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Pseudo-random subsets constructed by using Fermat quotients

By HUANING LIU (Xi’an) and GUOTUO ZHANG (Xi’an)

Abstract. Let p be a prime, and let n be an arbitrary integer with (n,p) = 1.
The Fermat quotient gp(n) is defined as the unique integer with

G ="""1(modp), 0<gn)<p-1

We also define gp(kp) = 0 for k € Z. In this paper, we study the pseudo-randomness of
subsets constructed by Fermat quotients, by using the estimates for exponential sums
and character sums with Fermat quotients.

1. Introduction

For a prime p and an integer n with (n,p) = 1, the Fermat quotient g,(n) is
defined as

1
gp(n) = T (mod p), 0<gp(n)<p—1

We also define g,(kp) = 0, k € Z. It is easy to show that q,(u) = g,(p? & u) for
p > 2, and

gp(a+ kp) = gy(a) — ka™" (mod p) (1.1)
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for any a,k € Z with (a,p) = 1. Fermat quotients arose from the study of the
first case of Fermat’s Last Theorem, which claimed that the equation

2" +yt+ 2" =0, 2tn, (n,zyz) =1, n>1 (1)n

has no solutions in integers x, y and z.

In 1823, Sophie Germain proved that if n and 2n+1 are both prime, then (1),
has no solutions in integers. In 1909, Wieferich showed that if (1), has solutions
in integers z, y and z, then g,(2) = 0. Shortly later, Mirimanoff extended the
result to ¢,(3) = 0. In 1917, Pollaczek proved that if prime p is sufficiently large
and (1), has solutions in integers x, y and z, then g,(u) = 0 for each prime v < 31.
In 1988, Granville and Monagan showed that if (1), has solutions in integers z,
y and z, then g,(u) = 0 for all primes u < 89. See [13] for an excellent survey of
the first case of Fermat’s Last Theorem.

Fermat quotients have numerous applications in computational and algebraic
number theory (see [1]-[2], [4], [6], [12], [16]-[19]). For example, we define the sets

—1 .
VANDIVER [20] showed that /p —1 < M(p) <p— “pT' FoucHE [11] proved

R(p,a) < p*/?7°M) OsTAFE and SHPARLINSKI [16] obtained the following esti-
mations:

p 11/1240(1)

M(p) > (1 1) —— F

0)> (o) gl Flo) < p/12000)

O(p) < p=3/4te), U(p; k,h) < ht/2pt/2Hed),

CHEN and WINTERHOF [6] gave certain generalization and improvement
on Ostafe and Shparlinski’s result.
Proposition 1.1. Let P(z) € Fp[z] be of degree 1 < d < p. Then we have
d1/4p5/67 1 < d < p1/37
#lu:1<u<p-1,¢u) =P} < {d1/8p7/87 d> pl/3,

as p — 0.



Pseudo-random subsets. . . 57

SHPARLINSKI [17] proved some lower bounds on the image size I,(IN).

Proposition 1.2. For every p and N < p, we have
N2
IL,(N)> (1 1) —.
o(V) 2 (14 0(1)) s
For every p and arbitrary fixed € > 0, there exists some 6 > 0 such that, for
p¢ < N < p, we have I,(N) > p°.

Shparlinski [17] also studied the primitive roots and power non-residues
among the values of the Fermat quotients.

3/4+0(1)

Proposition 1.3. For every p, there exists n < p such that g,(n) is

a primitive root modulo p. For every p and positive integer d | p — 1, there exists

3/440(1)

n<p such that g,(n) is a d-th power non-residue modulo p.

In this paper, we further study the pseudo-randomness of subsets constructed
by using Fermat quotients. Let R C {1,2,..., N}, and define the sequence
N
Rl _IR|
Eny =EN(R)= e 1-—, ——
N N( ) {617827 76N}€{ N N
by
1-— |Nﬂ, for n € R,

R
—‘—Nl, forn ¢ R.

DARTYGE and SARKOZY [8] introduced the measures of pseudo-randomness:
The well-distribution measure of the subset R is defined by

t—1
w = ;
(R,N) = max | casio
=0
where the maximum is taken over all a, b, t e Nwith 1 <a <a+ (t —1)b < N.
The correlation measure of order k of the subset R is defined by

M
§ €n+tdy " Entdy
n=1

where the maximum is taken over all D = (dy,...,d;) and M with 0 < d; <
s <dp <N-M.

