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Pseudo-random subsets constructed by using Fermat quotients

By HUANING LIU (Xi’an) and GUOTUO ZHANG (Xi’an)

Abstract. Let p be a prime, and let n be an arbitrary integer with (n, p) = 1.

The Fermat quotient qp(n) is defined as the unique integer with

qp(n) ≡ np−1 − 1

p
(mod p), 0 ≤ qp(n) ≤ p− 1.

We also define qp(kp) = 0 for k ∈ Z. In this paper, we study the pseudo-randomness of

subsets constructed by Fermat quotients, by using the estimates for exponential sums

and character sums with Fermat quotients.

1. Introduction

For a prime p and an integer n with (n, p) = 1, the Fermat quotient qp(n) is

defined as

qp(n) ≡ np−1 − 1

p
(mod p), 0 ≤ qp(n) ≤ p− 1.

We also define qp(kp) = 0, k ∈ Z. It is easy to show that qp(u) = qp(p
2 ± u) for

p > 2, and

qp(a+ kp) ≡ qp(a)− ka−1 (mod p) (1.1)
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for any a, k ∈ Z with (a, p) = 1. Fermat quotients arose from the study of the

first case of Fermat’s Last Theorem, which claimed that the equation

xn + yn + zn = 0, 2 - n, (n, xyz) = 1, n > 1 (1)n

has no solutions in integers x, y and z.

In 1823, Sophie Germain proved that if n and 2n+1 are both prime, then (1)n
has no solutions in integers. In 1909, Wieferich showed that if (1)p has solutions

in integers x, y and z, then qp(2) = 0. Shortly later, Mirimanoff extended the

result to qp(3) = 0. In 1917, Pollaczek proved that if prime p is sufficiently large

and (1)p has solutions in integers x, y and z, then qp(u) = 0 for each prime u ≤ 31.

In 1988, Granville and Monagan showed that if (1)p has solutions in integers x,

y and z, then qp(u) = 0 for all primes u ≤ 89. See [13] for an excellent survey of

the first case of Fermat’s Last Theorem.

Fermat quotients have numerous applications in computational and algebraic

number theory (see [1]–[2], [4], [6], [12], [16]–[19]). For example, we define the sets

Ip(N) = |{qp(u) : 1 ≤ u ≤ N, (u, p) = 1}| ,
M(p) = |{qp(u) : 1 ≤ u ≤ p− 1}| ,
F (p) = |{u : 0 ≤ u ≤ p− 1, qp(u) = u}| ,

R(p, a) = |{u : 0 ≤ u ≤ p− 1, qp(u) = a}| ,

ϑ(p) =
1

p2
· |{(u, v) : 0 ≤ u, v ≤ p− 1, qp(u) = qp(v)}| ,

U(p; k, h) = |{u : 0 ≤ u ≤ p− 1, qp(u) ≡ z (mod p) for z ∈ [k + 1, . . . , k + h]}| .

Vandiver [20] showed that
√
p− 1 ≤M(p) ≤ p−

√
p− 1

2
. Fouché [11] proved

R(p, a) ≤ p1/2+o(1). Ostafe and Shparlinski [16] obtained the following esti-

mations:

M(p) ≥ (1 + o(1))
p

(log p)2
, F (p)� p11/12+o(1),

ϑ(p) ≤ p−3/4+o(1), U(p; k, h) ≤ h1/2p1/2+o(1).

Chen and Winterhof [6] gave certain generalization and improvement

on Ostafe and Shparlinski’s result.

Proposition 1.1. Let P (x) ∈ Fp[x] be of degree 1 ≤ d < p. Then we have

# {u : 1 ≤ u ≤ p− 1, qp(u) = P (u)} �

{
d1/4p5/6, 1 ≤ d ≤ p1/3,
d1/8p7/8, d > p1/3,

as p→∞.
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Shparlinski [17] proved some lower bounds on the image size Ip(N).

Proposition 1.2. For every p and N < p, we have

Ip(N) ≥ (1 + o(1))
N2

p(logN)2
.

For every p and arbitrary fixed ε > 0, there exists some δ > 0 such that, for

pε < N < p, we have Ip(N) ≥ pδ.

Shparlinski [17] also studied the primitive roots and power non-residues

among the values of the Fermat quotients.

