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Real hypersurfaces in the complex hyperbolic quadric
with parallel structure Jacobi operator

By YOUNG JIN SUH (Daegu), JUAN DE DIOS PÉREZ (Granada)
and CHANGHWA WOO (Jeonbuk)

Abstract. We introduce the notion of parallel structure Jacobi operator for real

hypersurfaces in the complex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm, m ≥ 3, and

prove a non-existence result for real hypersurfaces in Qm∗ = SO0
2,m/SO2SOm, m ≥ 3,

with parallel structure Jacobi operator.

1. Introduction

As a kind of Hermitian symmetric space with rank 2 of non-compact type,

we can give the example of complex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm,

where SO0
2,m denotes the connected component of indefinite (m + 2)×(m + 2)-

special orthogonal group SO2,m. The complex hyperbolic quadric can also be

regarded as a kind of real Grassmann manifold of non-compact type with rank 2

(see Kobayashi and Nomizu [KO96], Suh [Suh18]). Accordingly, the complex

hyperbolic quadric admits two important geometric structures, a complex con-

jugation structure A and a Kähler structure J , which anti-commute with each

other, that is, AJ = −JA. Then for m ≥ 2, the triple (Qm∗, J, g) is a Hermitian
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symmetric space of compact type with rank 2 and its minimal sectional curvature

is equal to −4 (see Klein [Kl08], Klein and Suh [KS], Smyth [Smy67]).

In addition to the complex structure J , there is another distinguished geo-

metric structure on Qm∗, namely a parallel rank 2 vector bundle A which contains

an S1-bundle of real structures, that is, complex conjugations A on the tangent

spaces of Qm∗. The set is denoted by A[z] = {Aλz̄|λ ∈ S1⊂C}, [z] ∈ Qm∗, and

it is the set of all complex conjugations defined on Qm∗. Then A[z] becomes

a parallel rank 2 subbundle of End T[z]Q
m∗, [z] ∈ Qm∗. This geometric struc-

ture determines a maximal A-invariant subbundle Q of the tangent bundle TM

of a real hypersurface M in Qm∗. Here the notion of parallel vector bundle A

means that (∇̄XA)Y = q(X)JAY for any vector fields X and Y on Qm∗, where

∇̄ and q denote a connection and a certain 1-form defined on T[z]Q
m∗, [z] ∈ Qm∗,

respectively (see Smyth [Smy67]).

Recall that a nonzero tangent vector W ∈ TzQm∗ is called singular if it is

tangent to more than one maximal flat in Qm∗. There are two types of singular

tangent vectors for the complex hyperbolic quadric Qm∗:

(1) If there exists a conjugation A ∈ A such that W ∈ V (A), then W is singular.

Such a singular tangent vector is called A-principal.

(2) If there exist a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A)

such that W/||W || = (X + JY )/
√

2, then W is singular. Such a singular

tangent vector is called A-isotropic,

where V (A) = {X ∈ T[z]Q
m∗|AX = X} and JV (A) = {X ∈ T[z]Q

m∗|AX =

−X}, [z] ∈ Qm∗, are the (+1)-eigenspace and (−1)-eigenspace for the involu-

tion A on T[z]Q
m∗, [z] ∈ Qm∗.

On the other hand, Okumura [Ok75] proved that the Reeb flow on a real

hypersurface in CPm = SUm+1/S(U1Um) is isometric if and only if M is an open

part of a tube around a totally geodesic CP k ⊂ CPm for some k ∈ {0, . . . ,m−1}.
For the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(U2Um), a clas-

sification was obtained by Berndt and Suh [BS02]. The Reeb flow on a real

hypersurface in G2(Cm+2) is isometric if and only if M is an open part of a tube

around a totally geodesic G2(Cm+1) ⊂ G2(Cm+2). For the complex quadric

Qm = SOm+2/SO2SOm, Berndt and Suh [BS13] have obtained the following

result:

Theorem A. Let M be a real hypersurface of the complex quadric Qm,

m ≥ 3. Then the Reeb flow on M is isometric if and only if m is even, say m = 2k,

and M is an open part of a tube around a totally geodesic CP k ⊂ Q2k.
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For the complex hyperbolic space CHm, a full classification was obtained by

Montiel and Romero [MR91]. They proved that the Reeb flow on a real hyper-

surface in CHm = SU1,m/S(UmU1) is isometric if and only if M is an open part of

a tube around a totally geodesic CHk ⊂ CHm for some k ∈ {0, . . . ,m− 1}. The

classification problems related to the Reeb parallel shape operator, parallel Ricci

tensor, and harmonic curvature for real hypersurfaces in the complex quadric Qm

were recently given in [Suh14], [Suh15-2] and [Suh16], respectively.

The classification of isometric Reeb flow, for the complex hyperbolic 2-plane

Grassmannian G∗2(Cm+2) = SU2,m/S(UmU2), was obtained by Suh [Suh13-2].

In this case, the Reeb flow on a real hypersurface in G∗2(Cm+2) is isometric if

and only if M is an open part of a tube around a totally geodesic G∗2(Cm+1) ⊂
G∗2(Cm+2) or a horosphere with singular normal JN ∈ JN . The notion of iso-

metric Reeb flow was introduced by Hutching and Taubes [HT09], and the

geometric construction of horospheres in a non-compact manifold of negative

curvature was mainly discussed in the book due to Eberlein [Eb96].

In [Suh18], Suh investigated this problem of isometric Reeb flow for the com-

plex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm. In view of the previous results,

naturally, we expected that the classification might include at least the totally

geodesic Qm−1∗ ⊂ Qm∗. But, the results are quite different from our expecta-

tions. The totally geodesic submanifolds of the above type are not included. Now

compared to Theorem A, we introduce the classification as follows:

Theorem B. Let M be a real hypersurface of the complex hyperbolic

quadric Qm∗, m ≥ 3. The Reeb flow on M is isometric if and only if m is

even, say m = 2k, and M is an open part of a tube around a totally geodesic

CHk ⊂ Q2k∗ or a horosphere whose center at infinity is A-isotropic singular.

On the other hand, Jacobi fields along geodesics of a given Riemannian man-

ifold (M, g) satisfy a well-known differential equation. This equation naturally

inspires the so-called Jacobi operator. That is, if R denotes the curvature opera-

tor of M , and X is a tangent vector field to M , then the Jacobi operator RX ∈
End(TxM) with respect to X at x ∈M , defined by (RXY )(x) = (R(Y,X)X)(x)

for any Y ∈ TxM , becomes a self-adjoint endomorphism of the tangent bundle

TM of M . Thus, each tangent vector field X to M provides a Jacobi operator

RX with respect to X. In particular, for the Reeb vector field ξ, the Jacobi

operator Rξ is said to be the structure Jacobi operator.

Recently Ki, Pérez, Santos and Suh [KPSS07] investigated the Reeb par-

allel structure Jacobi operator in the complex space form Mm(c), c 6= 0, and

used it to study some principal curvatures for a tube over a totally geodesic
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submanifold. In particular, Pérez, Jeong and Suh [PJS05] investigated real

hypersurfaces M in G2(Cm+2) with parallel structure Jacobi operator, that is,

∇XRξ = 0 for any tangent vector field X on M . Jeong, Suh and Woo [JSW14]

and Pérez and Santos [PS08] generalized such a notion to the recurrent struc-

ture Jacobi operator, that is, (∇XRξ)Y = β(X)RξY for a certain 1-form β and

any vector fields X,Y on M in G2(Cm+2) or CPm. Moreover, Pérez, Santos

and Suh [PSS05] further investigated the property of the Lie ξ-parallel structure

Jacobi operator in complex projective space CPm, that is, LξRξ = 0.