The subset R is considered as a pseudo-random subset if both W(R, N) and
Cr(R,N) (at least for small k) are “small” in terms of N. Later many pseudo-

)

Ci(R, N) = max

random subsets were given and studied. For example, DARTYGE, MOSAKI and
SARKOZY [7] proved the following results.
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Proposition 1.4. Assume that p is an odd prime number, f(x) € F,[z] is
of degree d > 2. Let r € Z,s € N, s < p/2. Define R C {1,...,p} by

R={n:1<n<p, Jhe{rr+1,....,r+s—1} with f(n) = h (mod p)}.
Then we have

W (R,p) < 2d\/p(log p)*.
And for 2 <k <d-—1, we have

Cr(R,p) < 2d\/p(1 4 log p)F+t.

DARTYGE and SARKOZY [9] presented large families of pseudo-random sub-
sets formed by power residues.

Proposition 1.5. Let p > 2 be a prime number, d | p— 1 and f € F,[z] of
degree k. Define

R={zeF,:IycF, with f(z) = y? (mod p)}.

Write f = f*--- f& for the factorization into irreducible factors in F,, and
suppose that (d, a1, ...,a,.) = 1. Then

W(R,p) < 20k,/plogp.

Let f be a polynomial of degree k with no multiple roots in Fp, and let
k,l € N such that one of the following conditions is satisfied:

(i) 1=2;
(ii) d is a prime divisor of p — 1, and (41)* < p;
(iii) the polynomial 2P~ + .-+ + 1 is irreducible in Fy[z] and max(k,l) < p.

Then we have

l l l
20k logp d—1 10k logp
Ci(R,p) < lk (1+> +9<) (1+) lk+/plogp.
(R, p) 7 ] N VP

DARTYGE, SARKOZzY and SzALAY [10] studied the pseudo-randomness of
certain subsets related to primitive roots.

Proposition 1.6. Let p be an odd prime, k,r € N, f(z) € Fp[z] of degree D.
Let

Gp =1{91,92,- -, 9s(p—1) }» 0<g1<g2<-<Ggopp—1) <P)
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be the set of the primitive roots modulo p. Define the subset R C IF,, by
R={¢":9e€G,3xc IF, with f(g") ="}
If f(x) is irreducible over [F,,, then we have
W(R,p) < D25 ) pt/2 log p.

Moreover, if we also assume that D > 2 or D =r = 1, we also have
—1/2\\gw(EL) K 1/2
Ck(R,p) < KD ((1+0(Dp )24 F ) p/*logp.

CHEN |[3] constructed a family of pseudo-random subsets modulo pg, where
p, q are two distinct primes satisfying “RSA type” with 2 < p < ¢ < 2p, and
studied the well-distribution and correlation measures. L1U and SONG [15] further
studied the correlation measures of the subsets.

In this paper, we study the pseudo-random subsets constructed by using
Fermat quotients. Our results are the following.

Theorem 1.1. Let p be an odd prime number, and let r,s € N with 1 <
r<r+s—1<p-1. DeﬁneRC{l,...,pz} by

R:{n:1§n§p2, Jhe{r,r+1,...,r+s—1} Withqp(n)zh(modp)}.

Then we have
W (R,p?) < p(logp)?,

and
Ca (R,p*) < p(logp)®.

Furthermore, if s = o(p), then

3
2

Cs (R,p?) < s+ p? (logp)®.

While s = [g} , we have

1
Cs (R,p*) > 571192 +0 (p (logp)4) :
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Theorem 1.2. Let p be an odd prime number, and d | p — 1. Define
Rc{l,...,p*} by
Rz{n:1§n§p2, 3y such that 1 <y <p—1 and g,(n) = y* (mod p)} .
Then we have ’
W (R,p*) < p* logp,
and
Cr, (R,p?) < kp*,
where the implied constant depends on d.

Theorem 1.3. Let p be an odd prime number, and let G, be the set of the
primitive roots modulo p. Define R C {1, e ,pz} by

R = {n:lﬁnﬁpga%(”) Egp}'
Then we have
W (R, p?) < 2°?~Vp3 logp.

and
Cr (R.p?) < k2b@—Dpi.