Proposition 1.3. For every p, there exists n ≤ p3/4+o(1) such that qp(n) is

a primitive root modulo p. For every p and positive integer d | p− 1, there exists

n ≤ p3/4+o(1) such that qp(n) is a d-th power non-residue modulo p.

In this paper, we further study the pseudo-randomness of subsets constructed

by using Fermat quotients. Let R ⊂ {1, 2, . . . , N}, and define the sequence

EN = EN (R) = {e1, e2, . . . , eN} ∈
{

1− |R|
N
, −|R|

N

}N
by

en =

1− |R|N , for n ∈ R,

− |R|N , for n 6∈ R.

Dartyge and Sárközy [8] introduced the measures of pseudo-randomness:

The well-distribution measure of the subset R is defined by

W (R, N) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ ,
where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+ (t− 1)b ≤ N .

The correlation measure of order k of the subset R is defined by

Ck(R, N) = max
M,D

∣∣∣∣∣
M∑
n=1

en+d1 · · · en+dk

∣∣∣∣∣ ,
where the maximum is taken over all D = (d1, . . . , dk) and M with 0 ≤ d1 <

· · · < dk ≤ N −M .

The subset R is considered as a pseudo-random subset if both W (R, N) and

Ck(R, N) (at least for small k) are “small” in terms of N . Later many pseudo-

random subsets were given and studied. For example, Dartyge, Mosaki and

Sárközy [7] proved the following results.
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Proposition 1.4. Assume that p is an odd prime number, f(x) ∈ Fp[x] is

of degree d ≥ 2. Let r ∈ Z, s ∈ N, s < p/2. Define R ⊂ {1, . . . , p} by

R = {n : 1 ≤ n ≤ p, ∃h ∈ {r, r + 1, . . . , r + s− 1} with f(n) ≡ h (mod p)}.

Then we have

W (R, p) < 2d
√
p(log p)2.

And for 2 ≤ k ≤ d− 1, we have

Ck(R, p) < 2d
√
p(1 + log p)k+1.

Dartyge and Sárközy [9] presented large families of pseudo-random sub-

sets formed by power residues.

Proposition 1.5. Let p ≥ 2 be a prime number, d | p− 1 and f ∈ Fp[x] of

degree k. Define

R =
{
x ∈ Fp : ∃y ∈ F∗p with f(x) ≡ yd (mod p)

}
.

Write f = fα1
1 · · · fαr

r for the factorization into irreducible factors in Fp, and

suppose that (d, α1, . . . , αr) = 1. Then

W (R, p) ≤ 20k
√
p log p.

Let f be a polynomial of degree k with no multiple roots in Fp, and let

k, l ∈ N such that one of the following conditions is satisfied:

(i) l=2;

(ii) d is a prime divisor of p− 1, and (4l)k < p;

(iii) the polynomial xp−1 + · · ·+ x+ 1 is irreducible in Fd[x] and max(k, l) < p.

Then we have

Cl(R, p) ≤ lk
(

1 +
20k log p
√
p

)l
+ 9

(
d− 1

d

)l(
1 +

10k log p
√
p

)l
lk
√
p log p.

Dartyge, Sárközy and Szalay [10] studied the pseudo-randomness of

certain subsets related to primitive roots.

Proposition 1.6. Let p be an odd prime, k, r ∈ N, f(x) ∈ Fp[x] of degree D.

Let

Gp = {g1, g2, . . . , gφ(p−1)}, (0 < g1 < g2 < · · · < gφ(p−1) < p)
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be the set of the primitive roots modulo p. Define the subset R ⊂ Fp by

R = {gk : g ∈ Gp,∃x ∈ F∗p with f(gk) = xr}.

If f(x) is irreducible over Fp, then we have

W (R, p)� D2ω(
p−1
k )p1/2 log p.

Moreover, if we also assume that D ≥ 2 or D = r = 1, we also have

CK(R, p)� KD
(

(1 +O(Dp−1/2))2ω(
p−1
k )
)K

p1/2 log p.

Chen [3] constructed a family of pseudo-random subsets modulo pq, where

p, q are two distinct primes satisfying “RSA type” with 2 < p < q < 2p, and

studied the well-distribution and correlation measures. Liu and Song [15] further

studied the correlation measures of the subsets.

In this paper, we study the pseudo-random subsets constructed by using

Fermat quotients. Our results are the following.

