of F . Let $A_\ell = V(\ell)$.

From (5), summing in it only for n dividing by ℓ , we obtain that

$$\frac{1}{\log x} \sum_{n \leq x} \frac{|A_\ell F(V(n)) - F^{(\ell)}(A_\ell V(n))|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty. \quad (6)$$

Since $V(n)$ is uniformly distributed on T , (6) implies that $A_\ell F(\xi) = F^{(\ell)}(A_\ell \xi)$ holds for every $\xi \in T$ and for $\ell = 1, 2, \dots$. Since $A_k = 1$, we have

$$F(x) = F^{(k-1)}(F(x)) \quad (x \in T),$$

and since $F^{-1}(T) = T$, we obtain that

$$y = F^{(k-1)}(y) \quad (\forall y \in T),$$

and so

$$\begin{aligned} & \frac{1}{\log x} \sum_{n \leq x} \frac{|V(n + k - 1) - F^{(k-1)}(V(n))|}{n} \\ &= \frac{1}{\log x} \sum_{n \leq x} \frac{|V(n + k - 1) - V(n)|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty. \end{aligned}$$

Summing over only on integers $n(k - 1)$ (instead of n), we obtain that

$$\frac{1}{\log x} \sum_{n \leq x} \frac{|V(n + 1) - V(n)|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty.$$

We can apply Theorem C. □

Remark 1. Let $V(p) = e^{2\pi i f(p)}$, $f(p) \in [0, 1)$. Let f be extended for every n to be a completely additive function. It is obtained that: V being uniformly distributed on T is equivalent to the assertion that $f \pmod{1}$ is uniformly distributed. A necessary and sufficient condition for additive functions to be uniformly distributed $\pmod{1}$ can be found in P. D. T. A. ELLIOTT [3].

Conjecture 1. Let $F : T \rightarrow T$ be continuous, $F(T) = T$, $V : \mathbb{N} \rightarrow T$, $V \in \mathcal{M}_T^*$,

$$\frac{1}{\log x} \sum_{n \leq x} \frac{|V(n + 1) - F(V(n))|}{n} \rightarrow 0, \quad \text{as } x \rightarrow \infty.$$

Then $V(n) = n^{i\tau}$ for every $n \in \mathbb{N}$, where $\tau \in \mathbb{R}$.

References

- [1] Z. DARÓCZY AND I. KÁTAI, On additive arithmetical functions with values in topological groups. I, *Publ. Math. Debrecen* **33** (1986), 287–291.
- [2] Z. DARÓCZY AND I. KÁTAI, On additive arithmetical functions with values in topological groups. II, *Publ. Math. Debrecen* **34** (1987), 65–68.
- [3] P. D. T. A. ELLIOTT, Probabilistic Number Theory. I, *Springer-Verlag, New York – Berlin*, 1979.
- [4] O. KLURMAN, Correlations of multiplicative functions and applications, *Compos. Math.* **153** (2017), 1622–1657.
- [5] O. KLURMAN, The proof is given in a letter to I. Kátai and B. M. Phong (2016).
- [6] O. KLURMAN and A. P. MANGEREL, On the orbits of multiplicative pairs, 2018, arXiv:1810.08967v1.
- [7] E. WIRSING, The proof was presented at a Number Theory Meeting in Oberwolfach (1984) and in a letter to I. Kátai (September 3, 1984).
- [8] E. WIRSING, Y.-S. TANG and P.-S. SHAO, On a conjecture of Kátai for additive functions, *J. Number Theory* **56** (1996), 391–395.

IMRE KÁTAI
 DEPARTMENT OF COMPUTER ALGEBRA
 FACULTY OF INFORMATICS
 EÖTVÖS LORÁND UNIVERSITY
 PÁZMÁNY PÉTER SÉTÁNY 1/C
 H-1117 BUDAPEST
 HUNGARY

E-mail: katai@inf.elte.hu

BUI MINH PHONG
 DEPARTMENT OF COMPUTER ALGEBRA
 FACULTY OF INFORMATICS
 EÖTVÖS LORÁND UNIVERSITY
 PÁZMÁNY PÉTER SÉTÁNY 1/C
 H-1117 BUDAPEST
 HUNGARY

E-mail: bui@inf.elte.hu

(Received December 2, 2017; revised July 30, 2018)