When we consider a hypersurface M in the complex hyperbolic quadric Qm∗,

the unit normal vector field N of M in Qm∗ can be either A-isotropic or A-

principal (see [BS13], [BS15], [Suh14] and [Suh15]). In the first case, we considered

the fact that a real hypersurface M in the complex hyperbolic quadric Qm∗ has

isometric Reeb flow, which means that the Riemannian metric is invariant along

the Reeb direction ξ, and algebraically it is equivalent to the notion of commuting,

that is, Sφ = φS. In this case, we asserted in Theorem B that M is locally

congruent to a tube over a totally geodesic CHk in Q2k∗ or a horosphere. In the

second case, when N is A-principal for a contact real hypersurface in Qm∗, we

proved that M is locally congruent to a tube over a totally geodesic and totally

real submanifold RHm in Qm∗ (see [BS15]).

In this paper, we consider the case when the structure Jacobi operator Rξ
of M in the complex hyperbolic quadric Qm∗ = SO0

2,m/SO2SOm is parallel,

that is, ∇XRξ = 0 for any tangent vector field X on M , and first we prove the

following:

Main Theorem 1. Let M be a Hopf real hypersurface in Qm∗, m ≥ 3,

with parallel structure Jacobi operator. Then the unit normal vector field N is

singular, that is, N is A-isotropic or A-principal.

On the other hand, in [Suh17], we considered the notion of parallel normal

Jacobi operator R̄N for a real hypersurface M in Qm, that is, ∇XR̄N = 0 for any

tangent vector field X and a unit normal vector field N on M , and proved a non-

existence property, where the normal Jacobi operator R̄N is defined by R̄NX =

R̄(X,N)N from the curvature tensor R̄ of the complex quadric Qm. Motivated

by this result, and using Theorem A and Main Theorem 1, we give another non-

existence property for Hopf real hypersurfaces in the complex hyperbolic quadric

Qm∗ with parallel structure Jacobi operator as follows:

Main Theorem 2. There does not exist a Hopf real hypersurface in the

complex hyperbolic quadric Qm∗, m ≥ 3, with parallel structure Jacobi operator,

that is, ∇XRξ = 0 for any tangent vector field X on M .
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2. The complex hyperbolic quadric

In this section, let us introduce known results about the complex hyperbolic

quadric Qm∗. This section is due to Klein and Suh [KS].

The m-dimensional complex hyperbolic quadric Qm∗ is the non-compact dual

of the m-dimensional complex quadric Qm, i.e., the simply connected Riemannian

symmetric space whose curvature tensor is the negative of the curvature tensor

of Qm.

The complex hyperbolic quadric Qm∗ cannot be realized as a homogeneous

complex hypersurface of the complex hyperbolic space CHm+1. In fact, Smyth

[Smy68, Theorem 3 (ii)] has shown that every homogeneous complex hypersur-

face in CHm+1 is totally geodesic. This is in marked contrast to the situation

for the complex quadric Qm, which can be realized as a homogeneous complex

hypersurface of the complex projective space CPm+1 in such a way that the shape

operator for any unit normal vector to Qm is a real structure on the corresponding

tangent space of Qm, (see [Re95] and [Kl08]). Another related result by Smyth

[Smy68, Theorem 1], which states that any complex hypersurface of CHm+1 for

which the square of the shape operator has constant eigenvalues (counted with

multiplicity) is totally geodesic, also precludes the possibility of a model of Qm∗

as a complex hypersurface of CHm+1 with the analogous property for the shape

operator.

Therefore, we realize the complex hyperbolic quadric Qm∗ as the quotient

manifold SO0
2,m/SO2SOm. As Q1∗ is isomorphic to the real hyperbolic space

RH2 = SO0
1,2/SO2, and Q2∗ is isomorphic to the Hermitian product of complex

hyperbolic spaces CH1 × CH1, we suppose m ≥ 3 in the sequel and through-

out this paper. Let G := SO0
2,m be the transvection group of Qm∗, and K :=

SO2SOm be the isotropy group of Qm∗ at the “origin” p0 := eK ∈ Qm∗. Then

σ : G→ G, g 7→ sgs−1 with s :=


−1
−1

1
1

. . .
1


is an involutive Lie group automorphism of G with Fix(σ)0 = K, and there-

fore Qm∗ = G/K is a Riemannian symmetric space. The center of the isotropy

groupK is isomorphic to SO2, and thereforeQm∗ is in fact a Hermitian symmetric

space.

The Lie algebra g := so2,m of G is given by

g =
{
X ∈ gl(m+ 2,R)

∣∣Xt · s = −s ·X
}
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(see [Kna02, p. 59]). In the sequel, we will write members of g as block matrices

with respect to the decomposition Rm+2 = R2 ⊕ Rm, i.e., in the form

X =
(
X11 X12

X21 X22

)
,

where X11, X12, X21, X22 are real matrices of dimensions 2 × 2, 2 ×m, m × 2

and m×m, respectively. Then

g =
{ (

X11 X12

X21 X22

) ∣∣ Xt
11 = −X11, X

t
12 = X21, X

t
22 = −X22

}
.

The linearisation σL = Ad(s) : g→ g of the involutive Lie group automorphism σ

induces the Cartan decomposition g = k⊕m, where the Lie subalgebra

k = Eig(σ∗, 1) = {X ∈ g|sXs−1 = X}

=
{ (

X11 0
0 X22

) ∣∣ Xt
11 = −X11, X

t
22 = −X22

} ∼= so2 ⊕ som

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace

m = Eig(σ∗,−1) = {X ∈ g|sXs−1 = −X} =
{ (

0 X12

X21 0

) ∣∣ Xt
12 = X21

}
is canonically isomorphic to the tangent space Tp0Q

m∗. Under the identification

Tp0Q
m∗ ∼= m, the Riemannian metric g of Qm∗ (where the constant factor of the

metric is chosen so that the formulae become as simple as possible) is given by

g(X,Y ) =
1

2
tr(Y t ·X) = tr(Y12 ·X21) for X,Y ∈ m.

g is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant

Riemannian metric on Qm∗. The complex structure J of the Hermitian symmetric

space is given by

JX = Ad(j)X for X ∈ m, where j :=


0 1
−1 0

1
1

. . .
1

 ∈ K.
Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant,

and thus defines an Ad(G)-invariant Hermitian structure on Qm∗. By identifying

the multiplication with the unit complex number i with the application of the

linear map J , the tangent spaces of Qm∗ thus become m-dimensional complex

linear spaces, and we will adopt this point of view in the sequel.
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As for the complex quadric (again compare [Re95] and [Kl08], [Kl09]), there

is another important structure on the tangent bundle of the complex quadric

besides the Riemannian metric and the complex structure, namely an S1-bundle

A of real structures. The situation here differs from that of the complex quadric

in that for Qm∗, the real structures in A cannot be interpreted as the shape

operators of a complex hypersurface in a complex space form, but as the following

considerations will show, A still plays an important role in the description of the

geometry of Qm∗.