Theorem 1.1. Let p be an odd prime number, and let r, s ∈ N with 1 ≤
r < r + s− 1 ≤ p− 1. Define R ⊂

{
1, . . . , p2

}
by

R =
{
n : 1 ≤ n ≤ p2, ∃h ∈ {r, r + 1, . . . , r + s− 1} with qp(n) ≡ h (mod p)

}
.

Then we have

W
(
R, p2

)
� p(log p)2,

and

C2

(
R, p2

)
� p(log p)3.

Furthermore, if s = o(p), then

C3

(
R, p2

)
� s2 + p

3
2 (log p)

3
.

While s =
[p

3

]
, we have

C3

(
R, p2

)
≥ 1

54
p2 +O

(
p (log p)

4
)
.
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Theorem 1.2. Let p be an odd prime number, and d | p − 1. Define

R ⊂
{

1, . . . , p2
}

by

R =
{
n : 1 ≤ n ≤ p2, ∃ y such that 1 ≤ y ≤ p− 1 and qp(n) ≡ yd (mod p)

}
.

Then we have

W
(
R, p2

)
� p

3
2 log p,

and

Ck
(
R, p2

)
� kp

5
3 ,

where the implied constant depends on d.

Theorem 1.3. Let p be an odd prime number, and let Gp be the set of the

primitive roots modulo p. Define R ⊂
{

1, . . . , p2
}

by

R =
{
n : 1 ≤ n ≤ p2, qp(n) ∈ Gp

}
.

Then we have

W
(
R, p2

)
� 2ω(p−1)p

3
2 log p.

and

Ck
(
R, p2

)
� k2kω(p−1)p

5
3 .

Remark 1.1. Our results show that the subsets in Theorems 1.2 and 1.3

enjoy good pseudo-random properties. However, the subset in Theorem 1.1 is not

pseudo-random.

2. Exponential sums and character sums with Fermat quotients

The exponential sums with Fermat quotients have been studied by many

authors. Write e(y) = e2πiy. Heath-Brown [14] proved the following estimation

by using the Pólya–Vinogradov bound and the Burgess bound.

Proposition 2.1. For any integer a coprime to p, we have∑
M<n≤M+N

p-n

e

(
aqp(n)

p

)
� N1/2p3/8,

uniformly for M,N ≥ 1. In particular,

p−1∑
n=1

e

(
aqp(n)

p

)
� p7/8,

uniformly for p - a.
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Ostafe and Shparlinski [16] obtained a non-trivial bound of exponential

sums with linear combinations of Fermat quotients.

Proposition 2.2. For any integer s ≥ 1, we have

max
(a0,...,as,p)=1

∣∣∣∣∣∣∣∣∣
M+N∑
u=M+1

e


s−1∑
j=0

ajqp(u+ j)

p


∣∣∣∣∣∣∣∣∣� sp log p,

uniformly over M and p2 > N ≥ 1.

Using Proposition 2.2, they studied the distribution of the points(
qp(u)

p
, . . . ,

qp(u+ s− 1)

p

)
, u = M + 1, . . . ,M +N,

in the s-dimensional cube. Moreover, Chen, Ostafe and Winterhof [5] gave

the following generalization.

Proposition 2.3. Let d0, d1, . . . , ds−1 be integers with 0 ≤ d0 < d1 < · · · <
ds−1 < p2. Suppose that no triple (dl, dh, dt) satisfies dl ≡ dh ≡ dt (mod p) for

0 ≤ l < h < t < s. We have

max
(a0,...,as,p)=1

∣∣∣∣∣∣∣∣∣
N∑
u=1

e


s−1∑
j=0

ajqp(u+ dj)

p


∣∣∣∣∣∣∣∣∣� smax

{
p log p,Np−

1
2

}

for 1 ≤ N ≤ p2. If s = 2 or ds−1 < p, the stronger bound sp log p holds.

Now, we give the following identities on certain exponential sums of Fermat

quotients.

Theorem 2.1. Let p > 2 be a prime, and let u be an integer with (u, p) = 1.

For any integer z, we have∣∣∣∣∣∣
p2∑
n=1

e

(
uqp(n)

p

)
e

(
zn

p2

)∣∣∣∣∣∣ = p.
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Proof. Write n = a+ bp, we get

p2∑
n=1

e

(
uqp(n)

p

)
e

(
zn

p2

)
=

p∑
a=1

p−1∑
b=0

e

(
uqp(a+ bp)

p

)
e

(
z(a+ bp)

p2

)

=

p−1∑
a=1

p−1∑
b=0

e

(
uqp(a+ bp)

p

)
e

(
z(a+ bp)

p2

)
+

p−1∑
b=0

e

(
z(1 + b)

p

)
.