Remark 1.1. Our results show that the subsets in Theorems 1.2 and 1.3
enjoy good pseudo-random properties. However, the subset in Theorem 1.1 is not
pseudo-random.

2. Exponential sums and character sums with Fermat quotients

The exponential sums with Fermat quotients have been studied by many
authors. Write e(y) = e?™¥. HEATH-BROWN [14] proved the following estimation
by using the Pélya—Vinogradov bound and the Burgess bound.

Proposition 2.1. For any integer a coprime to p, we have
Z e (a(Ip(n)) < Nl/2p3/s7

M<n<M+N p
pin

uniformly for M, N > 1. In particular,

o (agy(n)
Z e (qp> < pT/8,
n=1 p

uniformly for p t a.
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OSTAFE and SHPARLINSKI [16] obtained a non-trivial bound of exponential
sums with linear combinations of Fermat quotients.

Proposition 2.2. For any integer s > 1, we have

s—1
M+N Zoanp(UJFj)
max Z el =Y/ || < splogp,
(a07---7as’p):1 u=M+1 p

uniformly over M and p?> > N > 1.

Using Proposition 2.2, they studied the distribution of the points

(q,,(u) p(uts—1)

R ), u=M-+1,...,M+ N,
p p

in the s-dimensional cube. Moreover, CHEN, OSTAFE and WINTERHOF [5] gave
the following generalization.

Proposition 2.3. Let dy,dy,...,ds—1 be integers with 0 < dy < dy < --- <
ds_1 < p*. Suppose that no triple (d;,dy,d;) satisfies d; = dj, = d; (mod p) for
0<Il<h<t<s. Wehave

s—1
N Zoajqp(u—i—dj)
j=

max E e

(ao,-wa0p)=1 [ £=4

< smax {plogp, Np*%}
p

for 1 < N < p? Ifs =2 ords_ < p, the stronger bound splogp holds.

Now, we give the following identities on certain exponential sums of Fermat
quotients.

Theorem 2.1. Let p > 2 be a prime, and let u be an integer with (u,p) = 1.
For any integer z, we have

(52 (3)
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PrROOF. Write n = a + bp, we get

£ (3)- 58 (252 (57)

a=1 b=0

_'i’ge(qu aerp))e( a+bp >+'§e< 1+b>

1
a=1 b=0

Assume that pt z. By (1.1), we have

Hence,

Suppose that p | z. By (1.1), we get

EOR)G)EE ) (57

n=1 a=1 b=0
p—1lp-1 ( (a) -1 > a+bp
=2 D
a=1 b=0

’B

S ) e

This proves Theorem 2.1.
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Theorem 2.2. Let p > 2 be a prime, and let uy, w2, ug be integers with

(urugusz,p) = 1. Let dq, ko, ks and M be integers such that 0 < d; < dy + kap <
dy + ksp < p> — M. Then we have

EM: . <U1Qp(n +dy) 4 u2qy(n + di + kap) + usqp(n + di + k3p)>
p
n=1

M, if uy + us + uz =0 (mod p) and usks + usks =0 (mod p),

O (p), if up +ug +uz =0 (mod p) and ugks + usks # 0 (mod p),
O (plogp), ifuy + uz+us#0 (mod p).

ProoOF. We may suppose that M > p, since otherwise the claim is trivial.
By (1.1), we get

p

n=1

f: . (ulqp(n +dy) + uagp(n + di + kap) + usgp(n + di + k3p)>

_ f: . <u1qp(n+d1)+u2qp(n+d1 +k2p)+U3Qp(”+d1+k3p)> n

n=1 p n=1
(n+d1,p)=1 (n+di,p)>1
M —1 M
(u1+u2+U3)qp(n+d1)7(u2k2+U3k3)(n+d1) )
> 5 VI
n=1 p n=1
(n+dy,p)=1 (n+d1,p)>1

Case 1. uy + ug + uz =0 (mod p) and usks + usks = 0 (mod p). We have

i . (Ulq;n(n +dy) + uaqp(n + di + kap) + uzqy(n + di + k3p)> Y
p

n=1

Case 2. u1 +us +usz =0 (mod p) and ugks + usks Z 0 (mod p). It is not
hard to show that

p

n=1

i . (Ulqp(n +dy) + uaqp(n + di + kop) + usgp(n + di + ksp))

n=1
(n+di,p)>1

_ i e(_(u2k2+u3k3)(n+d1)1)>+ i .
n=1 p
(n+di,p)=1
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= > f e<—(u2kz+u3ks)(kp+v+dl)_l)>+O(p)