Let

a0 :=


1
−1

1
1

. . .
1

 .

Note that we have a0 6∈ K, but only a0 ∈ O2 SOm. However, Ad(a0) still leaves

m invariant, and therefore defines an R-linear map A0 on the tangent space m ∼=
Tp0Q

m∗. A0 turns out to be an involutive orthogonal map with A0 ◦J = −J ◦A0

(i.e., A0 is anti-linear with respect to the complex structure of Tp0Q
m∗), and hence

a real structure on Tp0Q
m∗. But A0 commutes with Ad(g) not for all g ∈ K, but

only for g ∈ SOm ⊂ K. More specifically, for g = (g1, g2) ∈ K with g1 ∈ SO2

and g2 ∈ SOm, say g1 =
(

cos(t) − sin(t)
sin(t) cos(t)

)
with t ∈ R (so that Ad(g1) corresponds

to multiplication with the complex number µ := eit), we have

A0 ◦Ad(g) = µ−2 ·Ad(g) ◦A0.

This equation shows that the object which is Ad(K)-invariant and therefore ge-

ometrically relevant is not the real structure A0 by itself, but rather the “circle

of real structures”

Ap0 := {λA0|λ ∈ S1}.

Ap0 is Ad(K)-invariant, and therefore generates an Ad(G)-invariant S1-subbundle

A of the endomorphism bundle End(TQm∗), consisting of real structures on the

tangent spaces ofQm∗. For any A ∈ A, the tangent line to the fibre of A through A

is spanned by JA.

For any p ∈ Qm∗ and A ∈ Ap, the real structure A induces a splitting

TpQ
m∗ = V (A)⊕ JV (A)

into two orthogonal, maximal totally real subspaces of the tangent space TpQ
m∗.

Here V (A) (resp., JV (A)) is the (+1)-eigenspace (resp., the (−1)-eigenspace)
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of A. For every unit vector Z ∈ TpQ
m∗, there exist t ∈ [0, π4 ], A ∈ Ap and

orthonormal vectors X,Y ∈ V (A) so that

Z = cos(t) ·X + sin(t) · JY

holds; see [Re95, Proposition 3]. Here t is uniquely determined by Z. The vector Z

is singular, i.e., contained in more than one Cartan subalgebra of m, if and only if

either t = 0 or t = π
4 holds. The vectors with t = 0 are called A-principal, whereas

the vectors with t = π
4 are called A-isotropic. If Z is regular, i.e., 0 < t < π

4 holds,

then also A and X,Y are uniquely determined by Z.

As for the complex quadric, the Riemannian curvature tensor R of Qm∗ can

be fully described in terms of the “fundamental geometric structures” g, J and A.

In fact, under the correspondence Tp0Q
m∗ ∼= m, the curvature R(X,Y )Z corre-

sponds to −[[X,Y ], Z] for X,Y, Z ∈ m, see [KO96, Chapter XI, Theorem 3.2 (1)].

By evaluating the latter expression explicitly, one can show that one has

R(X,Y )Z = − g(Y,Z)X+g(X,Z)Y −g(JY, Z)JX+g(JX,Z)JY +2g(JX, Y )JZ

− g(AY,Z)AX+g(AX,Z)AY −g(JAY,Z)JAX+g(JAX,Z)JAY

for arbitrary A ∈ Ap0 . Therefore, the curvature of Qm∗ is the negative of that

of the complex quadric Qm, compare [Re95, Theorem 1]. This confirms that the

symmetric space Qm∗ which we constructed here is indeed the non-compact dual

of the complex quadric.

3. Some general equations

LetM be a real hypersurface in the complex hyperbolic quadricQm∗. For any

vector field X on M in Qm∗, we may decompose JX as

JX = φX + η(X)N,

where N denotes a unit normal vector field to M , the vector field ξ = −JN is

said to be Reeb vector field, and the 1-form η is given by η(X) = g(ξ,X). Then

naturally M admits an almost contact metric structure (φ, ξ, η, g) induced from

the Kähler structure J of Qm∗ given by

φ2 = −I + η⊗ξ, φξ = 0, η(ξ) = 1.

The tangent bundle TM of M splits orthogonally into TM = C ⊕ Rξ, where

C = ker(η) is the maximal complex subbundle of TM . The structure tensor
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field φ restricted to C coincides with the complex structure J restricted to C, and

φξ = 0.

At each point z ∈ M , we again define the maximal A-invariant subspace of

TzM

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Lemma 3.1. For each z ∈M , we have:

(i) If Nz is A-principal, then Qz = Cz.

(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal

vectors X,Y ∈ V (A) such that Nz = cos(t)X+sin(t)JY for some t ∈ (0, π/4].

Then we have Qz = Cz 	 C(JX + Y ).

Proof. First assume that Nz is A-principal. Then there exists a conjugation

A ∈ A such that Nz ∈ V (A), that is, ANz = Nz. Then we have Aξz = −AJNz =

JANz = JNz = −ξz. It follows that A restricted to CNz is the orthogonal

reflection in the line RNz. Since all conjugations in A differ just by a rotation

on such planes, we see that CNz is invariant under A. This implies that Cz =

TzQ
m∗ 	 CNz is invariant under A, and hence Qz = Cz.
Now assume that Nz is not A-principal. Then there exist a conjugation A ∈ A

and orthonormal vectors X,Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for

some t ∈ (0, π/4]. The conjugation A restricted to CX⊕CY is just the orthogonal

reflection in RX⊕RY . Again, since all conjugations in A differ just by a rotation

on such invariant spaces, we see that CX⊕CY is invariant under A. This implies

that Qz = TzQ
m∗ 	 (CX ⊕ CY ) = Cz 	 C(JX + Y ) is invariant under A, and

hence Qz = Cz 	 C(JX + Y ). �

We see from the previous lemma that the rank of the distribution Q is in

general not constant on M . However, if Nz is not A-principal, then N is not

A-principal in an open neighborhood of z ∈M , and Q defines a regular distribu-

tion in an open neighborhood of z.

We are interested in real hypersurfaces for which both C and Q are invariant

under the shape operator S of M . Real hypersurfaces in a Kähler manifold for

which the maximal complex subbundle is invariant under the shape operator are

known as Hopf hypersurfaces. This condition is equivalent to that the Reeb flow

onM , that is, the flow of the structure vector field ξ, must be geodesic. We assume

now that M is a Hopf hypersurface. Then the shape operator S of M in Qm∗

satisfies

Sξ = αξ
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for the Reeb vector field ξ and the smooth function α = g(Sξ, ξ) on M . Then we

now consider the Codazzi equation

g((∇XS)Y − (∇Y S)X,Z) = − η(X)g(φY,Z) + η(Y )g(φX,Z) + 2η(Z)g(φX, Y )

− g(X,AN)g(AY,Z) + g(Y,AN)g(AX,Z)

− g(X,Aξ)g(JAY,Z) + g(Y,Aξ)g(JAX,Z).

Putting Z = ξ, we get

g((∇XS)Y − (∇Y S)X, ξ) = 2g(φX, Y )− g(X,AN)g(Y,Aξ) + g(Y,AN)g(X,Aξ)

+ g(X,Aξ)g(JY,Aξ)− g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y )− g((∇Y S)ξ,X)

= (Xα)η(Y )− (Y α)η(X) + αg((Sφ+ φS)X,Y )− 2g(SφSX, Y ).