Assume that p - z. By (1.1), we have

p2∑
n=1

e

(
uqp(n)

p

)
e

(
zn

p2

)
=

p−1∑
a=1

p−1∑
b=0

e

(
uqp(a+ bp)

p

)
e

(
z(a+ bp)

p2

)

=

p−1∑
a=1

p−1∑
b=0

e

(
u
(
qp(a)− ba−1

)
p

)
e

(
z(a+ bp)

p2

)

=

p−1∑
a=1

e

(
uqp(a)

p

)
e

(
za

p2

) p−1∑
b=0

e

(
b(z − ua−1)

p

)

= p

p−1∑
a=1

z≡ua−1 (mod p)

e

(
uqp(a)

p

)
e

(
za

p2

)

Hence, ∣∣∣∣∣∣
p2∑
n=1

e

(
uqp(n)

p

)
e

(
zn

p2

)∣∣∣∣∣∣ = p.

Suppose that p | z. By (1.1), we get

p2∑
n=1

e

(
uqp(n)

p

)
e

(
zn

p2

)
=

p−1∑
a=1

p−1∑
b=0

e

(
uqp(a+ bp)

p

)
e

(
z(a+ bp)

p2

)
+ p

=

p−1∑
a=1

p−1∑
b=0

e

(
u
(
qp(a)− ba−1

)
p

)
e

(
z(a+ bp)

p2

)
+ p

=

p−1∑
a=1

e

(
uqp(a)

p

)
e

(
za

p2

) p−1∑
b=0

e

(
−bua

−1

p

)
+ p = p.

This proves Theorem 2.1. �
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Theorem 2.2. Let p > 2 be a prime, and let u1, u2, u3 be integers with

(u1u2u3, p) = 1. Let d1, k2, k3 and M be integers such that 0 ≤ d1 < d1 + k2p <

d1 + k3p ≤ p2 −M . Then we have

M∑
n=1

e

(
u1qp(n+ d1) + u2qp(n+ d1 + k2p) + u3qp(n+ d1 + k3p)

p

)

=


M, if u1 + u2 + u3 ≡ 0 (mod p) and u2k2 + u3k3 ≡ 0 (mod p),

O (p) , if u1 + u2 + u3 ≡ 0 (mod p) and u2k2 + u3k3 6≡ 0 (mod p),

O (p log p) , if u1 + u2 + u3 6≡ 0 (mod p).

Proof. We may suppose that M ≥ p, since otherwise the claim is trivial.

By (1.1), we get

M∑
n=1

e

(
u1qp(n+ d1) + u2qp(n+ d1 + k2p) + u3qp(n+ d1 + k3p)

p

)

=

M∑
n=1

(n+d1,p)=1

e

(
u1qp(n+d1)+u2qp(n+d1+k2p)+u3qp(n+d1+k3p)

p

)
+

M∑
n=1

(n+d1,p)>1

1

=

M∑
n=1

(n+d1,p)=1

e

(
(u1+u2+u3)qp(n+d1)−(u2k2+u3k3)(n+d1)−1)

p

)
+

M∑
n=1

(n+d1,p)>1

1.

Case 1. u1 + u2 + u3 ≡ 0 (mod p) and u2k2 + u3k3 ≡ 0 (mod p). We have

M∑
n=1

e

(
u1qp(n+ d1) + u2qp(n+ d1 + k2p) + u3qp(n+ d1 + k3p)

p

)
= M.

Case 2. u1 + u2 + u3 ≡ 0 (mod p) and u2k2 + u3k3 6≡ 0 (mod p). It is not

hard to show that

M∑
n=1

e

(
u1qp(n+ d1) + u2qp(n+ d1 + k2p) + u3qp(n+ d1 + k3p)

p

)

=

M∑
n=1

(n+d1,p)=1

e

(
− (u2k2 + u3k3)(n+ d1)−1)

p

)
+

M∑
n=1

(n+d1,p)>1

1 =
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=
∑

0≤k≤[M
p ]−1

p∑
v=1

(v+d1,p)=1

e

(
− (u2k2 + u3k3)(kp+ v + d1)−1)

p

)
+O (p)

=
∑

0≤k≤[M
p ]−1

p∑
v=1

(v+d1,p)=1

e

(
− (u2k2 + u3k3)(v + d1)−1)

p

)
+O (p)� p.