OSkS[M]—l v=1 p
’ (v+di,p)=1
P -1
k k d
= Z Z e(_(uz 2 + ugks)(v+di) ))+O(p)<<p.
o<k<[fH]-1 o=l g
(vt+d1,p)=1

Case 3. uy + uz + uz # 0 (mod p). By (1.1) and the properties of residue
systems, we have

i . <u1qp(n + dy) + ugqy(n + dy + kop) + usqy(n+ di + k’gp))
p
n=1

M=

M
(w1 +us+us)gp(n+di) — (ugka+usks)(n+di) =)
> o g )+

n=1 n=1
(n+d1,p)=1 (n+dy,p)>1
_ Z zp: . ((u1 +ug+us)gp(kp+v+dy)
0<k<[M]-1  v=l b
P (v4d1,p)=1
(u2k2+U3k3)(kp+v+d1)1)> +O(p>
p
- zp: e <(“1 + w2 + u)gp(v + di) — (ugks + ugks)(v + d1)1)>
v=1 p
(v+d1,p)=1
: d)" 1k
. e(_(u1+u2+u;)(v+ 1) >+O(p)
o<k 1
p -1
d k
< Z Z e(_(ul+u2+u3)(v+ 1) ) +p
v=1 0<k<[H]-1 b
(v+d1,p)=1 P

p
1 1
ane I
< 2:1 <_(u1+u2+u3)(v+d1)—1> Tr< Z 1 <y> +p < plogp,
0. v|<B =
(v4d1,p)=1 p 0<|v|<E5= \p

where (a) denotes the distance of the real number « to the nearest integer.

This completes the proof of Theorem 2.2. |
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On the other hand, character sums with Fermat quotients have also been
studied by many authors. For example, from [12] we know that

N—-1
37 X (gplau + b)) < N1=5p 57 (log p)*, (2.1)

u=0

for 1 < N < p? and every fixed integer v > 1, where x is a non-trivial multi-
plicative character modulo p, and a, b are integers with (a, p?) # p?>. GOMEZ and
WINTERHOF [12] further studied the following character sums.

Proposition 2.4. Let x1,X2,-..,X: be nontrivial multiplicative characters
modulo p. Then we have

Rl IN 5
> xa1 (gp (ud)) - xi (gp (u+ di)) <<maX{pu Ip2 logp},
3

u=0

foranyinteger50§d1<---<dl§p2—1and1§N§p2,

3. Proof of Theorem 1.1

For integer h with (h,p) =1, by (1.1), we get

p? p? p—1p—1
> 1= ) 1= > 1
n=1 n=1 a=1k=0
gp(n)=h (mod p) (n,p)=1 qp(a+kp)=h (mod p)
gp(n)=h (mod p)
p—1p—1 p—1 p—1
_ 3 | = 3 | —p—1.
a=1k=0 a=1 k=0
gp(a)—ka—1=h (mod p) ka—1=gp(a)—h (mod p)
Suppose that A C {1,2,...,p— 1}. Then
p?
S = Al (- ). (3.1)
n=1
gp(n)eA

Noting that 1 <r <r+s—1<p—1, we have

IR =s(p—1).
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It is easy to show that, for 1 <n < p2,

17! - 1, R,

N Z Z 6<U(qp(z)) h)):{o ”ZR
h=r |u|<zzL o eI

Hence,
1! (u(qpm)h)) R|
ey = — e ————— | — —

P = Z,l P p?
= |ul<2zt

Ly () () o))

= — Z el —— e +O R (32)
Picpuzes \ s P P P
IR|

where the term e is compensated by the contribution of u = 0.
For a, b,t € Nwith 1 <a <a+ (t—1)b < p?, from (3.2) and Theorem 2.1,
we get

Senmt ¥ e(-)) () voy

—1
1<]u| <5~

r+s—1 p? -1
b 1<u|<Bzt N h=r P n=1 P j=0
p2
X e(z(n (Z‘*‘ﬂﬁ)) +0 ()
z=1 p
(’*S‘l ( uh)> Gy ( Z(CL—I—Jb))
=3 e{—— el — 5
P 1<|ul<Bzt \ h=r p z=1 \j=0 p
v ugy(n) zn 9
*2.€ < ) € <2) + O (p) < p(logp)
n=1 p p

Hence,
W (R,p?) < p(logp)®.