Comparing the previous two equations and putting X = ξ yields

Y α = (ξα)η(Y )− 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ). (3.1)

Reinserting this into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ) = 2g(ξ, AN)g(X,Aξ)η(Y )− 2g(X,AN)g(ξ, Aξ)η(Y )

− 2g(ξ, AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ, Aξ)η(X)

+ αg((φS + Sφ)X,Y )− 2g(SφSX, Y ).

Altogether this implies

0 = 2g(SφSX, Y )− αg((φS + Sφ)X,Y ) + 2g(φX, Y )

− g(X,AN)g(Y,Aξ) + g(Y,AN)g(X,Aξ)

+ g(X,Aξ)g(JY,Aξ)− g(Y,Aξ)g(JX,Aξ)

− 2g(ξ, AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ, Aξ)η(Y )

+ 2g(ξ, AN)g(Y,Aξ)η(X)− 2g(Y,AN)g(ξ, Aξ)η(X).

At each point z ∈M , we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2
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for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 (see [Re95, Proposi-

tion 3]). Note that t is a function on M . First of all, since ξ = −JN , we have

N = cos tZ1 + sin tJZ2, AN = cos tZ1 − sin tJZ2,

ξ = sin tZ2 − cos tJZ1, Aξ = sin tZ2 + cos tJZ1.

This implies g(ξ, AN) = 0, and hence

0 = 2g(SφSX, Y )− αg((φS + Sφ)X,Y ) + 2g(φX, Y )

− g(X,AN)g(Y,Aξ) + g(Y,AN)g(X,Aξ)

+ g(X,Aξ)g(JY,Aξ)− g(Y,Aξ)g(JX,Aξ)

+ 2g(X,AN)g(ξ, Aξ)η(Y )− 2g(Y,AN)g(ξ, Aξ)η(X).

We have JAξ = −AJξ = −AN , and inserting this into the previous equation

implies

Lemma 3.2. Let M be a Hopf hypersurface in the complex hyperbolic

quadric Qm∗ with (local) unit normal vector field N . For each point z ∈ M ,

we choose A ∈ Az such that Nz = cos(t)Z1 + sin(t)JZ2 holds for some orthonor-

mal vectors Z1, Z2 ∈ V (A) and 0 ≤ t ≤ π
4 . Then

0 = 2g(SφSX, Y )− αg((φS + Sφ)X,Y ) + 2g(φX, Y )− 2g(X,AN)g(Y,Aξ)

+ 2g(Y,AN)g(X,Aξ)− 2g(ξ, Aξ){g(Y,AN)η(X)− g(X,AN)η(Y )}

holds for all vector fields X and Y on M .

We can write for any vector field Y on M in Qm∗

AY = BY + ρ(Y )N,

where BY denotes the tangential component of AY and ρ(Y ) = g(AY,N).

If N is A-principal, that is, AN = N , we have ρ = 0, because ρ(Y ) =

g(Y,AN) = g(Y,N) = 0 for any tangent vector field Y on M in Qm∗. So we

have AY = BY for any tangent vector field Y on M in Qm∗. Otherwise, we can

use Lemma 3.1 to calculate ρ(Y ) = g(Y,AN) = g(Y,AJξ) = −g(Y, JAξ) =

−g(Y, JBξ) = −g(Y, φBξ) for any tangent vector field Y on M in Qm∗. From

this, together with Lemma 3.2, we proved
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Lemma 3.3. Let M be a Hopf hypersurface in the complex hyperbolic

quadric Qm∗, m ≥ 3. Then we have

(2SφS − α(φS + Sφ) + 2φ)X = 2ρ(X)(Bξ − βξ) + 2g(X,Bξ − βξ)φBξ,

where the function β is given by β = g(ξ, Aξ) = −g(N,AN).

If the unit normal vector field N is A-principal, we can choose a real structure

A ∈ A such that AN = N . Then we have ρ = 0 and φBξ = −φξ = 0, and

therefore

2SφS − α(φS + Sφ) = −2φ. (3.2)

If N is not A-principal, we can choose a real structure A ∈ A as in Lemma 3.1

and get

ρ(X)(Bξ − βξ) + g(X,Bξ − βξ)φBξ
= −g(X,φ(Bξ − βξ))(Bξ − βξ) + g(X,Bξ − βξ)φ(Bξ − βξ)

= ||Bξ − βξ||2{g(X,U)φU − g(X,φU)U}

= sin2(2t){g(X,U)φU − g(X,φU)U}, (3.3)

which is equal to 0 on Q and equal to sin2(2t)φX on C 	 Q. Altogether we have

proved:

Lemma 3.4. Let M be a Hopf hypersurface in the complex hyperbolic

quadric Qm∗, m ≥ 3. Then the tensor field

2SφS − α(φS + Sφ)

leaves Q and C 	 Q invariant, and we have

2SφS − α(φS + Sφ) = −2φ on Q

and

2SφS − α(φS + Sφ) = −2β2φ on C 	 Q,

where β = g(Aξ, ξ) = − cos 2t as in Section 3.

Then from the equation of Gauss, the curvature tensor R of M in complex

quadric Qm∗ is defined as follows:

R(X,Y )Z = −g(Y,Z)X+g(X,Z)Y −g(φY,Z)φX+g(φX,Z)φY +2g(φX, Y )φZ

− g(AY,Z)(AX)T + g(AX,Z)(AY )T − g(JAY,Z)(JAX)T

+ g(JAX,Z)(JAY )T + g(SY,Z)SX − g(SX,Z)SY,
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where (AX)T and S denote the tangential component of the vector field AX and

the shape operator of M in Qm∗, respectively.

From this, putting Y = Z = ξ and using g(Aξ,N) = 0, the structure Jacobi

operator is defined by

Rξ(X) = R(X, ξ)ξ = −X + η(X)ξ − g(Aξ, ξ)(AX)T + g(AX, ξ)Aξ

+ g(X,AN)(AN)T + g(Sξ, ξ)SX − g(SX, ξ)Sξ.

Then we may put the following:

(AY )T = AY − g(AY,N)N.

Now let us denote by ∇ and ∇̄ the covariant derivative of M and the covari-

ant derivative of Qm∗, respectively. Then by using the Gauss and Weingarten

formulas, we can assert the following

Lemma 3.5. Let M be a real hypersurface in the complex quadric Qm∗.

Then

∇X(AY )T = q(X)JAY +A∇XY + g(SX, Y )AN

− g({q(X)JAY +A∇XY + g(SX, Y )AN}, N)N

+ g(AY, SX)N + g(AY,N)SX − g(SX,AY )N. (3.4)

Proof. First let us use the Gauss formula to (AY )T = AY − g(AY,N)N .