Case 3. u1 + u2 + u3 6≡ 0 (mod p). By (1.1) and the properties of residue

systems, we have

M∑
n=1

e

(
u1qp(n+ d1) + u2qp(n+ d1 + k2p) + u3qp(n+ d1 + k3p)

p

)

=

M∑
n=1

(n+d1,p)=1

e

(
(u1+u2+u3)qp(n+d1)−(u2k2+u3k3)(n+d1)−1)

p

)
+

M∑
n=1

(n+d1,p)>1

1

=
∑

0≤k≤[M
p ]−1

p∑
v=1

(v+d1,p)=1

e

(
(u1+u2+u3)qp(kp+v+d1)

p

− (u2k2+u3k3)(kp+v+d1)−1)

p

)
+O (p)

=

p∑
v=1

(v+d1,p)=1

e

(
(u1 + u2 + u3)qp(v + d1)− (u2k2 + u3k3)(v + d1)−1)

p

)

×
∑

0≤k≤[M
p ]−1

e

(
− (u1 + u2 + u3)(v + d1)−1k

p

)
+O (p)

�
p∑
v=1

(v+d1,p)=1

∣∣∣∣∣∣∣
∑

0≤k≤[M
p ]−1

e

(
− (u1 + u2 + u3)(v + d1)−1k

p

)∣∣∣∣∣∣∣+ p

�
p∑
v=1

(v+d1,p)=1

1〈
− (u1+u2+u3)(v+d1)−1

p

〉 + p�
∑

0<|v|≤ p−1
2

1〈
v
p

〉 + p� p log p,

where 〈α〉 denotes the distance of the real number α to the nearest integer.

This completes the proof of Theorem 2.2. �
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On the other hand, character sums with Fermat quotients have also been

studied by many authors. For example, from [12] we know that

N−1∑
u=0

χ (qp(au+ b))� N1− 1
v p

5v+1

4v2 (log p)
1
v , (2.1)

for 1 ≤ N ≤ p2 and every fixed integer v ≥ 1, where χ is a non-trivial multi-

plicative character modulo p, and a, b are integers with (a, p2) 6= p2. Gomez and

Winterhof [12] further studied the following character sums.

Proposition 2.4. Let χ1, χ2, . . . , χl be nontrivial multiplicative characters

modulo p. Then we have

N−1∑
u=0

χ1 (qp (u+ d1)) · · ·χl (qp (u+ dl))� max

{
lN

p
1
3

, lp
3
2 log p

}
,

for any integers 0 ≤ d1 < · · · < dl ≤ p2 − 1 and 1 ≤ N ≤ p2.

3. Proof of Theorem 1.1

For integer h with (h, p) = 1, by (1.1), we get

p2∑
n=1

qp(n)≡h (mod p)

1 =

p2∑
n=1

(n,p)=1

qp(n)≡h (mod p)

1 =

p−1∑
a=1

p−1∑
k=0

qp(a+kp)≡h (mod p)

1

=

p−1∑
a=1

p−1∑
k=0

qp(a)−ka−1≡h (mod p)

1 =

p−1∑
a=1

p−1∑
k=0

ka−1≡qp(a)−h (mod p)

1 = p− 1.

Suppose that A ⊂ {1, 2, . . . , p− 1}. Then

p2∑
n=1

qp(n)∈A

1 = |A| · (p− 1). (3.1)

Noting that 1 ≤ r < r + s− 1 ≤ p− 1, we have

|R| = s(p− 1).
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It is easy to show that, for 1 ≤ n ≤ p2,

1

p

r+s−1∑
h=r

∑
|u|≤ p−1

2

e

(
u(qp(n)− h)

p

)
=

{
1, n ∈ R,
0, n 6∈ R.

Hence,

en =
1

p

r+s−1∑
h=r

∑
|u|≤ p−1

2

e

(
u(qp(n)− h)

p

)
− |R|

p2

=
1

p

∑
1≤|u|≤ p−1

2

(
r+s−1∑
h=r

e

(
−uh
p

))
e

(
uqp(n)

p

)
+O

(
1

p

)
, (3.2)

where the term |R|
p2 is compensated by the contribution of u = 0.