For integers di,dy and M with 0 < d; < dy < p? — M, from (3.2) and
Proposition 2.3, we get
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M M r+s—1
1 urh u1gp(n+dy) 1
Serwena=d (2 5 (5o h)). () o (1)
n=1 n=1 plﬁlullg%ﬂ hier p p p
1 r+s—1 u2h2 Ung (n+d2 1
fr X (X o)) e (el ) o(1)
p ' p p P
1<|uz|<B5E \ ha=r
r+s—1 7+5 1
1 h h
& X () = (T
P 1<]uy |[<BGE N =y P 1<]ug|< 252 \ ha=r
M
d d
< Ze(UIQP(n+ 1)';UQQP(TL+ 2))+O(plogp) <<p(1ogp)3.
n=1
Therefore,

Cs (R,p*) < p(logp)®.
For integers di,dz,ds and M with 0 < d; < dy < d3 < p?> — M, by (3.2),
we have
M

E En+d, En+de Entds
n=1

£, 2 (EeCm) 25 o)

n=1 1<]uy |[< 252 1=r
r+s—1
% (1 ( . (tmhz)) . (uqu(n+d2)> 40 <1)
1 — p p p
1<|uz|<25E \ ho=r
r+s—1
(3, (£ ) o522 o)
1<|ug| <25 \ ha=r p p P
r+s—1 r4s—1
urhy Uz ha
1<]ug |[<E hy=r 1<|L2\§T’Tfl ho=r
<r+9—1 ( U3h3>>
X e =228
1<|us|<25L \ ha=r p
M
" Ze (u1qp(n+d1) +UQQp(7;+ ds) +U3qp(n+d3)) Lo (p (10gp)2> |
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We consider dy, ds, ds in two cases.

Case 1. di = do
we get

ds (mod p) does not hold. Then from Proposition 2.3,

M 5 5
Z €ntd; EntdyCntds K P2 (log p) .

n=1
Case 2. di = dy = d3 (mod p). Write do = dy + kap, ds = di + ksp, where
0 < ko < k3 < p. Then from Theorem 2.2, we have

M M r+s—1 wih
Ze7z+d1en+d2€n+d3 = pi?’ Z Z Z < Z e (_ 1 1))

p
n=1 1<|ur | <252 1< ug |[< 25 1<]ug|[<B5E \ ha=T
w1 +us+uz=0 (mod p)
uskstuszks=0 (mod p)

» (z (_w;?)) (z (_us;3>) +0 (p1ogp)")

ho=r hs=r

T+s 1r4+s—1r+s—1

DD VDS

hi=r ho=r hz=r 1<\u|<” 1

. (u ((1 = kskg ")ha + ksky tho — hs)) 10 (p (logp)4) , (3.3)

p
Assume that s = o(p). Then

M M r4+s—1r+s—1r+s—1 M53 A
Z €n+d, En+dyeCn+ds = ) Z Z Z 1- 3 p (lng)
n=1 p hi=r ho=r hz=r p

(1—ksky V)h1+ksks 'ha—hs=0 (mod p)
2

+p(logp)*.

Therefore, ‘
C; (R,p*) < s° +p? (logp)®.
Now taking M = p? —2p, d; =0, d2 = p and d3 = 2p in (3.3), we have

p°—2p
E En+di €n+dsCn+ds
n=1
r4+s—1r+s—1r+s—1

SR Y Y Y o) o (posn) -

hi=r ho=r hs=r 1<‘u|<17 1 p
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:p2—2p 52*:1 Sif Sijl e<u(2h2_h1_h3))+O(p(logp)4)
- p

h1=0ho=0 h3=0
hi1+h3=2ho

Noting that

s—1 s—1 s—1

3D IDIEES 3B S BE

h1=0ho=0 h3=0 ho=0 h1=0h3=0
hi1+h3=2ho hi+h3=2ho

0<2ho<s—1 s<2ho<2s5—2
241
5 ;— , if 214,
=D t+ Y t=qp0%
1<t<s 1<t<s—1 —, if 2| s.
2t 24t 2
Thus we have
p>—2p 2 3
s s
Z €n+dy EntdeCntds = 5 - E +0 (p (10gp)4> .
n=1

Assume that s = [‘g} We immediately get

p°—2p 1 A
Z €ntdi EntdeEntds = 52192 + @) (p (logp) ) .
n=1

Therefore,

1
Cs (R,p*) > 5—4p2 +0 (p (logp)4) :

This proves Theorem 1.1.