Then it follows that

∇X(AY )T = ∇̄X(AY )T − σ(X, (AY )T )

= ∇̄X{AY − g(AY,N)N} − g(SX, (AY )T )N

= (∇̄XA)Y +A∇̄XY − g((∇̄XA)Y +A∇̄XY,N)N

− g(AY, ∇̄XN)N − g(AY,N)∇̄XN − g(SX, (AY )T )N,

where σ denotes the second fundamental form and N the unit normal vector field

on M in Qm∗. Then from this, if we use Weingarten formula ∇̄XN = −SX, then

we get the above formula. �

By putting Y = ξ and using g(Aξ,N) = 0, we have

∇X(Aξ) = q(X)JAξ +AφSX + αη(X)AN

= −{q(X)g(JAξ,N) + g(AφSX,N) + αη(X)g(AN,N)}N. (3.5)
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Moreover, let us use also Gauss and Weingarten formula to (AN)T = AN −
g(AN,N)N . Then it follows that

∇X(AN)T = ∇̄X(AN)T−σ(X, (AN)T ) = ∇̄X{AN−g(AN,N)N}−σ(X, (AN)T )

= (∇̄XA)N +A∇̄XN − g((∇̄XA)N +A∇̄XN,N)

− g(AN, ∇̄XN)N − g(AN,N)∇̄XN − σ(X, (AN)T )

= q(X)JAN−ASX−g(q(X)JAN−ASX,N)N+g(AN,N)SX. (3.6)

On the other hand, we know that

Xβ = X(g(Aξ, ξ)) = g((∇̄XA)ξ +A∇̄Xξ, ξ) + g(Aξ, ∇̄Xξ)
= g(q(X)JAξ +AφSX + g(SX, ξ)AN, ξ) + g(Aξ, φSX + g(SX, ξ)N)

= 2g(AφSX, ξ). (3.7)

4. Some key lemmas and Proof of Theorem 1

We will now apply some results in Section 3 to get more information on Hopf

hypersurfaces for which the normal vector field is A-principal everywhere.

Lemma 4.1. Let M be a Hopf hypersurface in the complex hyperbolic

quadric Qm∗, m ≥ 3, with A-principal normal vector field everywhere. Then

the following statements hold:

(i) The Reeb function α is constant.

(ii) If X ∈ C is a principal curvature vector of M with principal curvature λ,

then α = ±2, λ = ±1 for α = 2λ or φX is a principal curvature vector with

principal curvature µ = αλ−2
2λ−α for α 6= 2λ.

Proof. Let A ∈ A such that AN = N . Then we also have Aξ = −ξ. In this

situation we get

Y α = (ξα)η(Y ). (4.1)

Since gradM α = (ξα)ξ, we can compute the Hessian HessM α by

(HessM α)(X,Y ) = g(∇X gradM α, Y ) = X(ξα)η(Y ) + (ξα)g(φSX, Y ).

As HessM α is a symmetric bilinear form, the previous equation implies

(ξα)g((Sφ+ φS)X,Y ) = 0,
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for all vector fields X, Y on M which are tangent to the distribution C.
Now let us consider an open subset U = {p ∈ M | (ξα)p 6= 0}. Then (Sφ +

φS) = 0 on U . Now, hereafter let us continue our discussion on this open subset U .

Since AN = N and Aξ = −ξ, Lemma 3.2 and the condition (Sφ+φS) = 0 imply

S2φX − φX = 0. (4.2)

From this, replacing X by φX, it follows that

S2X = X + (α2 − 1)η(X)ξ. (4.3)

Then differentiating (4.3) and using Xα = (ξα)η(X) give

(∇XS)SY + S(∇XS)Y

= 2α(Xα)η(Y )ξ + (α2 − 1){g(∇Xξ, Y )ξ + η(Y )∇Xξ}

= 2α(ξα)η(X)η(Y )ξ + (α2 − 1){g(φSX, Y )ξ + η(Y )φSX}. (4.4)

From this, taking skew-symmetric part and using the anti-commuting shape op-

erator on U , we have

(∇XS)SY − (∇Y S)SX + S((∇XS)Y − (∇Y S)X)

= (α2 − 1){η(Y )φSX − η(X)φSY }. (4.5)

On the other hand, the Codazzi equation in Section 3, for the A-principal

unit normal vector field N , becomes

(∇XS)Y − (∇Y S)X = −η(X)φY + η(Y )φX + 2g(φX, Y )ξ

+ η(X)φAY − η(Y )φAX, (4.6)

where we used the tangential part of JAY = φAY + η(AY )N for any tangent

vector field Y on M in Qm∗. From this, by applying the shape operator, we can

write as follows:

S((∇XS)Y − (∇Y S)X) = −η(X)SφY + η(Y )SφX + 2αg(φX, Y )ξ

+ η(X)SφAY − η(Y )SφAX. (4.7)

Moreover, if we differentiate Aξ = −ξ from the A-principal and use the equation

of Gauss, we have

AφSX = −φSX and SφAX = −SφX, (4.8)
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where the latter formula can be obtained by the first formula and the inner

product

g(SφAX,Z) = −g(X,AφSZ) = g(X,φSZ) = −g(SφX,Z),

for any tangent vector fields X and Z on M .

Substituting (4.7) into (4.5) and using (4.8) in the obtained equation, we have

(∇XS)SY − (∇Y S)SX = (α2 − 1){η(Y )φSX − η(X)φSY }+ η(X)SφY

− η(Y )SφX−2αg(φX, Y )ξ−η(X)SφAY +η(Y )SφAX

= (α2+1){η(Y )φSX−η(X)φSY }−2αg(φX, Y )ξ. (4.9)

Now replacing X by Z in (4.9) gives

(∇ZS)SY − (∇Y S)SZ = (α2 +1){η(Y )φSZ−η(Z)φSY }−2αg(φZ, Y )ξ. (4.10)

From this, by taking the inner product with X, we have

g(SY, (∇ZS)X)− g(SZ, (∇Y S)X)

= (α2 + 1){η(Y )g(φSZ,X)− η(Z)g(φSY,X)} − 2αg(φZ, Y )η(X).

Here let us use the equation of Codazzi (4.6) for the first and the second terms

in the left side of the above equation. Then it follows that

g(SY, (∇XS)Z)− g(SZ, (∇XS)Y )

= η(Z)g(SY, φX)− η(X)g(SY, φZ)− 2αg(φZ,X)η(Y )− η(Z)g(SY, φAX)

+ η(X)g(SY, φAZ)− η(Y )g(SZ, φX) + η(X)g(SZ, φY )

+ 2αg(φY,X)η(Z) + η(Y )g(φAX,SZ)− η(X)g(φAY, SZ)

+ (α2 + 1){η(Y )g(φSZ,X)− η(Z)g(φSY,X)} − 2αg(φZ, Y )η(X). (4.11)

Then by using the formulas in (4.8) from A-principal unit normal vector

field N and the anti-commuting property Sφ + φS = 0 on the open subset U ,

equation (4.10) can be reformed as follows:

g(SY, (∇XS)Z)− g(SZ, (∇XS)Y )

= (α2 + 3){η(Z)g(SφX, Y )− η(Y )g(SφX,Z)}
+ 2αη(Y )g(φX,Z)− 2αη(Z)g(φX, Y ) + 2αg(φY,Z)η(X). (4.12)
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Then equation (4.12) can be written as follows:

(∇XS)SY − S(∇XS)Y = (α2 + 3){g(SφX, Y )ξ − η(Y )SφX}
+ 2αη(Y )φX − 2αg(φX, Y )ξ + 2αη(X)φY. (4.13)

Finally summing up (4.4) and (4.13) gives

(∇XS)SY = 2g(SφX, Y )ξ + α(ξα)η(X)η(Y )ξ

+(α2+1)η(Y )φSX+αη(Y )φX−αg(φX, Y )ξ+αη(X)φY. (4.14)

Then, by taking the inner product of (4.14) with the Reeb vector field ξ, and

using (4.1) and the formula

(∇XS)ξ = (Xα)ξ + αφSX − SφSX,

we have

SφX = 0

for any tangent vector field X on M in Qm∗. This gives that SX = αη(X)ξ.