For a, b, t ∈ N with 1 ≤ a ≤ a+ (t− 1)b ≤ p2, from (3.2) and Theorem 2.1,

we get

t−1∑
j=0

ea+jb =
1

p

∑
1≤|u|≤ p−1

2

(
r+s−1∑
h=r

e

(
−uh
p

)) t−1∑
j=0

e

(
uqp(a+ jb)

p

)
+O (p)

=
1

p3

∑
1≤|u|≤ p−1

2

(
r+s−1∑
h=r

e

(
−uh
p

)) p2∑
n=1

e

(
uqp(n)

p

) t−1∑
j=0

×
p2∑
z=1

e

(
z(n− (a+ jb))

p2

)
+O (p)

=
1

p3

∑
1≤|u|≤ p−1

2

(
r+s−1∑
h=r

e

(
−uh
p

)) p2∑
z=1

t−1∑
j=0

e

(
−z(a+ jb)

p2

)
×

p2∑
n=1

e

(
uqp(n)

p

)
e

(
zn

p2

)
+O (p)� p(log p)2.

Hence,

W
(
R, p2

)
� p(log p)2.

For integers d1, d2 and M with 0 ≤ d1 < d2 ≤ p2 − M , from (3.2) and

Proposition 2.3, we get
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M∑
n=1

en+d1en+d2 =

M∑
n=1

1

p

∑
1≤|u1|≤ p−1

2

(
r+s−1∑
h1=r

e

(
−u1h1

p

))
e

(
u1qp(n+d1)

p

)
+O

(
1

p

)
×

1

p

∑
1≤|u2|≤ p−1

2

(
r+s−1∑
h2=r

e

(
−u2h2

p

))
e

(
u2qp(n+d2)

p

)
+O

(
1

p

)
=

1

p2

∑
1≤|u1|≤ p−1

2

(
r+s−1∑
h1=r

e

(
−u1h1

p

)) ∑
1≤|u2|≤ p−1

2

(
r+s−1∑
h2=r

e

(
−u2h2

p

))

×
M∑
n=1

e

(
u1qp(n+d1)+u2qp(n+d2)

p

)
+O (p log p)� p(log p)3.

Therefore,

C2

(
R, p2

)
� p(log p)3.

For integers d1, d2, d3 and M with 0 ≤ d1 < d2 < d3 ≤ p2 −M , by (3.2),

we have

M∑
n=1

en+d1en+d2en+d3

=

M∑
n=1

1

p

∑
1≤|u1|≤ p−1

2

(
r+s−1∑
h1=r

e

(
−u1h1

p

))
e

(
u1qp(n+ d1)

p

)
+O

(
1

p

)
×

1

p

∑
1≤|u2|≤ p−1

2

(
r+s−1∑
h2=r

e

(
−u2h2

p

))
e

(
u2qp(n+ d2)

p

)
+O

(
1

p

)
×

1

p

∑
1≤|u3|≤ p−1

2

(
r+s−1∑
h3=r

e

(
−u3h3

p

))
e

(
u3qp(n+ d3)

p

)
+O

(
1

p

)
=

1

p3

∑
1≤|u1|≤ p−1

2

(
r+s−1∑
h1=r

e

(
−u1h1

p

)) ∑
1≤|u2|≤ p−1

2

(
r+s−1∑
h2=r

e

(
−u2h2

p

))

×
∑

1≤|u3|≤ p−1
2

(
r+s−1∑
h3=r

e

(
−u3h3

p

))

×
M∑
n=1

e

(
u1qp(n+ d1) + u2qp(n+ d2) + u3qp(n+ d3)

p

)
+O

(
p (log p)

2
)
.
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We consider d1, d2, d3 in two cases.

Case 1. d1 ≡ d2 ≡ d3 (mod p) does not hold. Then from Proposition 2.3,

we get
M∑
n=1

en+d1en+d2en+d3 � p
3
2 (log p)3.