4. Proof of Theorem 1.2

From (3.1), we get
(p—1)°

R:
R = L

S @he+ D)+ > (25— 1-2hy)

69
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On the other hand, we denote by x( the principal character modulo p. Assume
that g,(n) # 0. By the orthogonality of characters of order d, we have

1, if 3y such that 1 <y <p—1 and g,(n)= y?(mod p),

1
- n)) =
d Z x(@(m) {0, otherwise,

x?=xo
x mod p
)1, neR,
0, ng€R.
Hence,
1 R 1
=t S g - LS (g +0 (41)
d d D d ¥ p
x?=xo0 =X0
X mod p x;ﬁXo

x mod p

For a, b, t € Nwith 1 <a <a+ (t—1)b < p?, from (4.1) and (2.1), we get

Sn=3 |5 X xlatatim+o(2)

j:O j:O Xd:XO
X#X0
x mod p

Z ZX (gp(a+34b))+O(p ) < p? logp.

x?=xo0 Jj=0
X#Xo0
x mod p

Therefore, )
W (R,p?) < p? logp.

For integers di,da,...,d; and M with 0 < dy < dy < --- < d < p?> — M,
from (4.1) and Proposition 2.4, we have

M
E Cn+4dy " Cntdy
n=1

Mol 1
311 X aGerayro()]x
n=1 x$=xo
X17X0

X1 mod p
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1 1
X 8 Z Xk (Qp(n+dk)) + O <p>
XE=xo0
Xk X0
Xk mod p
1 M
5
=5 2 D doxa(ap(ntd)cxk (gp(n+di)) + O (kp) < kpt
x$=xo xg=xo =1
X17#X0 XkFX0

x1 mod p Xkr mod p

Hence,
Cr (R,p?) < kps.

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

By (3.1), we have
IR[=(—1Dop—1).

Suppose that g,(n) # 0. Noting that

1, if gy(n) is a primitive root modulo p,
0, otherwise,

o(p—1) p(s)
b1 o ol 2o M)
x mod p

1, newR,
0, négR.

Thus, we have

_bp—1) = o) ®|
= T S BSOS v -

slp—1 S) ord X=S p
x mod p
_dp—1) 5~ pls) ol
D o) e

s>1 x mod p
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For a, b, t € Nwith 1 <a <a+ (t—1)b < p?, from (5.1) and (2.1), we get

— « | op—1) 1(s) , 1
D arjp= o1 o) > X(gp(a+jb)+0 ;
J=0 J=0 slp—1 ord x=s
s>1 )(modp
Z“ > ZX gp(a + jb)) + O (p)
slp— 1 ordx sJ=0
s>1 x mod p

< 2“’(”_1)])% log p.

Therefore,
W (R, p?) < 2°?~Vp3 logp.

For integers di,do, - ,di and M with 0 < d; < do < --- < dp < p?> — M,
from (5.1) and Proposition 2.4 we have

M
E €ntdy " Cntdy
n=1

M
:Z ¢ 71 Z M Z X1(qp(n+d1))+0<;) D

n=1 s1|p— 1 ord X1=51
s1>1 X1#X0
x1 mod p

« | 22D Z“ LY xk(qp(mdk))m(;)

Sklp— 1 ord xr=sk
se>1 XkF#X0
Xr mod p
= Z “ 81 ) “ >
s1lp— 1 OI‘d X1=51 sklp— 1 OI‘d Xk=S5k
s1>1 X17X0 sp>1 Xk #X0
x1 mod p Xr mod p
M
X Z X1 (gp(n+di)) - xr (gp(n+di)) + O ( f2ke(P=1) ) < K2k =135

n=1
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Hence,

Oy (R,p?) < k2k=Dpi,

This completes the proof of Theorem 1.3.
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