From this, applying the shape operator S and using (4.3) imply

S2X = α2η(X)ξ = X + (α2 − 1)η(X)ξ,

which gives X = η(X)ξ. This gives a contradiction, because we assumed m ≥ 3.

So the open subset U = {p∈M |(ξα)p 6=0} of M is empty. This implies ξα = 0

on M by the continuity of the the Reeb function α. Then from (4.1), it follows

that Xα = (ξα)η(X) = 0. So the Reeb function α is constant on M .

The remaining part of the lemma follows easily from the equation

(2λ− α)SφX = (αλ− 2)φX

of Lemma 3.2. �

Remark 4.1. All the calculation in the proof of Lemma 4.1 will be given

in detail in [LS]. In it, from the condition of anti-commuting shape operator

Sφ+φS = 0, we will prove that the unit normal vetor field N of real hypersurfaces

in the complex hyperbolic quadric Qm∗ is singular, that is, either N is A-principal

or A-isotropic.

Now, we want to give a new lemma which will be useful to prove our main

theorem as follows:
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Lemma 4.2. Let M be a Hopf real hypersurface in the complex hyper-

bolic quadric Qm∗, m ≥ 3, such that the normal vector field N is A-principal

everywhere. Then we have the following:

(i) ∇̄XA = 0, for any X ∈ C.
(ii) ASX = SX, for any X ∈ C.

Proof. In order to give a proof of this lemma, let us put ∇̄XA = q(X)JA

for any X ∈ TQm∗. Now let us differentiate g(AN, JN) = 0 along any X ∈ TpM ,

p ∈M . Then it follows that

0 = g((∇̄XA)N +A∇̄XN, JN) + g(AN, (∇̄XJ)N + J∇̄XN)

= q(X)− g(ASX, JN)− g(ξ, SX)

for any X ∈ TxM , x ∈M . Then the 1-form q becomes

q(X) = −g(ASX, ξ) + g(ξ, SX) = g(Sξ,X) + g(ξ, SX) = 2αη(X), (4.15)

where we used that the unit normal N is A-principal, that is, Aξ = −ξ. Then

this gives (i) for any X ∈ C.
On the other hand, we differentiate the formula AJN = −JAN = −JN

along the distribution C. Then by the Kähler structure and the expression of

∇̄XA = q(X)JA, we have

q(X)JAJN −AJSX = JSX.

From this, together with (i), it follows that −AJSX = JASX = JSX, which

implies ASX = SX for any X ∈ C. �

Now let us assume that M is a real hypersurface in the complex hyper-

bolic quadric Qm∗ with isometric Reeb flow. Then the commuting shape operator

Sφ = φS implies Sξ = αξ, that is, M is Hopf. We will now prove that the

Reeb curvature α of a Hopf hypersurface is constant if the normal vector field is

A-isotropic. Assume that the unit normal vector fieldN is A-isotropic everywhere.

Then we have β = g(Aξ, ξ) = 0 in Lemma 3.3. So (3.1) implies

Y α = (ξα)η(Y )

for all Y ∈ TM . Since gradM α = (ξα)ξ, we can compute the Hessian HessM α

by

(HessM α)(X,Y ) = g(∇X gradM α, Y ) = X(ξα)η(Y ) + (ξα)g(φSX, Y ).
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As HessM α is a symmetric bilinear form, the previous equation implies

(ξα)g((Sφ+ φS)X,Y ) = 0,

for all vector fields X,Y on M which are tangential to C.
Now let us assume that Sφ + φS = 0. For every principal curvature vector

X ∈ C such that SX = λX, this implies SφX = −φSX = −λφX. We assume

||X|| = 1 and put Y = φX. Using the normal vector field N is A-isotropic, that

is β = 0 in Lemma 3.3, we know that

−λ2φX + φX = ρ(X)Bξ + g(X,Bξ)φBξ.

From this, taking the inner product with φX and using

g(X,Bξ) = g(X,Aξ) = −g(φX,AN) = −ρ(φX),

we have

−λ2+1 = ρ(X)η(BφX)−ρ(φX)η(BX) = g(X,AN)2+g(X,Aξ)2 = ||XC	Q||2 ≤ 1,

where XC	Q denotes the orthogonal projection of X onto C 	 Q.

On the other hand, from the commutativity of S and φ and the above equa-

tion for SX = λX, it follows that

−λφX = −φSX = SφX = φSX = λφX.

This gives that the principal curvature λ = 0. Then the above two equation give

||XC	Q||2 = 1, for all principal curvature vectors X ∈ C with ||X|| = 1. This is

only possible if C = C 	 Q, or equivalently, if Q = 0. Since m ≥ 3, this is not

possible. Hence we must have Sφ+ φS 6= 0 everywhere, and therefore dα(ξ) = 0.

From this, together with (3.1), we get gradM α = 0. Since M is connected, this

implies that α is constant. Thus we have proved:

Lemma 4.3. LetM be a real hypersurface in the complex hyperbolic quadric

Qm∗, m ≥ 3, with isometric Reeb flow and A-isotropic normal vector field N

everywhere. Then α is constant.

5. Parallel structure Jacobi operator

The curvature tensor R(X,Y )Z for a Hopf real hypersurface M in the com-

plex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm induced from the curvature
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tensor of Qm∗ is given in Section 3. Now the structure Jacobi operator Rξ from

Section 3 can be rewritten as follows:

Rξ(X) = R(X, ξ)ξ =−X + η(X)ξ − β(AX)T + g(AX, ξ)Aξ

+ g(AX,N)(AN)T + αSX − g(SX, ξ)Sξ, (5.1)

where we put α = g(Sξ, ξ) and β = g(Aξ, ξ), because we assume that M is Hopf.

The Reeb vector field ξ = −JN and the anti-commuting property AJ = −JA
gives that the function β becomes β = −g(AN,N). When this function β =

g(Aξ, ξ) identically vanishes, we say that a real hypersurface M in Qm∗ is

A-isotropic as in Section 1.

Here we use the assumption of Rξ being a parallel structure Jacobi operator,

that is, ∇YRξ = 0. Then (5.1), together with (3.4) and (3.6), gives that

0 =∇XRξ(Y ) =∇X(Rξ(Y ))−Rξ(∇XY ) =g(φSX, Y )ξ+η(Y )φSX−(Xβ)(AY )T

− β
[
q(X)JAY +A∇XY + g(SX, Y )AN − g({q(X)JAY +A∇XY

+ g(SX, Y )AN}, N)N + g(AY, SX)N + g(AY,N)SX − g(SX, (AY )T )N
]

+ g(q(X)JAξ +AφSX + αη(X)AN, Y )Aξ + g(AY, ξ)
[
q(X)JAξ +AφSX

+ αη(X)AN − {q(X)g(JAξ,N) + g(AφSX,N) + αη(X)g(AN,N)}N
]

+
[
g(q(X)JAN−ASX+g(AN,N)SX, Y )(AN)T +g(Y, (AN)T ){q(X)JAN

−ASX + g(AN,N)SX − g(q(X)JAN −ASX,N)N}
]

+ (Xα)SY +α(∇XS)Y −X(α2)η(Y )ξ−α2(∇Xη)(Y )ξ−α2η(Y )∇Xξ, (5.2)

where we used g(Aξ,N) = 0.