Case 2. d1 ≡ d2 ≡ d3 (mod p). Write d2 = d1 + k2p, d3 = d1 + k3p, where

0 < k2 < k3 < p. Then from Theorem 2.2, we have

M∑
n=1

en+d1en+d2en+d3 =
M

p3

∑
1≤|u1|≤ p−1

2

∑
1≤|u2|≤ p−1

2

∑
1≤|u3|≤ p−1

2

u1+u2+u3≡0 (mod p)

u2k2+u3k3≡0 (mod p)

(
r+s−1∑
h1=r

e

(
−u1h1

p

))

×

(
r+s−1∑
h2=r

e

(
−u2h2

p

))(r+s−1∑
h3=r

e

(
−u3h3

p

))
+O

(
p (log p)

4
)

=
M

p3

r+s−1∑
h1=r

r+s−1∑
h2=r

r+s−1∑
h3=r

∑
1≤|u|≤ p−1

2

× e

(
u
(
(1− k3k−12 )h1 + k3k

−1
2 h2 − h3

)
p

)
+O

(
p (log p)

4
)
. (3.3)

Assume that s = o(p). Then

M∑
n=1

en+d1en+d2en+d3 =
M

p2

r+s−1∑
h1=r

r+s−1∑
h2=r

r+s−1∑
h3=r

(1−k3k−1
2 )h1+k3k

−1
2 h2−h3≡0 (mod p)

1−Ms3

p3
+O

(
p (log p)

4
)

� Ms2

p2
+ p (log p)

4
.

Therefore,

C3

(
R, p2

)
� s2 + p

3
2 (log p)

3
.

Now taking M = p2 − 2p, d1 = 0, d2 = p and d3 = 2p in (3.3), we have

p2−2p∑
n=1

en+d1en+d2en+d3

=
p2 − 2p

p3

r+s−1∑
h1=r

r+s−1∑
h2=r

r+s−1∑
h3=r

∑
1≤|u|≤ p−1

2

e

(
u (2h2 − h1 − h3)

p

)
+O

(
p (log p)

4
)

=
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=
p2 − 2p

p3

s−1∑
h1=0

s−1∑
h2=0

s−1∑
h3=0

∑
1≤|u|≤ p−1

2

e

(
u (2h2 − h1 − h3)

p

)
+O

(
p (log p)

4
)

=
p2 − 2p

p2

s−1∑
h1=0

s−1∑
h2=0

s−1∑
h3=0

h1+h3=2h2

1− p2 − 2p

p3
s3 +O

(
p (log p)

4
)
.

Noting that

s−1∑
h1=0

s−1∑
h2=0

s−1∑
h3=0

h1+h3=2h2

1 =

s−1∑
h2=0

s−1∑
h1=0

s−1∑
h3=0

h1+h3=2h2

1

=
∑

0≤2h2≤s−1

(2h2 + 1) +
∑

s≤2h2≤2s−2

(2s− 1− 2h2)

=
∑

1≤t≤s
2-t

t+
∑

1≤t≤s−1
2-t

t =


s2 + 1

2
, if 2 - s,

s2

2
, if 2 | s.

Thus we have

p2−2p∑
n=1

en+d1en+d2en+d3 =
s2

2
− s3

p
+O

(
p (log p)

4
)
.

Assume that s =
[p

3

]
. We immediately get

p2−2p∑
n=1

en+d1en+d2en+d3 =
1

54
p2 +O

(
p (log p)

4
)
.

Therefore,

C3

(
R, p2

)
≥ 1

54
p2 +O

(
p (log p)

4
)
.

This proves Theorem 1.1.

4. Proof of Theorem 1.2

From (3.1), we get

|R| = (p− 1)2

d
.
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On the other hand, we denote by χ0 the principal character modulo p. Assume

that qp(n) 6= 0. By the orthogonality of characters of order d, we have

1

d

∑
χd=χ0

χ mod p

χ (qp(n)) =

{
1, if ∃ y such that 1 ≤ y ≤ p−1 and qp(n)≡ yd(mod p),

0, otherwise,

=

{
1, n ∈ R,
0, n 6∈ R.

Hence,

en =
1

d

∑
χd=χ0

χ mod p

χ (qp(n))− |R|
p2

=
1

d

∑
χd=χ0

χ 6=χ0

χ mod p

χ (qp(n)) +O

(
1

p

)
. (4.1)

For a, b, t ∈ N with 1 ≤ a ≤ a+ (t− 1)b ≤ p2, from (4.1) and (2.1), we get

t−1∑
j=0

ea+jb =

t−1∑
j=0


1

d

∑
χd=χ0

χ 6=χ0

χ mod p

χ (qp(a+ jb)) +O

(
1

p

)


=
1

d

∑
χd=χ0

χ 6=χ0

χ mod p

t−1∑
j=0

χ (qp(a+ jb)) +O (p)� p
3
2 log p.