From this, by taking the inner product of (5.2) with the Reeb vector field ξ,

we have

0 = g(φSX, Y )− (Xβ)g(AY, ξ)− β{q(X)g(JAY, ξ) + g(A∇XY, ξ)
+ g(q(X)JAξ +AφSX + αη(X)AN, Y )g(Aξ, ξ) + g(AY,N)g(SX, ξ)}

+ g(AY, ξ)g(AφSX, ξ) + g(Y, (AN)T ){g(q(X)JAN, ξ)− g(ASX, ξ)

+ g(AN,N)g(SX, ξ)}+ α(Xα)η(Y ) + αg(∇XS)Y, ξ)

−X(α2)η(Y )− α2(∇Xη)(Y ). (5.3)
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Then first, by putting Y = ξ, and using g(Aξ,N) = 0 and (3.7), we have

0 = −Xβg(Aξ, ξ)− βg(AφSX, ξ) + βg(AφSX, ξ) + βg(AφSX, ξ)

= −2βg(AφSX, ξ) + βg(AφSX, ξ) = −βg(AφSX, ξ). (5.4)

From this, we have either β = 0 or S(AN)T = 0. The first part β = g(Aξ, ξ) = 0

implies N is A-isotropic. Now let us work on the open subset U = {p ∈M |β(p) 6=
0}. Now let us differentiate the formula S(AN)T = 0. Then by using (3.3),

it follows that

0 = (∇XS)(AN)T + S∇X(AN)T

= (∇XS)(AN)T + S{q(X)JAN −ASX
− g(q(X)JAN −ASX,N)N + g(AN,N)SX}. (5.5)

Then by putting X = ξ in (5.5) and taking the inner product of the equation

with ξ, it follows that

g((∇ξS)(AN)T , ξ)− q(ξ)αg(AN,N)− α2g(Aξ, ξ) + α2g(AN,N) = 0.

From this, together with g((AN)T , (∇ξS)ξ) = g(AN, (ξα)ξ) = 0 and

g(AN,N) = −g(Aξ, ξ) = −β,

it follows that

0 = αβ{q(ξ)− 2α}.

So for each point p ∈ U = {p ∈ M |β(p) 6= 0}, we have α(p) = 0 or q(ξ(p)) =

2α(p). Then by (3.1), in Section 3, for α = 0 we have g(Y,AN)g(ξ, Aξ) = 0 for

any tangent vector field Y on M . This gives the following lemma.

Lemma 5.1. LetM be a real hypersurface in the complex hyperbolic quadric

Qm∗, m ≥ 3, with parallel structure Jacobi operator. Then on the open subset U
we have q(ξ) = 2α or the unit normal N is A-principal.

The formula q(ξ) = 2α holds only for the open subsetW = {p ∈ U|α(p) 6= 0},
and the unit normal N becomes A-principal on Int(U −W) = Int{p ∈ U|α(p) =

0}, because of (3.1).

Now let us proceed with our discussion on the open set W in M . Putting

X = ξ in (5.3) and using q(ξ) = 2α in Lemma 5.1, we have
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0 = −(ξβ)g(AY, ξ)− β{q(ξ)g(JAY, ξ) + g(A∇ξY, ξ) + αg(AY,N)}+ g(q(ξ)JAξ

+ αAN, Y )g(Aξ, ξ) + g(Y,AN){q(ξ)g(JAN, ξ)− αg(Aξ, ξ) + αg(AN,N)}
= −βg(A∇ξY, ξ), (5.6)

where we used ξβ = 0 in (3.7).

Then we can take Y = (AN)T in g(A∇ξY, ξ) = 0 in (5.6). Then first,

by (3.6), we have

A∇ξ(AN)T = A
{
q(ξ)JAN −ASξ − g(q(ξ)JAN −ASξ,N)N

}
+ g(AN,N)ASξ.

Then, from this and (5.7) it follows that

0 = g(A∇ξ(AN)T , ξ) = 2αg(JAN,Aξ)− g(Sξ, ξ) + αg(AN,N)g(Aξ, ξ)

= 2α− α− β2α = α(1− β2). (5.7)

Then from (5.7) on the open subset W, we have β2 = 1. This means that

β = − cos 2t = 1 or β = − cos 2t = −1 if the Reeb function α is non-vanishing.

Since the function β = g(Aξ, ξ) = − cos 2t as in Section 3, we have, respectively,

t = π
2 or t = 0. But in Lemma 3.1, (ii), in Section 3, we know that 0 ≤ t ≤ π

4 .

So we have only t = 0, and the unit normal vector field N becomes A-principal,

that is, AN = N . Then including the case of vanishing Reeb curvature α, we can

prove the following

Lemma 5.2. Let M be a Hopf real hypersurface in the complex hyperbolic

quadric Qm∗, m ≥ 3, with parallel structure Jacobi operator. Then the unit

normal vector field N is A-principal or A-isotropic.

Proof. When the Reeb function α is non-vanishing, we have shown that the

unit normal N is A-isotropic or A-principal according to the function β = 0 of

β = −1, respectively. When the Reeb function α identically vanishes, let us show

that N is A-isotropic or A-principal. In order to do this, from the condition of

the hypersurface being Hopf, we can differentiate Sξ = αξ and use the equation

of Codazzi in Section 3, then we get the formula

Y α = (ξα)η(Y )− 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ).

From the assumption of α = 0 combined with the fact g(ξ, AN) = 0 proved in

Section 3, we deduce g(Y,AN)g(ξ, Aξ) = 0 for any Y ∈ TpM , p ∈M . This gives

that the vector AN is normal, that is, AN = g(AN,N)N or g(Aξ, ξ) = 0, which

implies that the unit normal N is A-principal or A-isotropic, respectively. This

completes the proof of our Lemma. �
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By virtue of Lemma 5.2, we can consider two classes of real hypersurfaces

in complex hyperbolic quadric Qm∗ with parallel structure Jacobi operator: with

A-principal unit normal vector field N or otherwise, with A-isotropic unit normal

vector field N . We will consider each case in Sections 6 and 7, respectively.

6. Parallel structure Jacobi operator with A-principal

normal vector field

In this section, we consider a real Hopf hypersurface M in the complex hyper-

bolic quadric Qm∗ = SO0
2,m/SO2SOm with A-principal unit normal vector field.

Then the unit normal vector field N satisfies AN = N for a complex conjugation

A ∈ A. Then it follows that Aξ = −ξ and g(Aξ, ξ) = β = −1.