Therefore,

W
(
R, p2

)
� p

3
2 log p.

For integers d1, d2, . . . , dk and M with 0 ≤ d1 < d2 < · · · < dk ≤ p2 −M ,

from (4.1) and Proposition 2.4, we have

M∑
n=1

en+d1 · · · en+dk

=

M∑
n=1


1

d

∑
χd
1=χ0

χ1 6=χ0

χ1 mod p

χ1 (qp(n+ d1)) +O

(
1

p

)
× · · ·
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×


1

d

∑
χd
k=χ0

χk 6=χ0

χk mod p

χk (qp(n+ dk)) +O

(
1

p

)


=
1

dk

∑
χd
1=χ0

χ1 6=χ0

χ1 mod p

· · ·
∑
χd
k=χ0

χk 6=χ0

χk mod p

M∑
n=1

χ1 (qp(n+ d1)) · · ·χk (qp(n+ dk)) +O (kp)� kp
5
3 .

Hence,

Ck
(
R, p2

)
� kp

5
3 .

This completes the proof of Theorem 1.2.

5. Proof of Theorem 1.3

By (3.1), we have

|R| = (p− 1)φ(p− 1).

Suppose that qp(n) 6= 0. Noting that

φ(p−1)

p− 1

∑
s|p−1

µ(s)

φ(s)

∑
ord χ=s

χ mod p

χ(qp(n))=

{
1, if qp(n) is a primitive root modulo p,

0, otherwise,

=

{
ll1, n ∈ R,
0, n 6∈ R.

Thus, we have

en =
φ(p− 1)

p− 1

∑
s|p−1

µ(s)

φ(s)

∑
ord χ=s

χ mod p

χ (qp(n))− |R|
p2

=
φ(p− 1)

p− 1

∑
s|p−1
s>1

µ(s)

φ(s)

∑
ord χ=s

χ mod p

χ (qp(n)) +O

(
1

p

)
. (5.1)
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For a, b, t ∈ N with 1 ≤ a ≤ a+ (t− 1)b ≤ p2, from (5.1) and (2.1), we get

t−1∑
j=0

ea+jb =

t−1∑
j=0

φ(p− 1)

p− 1

∑
s|p−1
s>1

µ(s)

φ(s)

∑
ord χ=s

χ mod p

χ (qp(a+ jb)) +O

(
1

p

)
=
φ(p− 1)

p− 1

∑
s|p−1
s>1

µ(s)

φ(s)

∑
ord χ=s

χ mod p

t−1∑
j=0

χ (qp(a+ jb)) +O (p)

� 2ω(p−1)p
3
2 log p.

Therefore,

W
(
R, p2

)
� 2ω(p−1)p

3
2 log p.

For integers d1, d2, · · · , dk and M with 0 ≤ d1 < d2 < · · · < dk ≤ p2 −M ,

from (5.1) and Proposition 2.4 we have

M∑
n=1

en+d1 · · · en+dk

=

M∑
n=1


φ(p− 1)

p− 1

∑
s1|p−1
s1>1

µ(s1)

φ(s1)

∑
ord χ1=s1
χ1 6=χ0

χ1 mod p

χ1 (qp(n+ d1)) +O

(
1

p

)
× · · ·

×


φ(p− 1)

p− 1

∑
sk|p−1
sk>1

µ(sk)

φ(sk)

∑
ord χk=sk
χk 6=χ0

χk mod p

χk (qp(n+ dk)) +O

(
1

p

)


=
φk(p− 1)

(p− 1)k

∑
s1|p−1
s1>1

µ(s1)

φ(s1)

∑
ord χ1=s1
χ1 6=χ0

χ1 mod p

· · ·
∑
sk|p−1
sk>1

µ(sk)

φ(sk)

∑
ord χk=sk
χk 6=χ0

χk mod p

×
M∑
n=1

χ1 (qp(n+ d1)) · · ·χk (qp(n+ dk)) +O
(
k2kω(p−1)p

)
� k2kω(p−1)p

5
3 .
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Hence,

Ck
(
R, p2

)
� k2kω(p−1)p

5
3 .

This completes the proof of Theorem 1.3.
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[8] C. Dartyge and A. Sárközy, On pseudo-random subsets of the set of the integers not
exceeding N , Period. Math. Hungar. 54 (2007), 183–200.
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