Then the structure Jacobi operator Rξ is given by

Rξ(X) = −X + 2η(X)ξ +AX + g(Sξ, ξ)SX − g(SX, ξ)Sξ. (6.1)

Since we assume that M is Hopf, (6.1) becomes

Rξ(X) = −X + 2η(X)ξ +AX + αSX − α2η(X)ξ. (6.2)

By the assumption of the structure Jacobi operator Rξ being parallel, the

derivative of Rξ along any tangent vector field Y on M is given by

0 = (∇YRξ)(X) = ∇Y (Rξ(X))−Rξ(∇YX)

= 2{(∇Y η)(X)ξ + η(X)∇Y ξ}+ (∇YA)X + (Y α)SX

+ α(∇Y S)X − (Y α2)η(X)ξ − α2(∇Y η)(X)ξ − α2η(X)∇Y ξ. (6.3)

Then it follows that

(∇YA)X = ∇Y (AX)−A∇YX = ∇̄Y (AX)− σ(Y,AX)−A∇YX

= (∇̄YA)X +A{∇YX + σ(Y,X)} − σ(Y,AX)−A∇YX
= q(Y )JAX +Aσ(Y,X)− σ(Y,AX)

= q(Y )JAX + g(SX, Y )AN − g(SY,AX)N, (6.4)

where we used the Gauss and Weingarten formulae. From this, together with (6.3)

and using the notion of A-principal, we have
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0 = (∇YRξ)(X) = (2− α2){(∇Y η)(X)ξ + η(X)∇Y ξ}
+ {q(Y )JAX + g(SX, Y )N − g(SY,AX)N}

+ (Y α)SX + α(∇Y S)X − (Y α2)η(X)ξ. (6.5)

From this, taking the inner product of (6.5) with the unit A-principal normal

vector field N , that is, AN = N , we have

q(Y )g(JAX,N) + g(SX, Y )− g(SY,AX) = 0.

Since Aξ = −ξ, the formula g(JAX,N) = g(AX, ξ) = −η(X) holds. Then we

have

−q(Y )ξ + SY −ASY = 0.

By putting Y = ξ and using the assumption of M being Hopf, we have

q(ξ) = 2α. (6.6)

Putting X = ξ into (6.5), and using (6.6) and Lemma 4.2 for the Reeb function

α = g(Sξ, ξ), it follows that

0 = (2−α2)∇Y ξ+{2αη(Y )JAξ+2αη(Y )N}+α(∇Y S)ξ = 2φSY−αSφSY, (6.7)

where we used q(Y ) = g(SY −ASY, ξ) = 2αη(Y ) and the following:

(∇Y S)ξ = ∇Y (Sξ)− S∇Y ξ = α∇Y ξ − SφSY = αφSY − SφSY. (6.8)

If we put SY = λY , Y ∈ C = [ξ]⊥, where Y is orthogonal to the Reeb vector

field ξ, then (6.7) gives

2λφY = αλSφY. (6.9)

Here we can show that the principal curvature λ identically vanishes on M .

In fact, if we assume that there is a principal curvature vector field Y ∈ C such

that SY = λY , λ 6= 0, then (6.9) yields α 6= 0 and

SφY =
2

α
φY. (6.10)
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But by Lemma 4.1, we know that SφY = µφY , µ = αλ−2
2λ−α for SY = λY .

From this, together with (6.10), it follows that α2 − 4 = 0, which implies α = ±2

and λ = ±1. Then the expression of the shape operator S of M in Qm satisfies

S =



α 0 0 0 0 · · · 0

0 0 0 0 · · · · · · 0
...

...
. . .

...
... · · · 0

0 0 0 0 · · · · · · 0

0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0


or

S =



±2 0 0 0 0 · · · 0

0 ±1 0 0 · · · · · · 0
...

...
. . .

...
... · · · 0

0 0 0 ±1 · · · · · · 0

0 0 0 0 ±1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · ±1


This gives SY = αη(Y )ξ for any tangent vector field Y on M , where η is an 1-form

corresponding to the Reeb vector field ξ, or otherwise, M is totally η-umbilical,

that is, S = η⊗ξ + IM , where IM denotes the identity transformation on the

tangent space TpM , p ∈ M , in the complex hyperbolic quadric Qm∗. This gives

Sφ = 0 and φS = 0, thus, in any case, the shape operator S commutes with

the structure tensor φ. Then by Theorem B in the Introduction, M is locally

congruent to a horosphere or a tube over a totally geodesic complex hyperbolic

space CHk in Q2k∗, m = 2k. That is, the Reeb flow on M is isometric.

On the other hand, we want to introduce the following proposition (see

[Suh18]).

Proposition 6.1. Let M be a real Hopf hypersurface in the complex hy-

perbolic quadric Qm∗, m ≥ 3, with isometric Reeb flow. Then the unit normal

vector field N is A-isotropic everywhere.

By Proposition 6.1, we know that the unit normal vector field N of M is

A-isotropic, not A-principal. This rules out the existence of a real hypersurface in

the complex hyperbolic quadric Qm∗, m ≥ 3, with parallel structure Jacobi field
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and A-principal unit normal vector field N . Accordingly, such an A-principal case

for parallel structure Jacobi operator never happens. So we give a proof of our

main theorem with A-principal unit normal N .

7. Parallel structure Jacobi operator with A-isotropic

normal vector field

In this section, we assume that the unit normal vector field N of a real

hypersurface M in the complex hyperbolic quadric Qm∗ = SO0
2,m/SO2SOm is

A-isotropic. Then the normal vector field N can be written as

N =
1√
2

(Z1 + JZ2)

for Z1, Z2 ∈ V (A), where V (A) denotes the +1-eigenspace of the complex con-

jugation A ∈ A. Here we note that Z1 and Z2 are orthonormal, i.e., we have

‖Z1‖ = ‖Z2‖ = 1 and Z1⊥Z2. Then it follows that

AN =
1√
2

(Z1− JZ2), AJN = − 1√
2

(JZ1 +Z2), and JN =
1√
2

(JZ1−Z2).

Then it gives that

g(ξ, Aξ) = g(JN,AJN) = 0, g(ξ, AN) = 0 and g(AN,N) = 0.

By virtue of these formulas for A-isotropic unit normal vector field, the structure

Jacobi operator is given by

Rξ(X) = R(X, ξ)ξ =−X + η(X)ξ + g(AX, ξ)Aξ

+ g(JAX, ξ)JAξ + g(Sξ, ξ)SX − g(SX, ξ)Sξ. (7.1)

On the other hand, we know that JAξ = −JAJN = AJ2N = −AN , and

g(JAX, ξ) = −g(AX, Jξ) = −g(AX,N). Now the structure Jacobi operator Rξ
can be rearranged as follows:

Rξ(X) = −X + η(X)ξ + g(AX, ξ)Aξ + g(X,AN)AN + αSX − α2η(X)ξ. (7.2)

Differentiating (7.2), we obtain
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(∇YRξ)X = ∇Y (Rξ(X))−Rξ(∇YX)

= (∇Y η)(X)ξ + η(X)∇Y ξ + g(X,∇Y (Aξ))Aξ + g(X,Aξ)∇Y (Aξ)

+ g(X,∇Y (AN))AN + g(X,AN)∇Y (AN) + (Y α)SX

+ α(∇Y S)X − (Y α2)η(X)ξ − α2(∇Y η)(X)ξ − α2η(X)∇Y ξ. (7.3)

Here let us use the equation of Gauss and Weingarten formula as follows:

∇Y (Aξ) = ∇̄Y (Aξ)− σ(Y,Aξ) = (∇̄YA)ξ +A∇̄Y ξ − σ(Y,Aξ)

= q(Y )JAξ +A{φSY + η(SY )N} − g(SY,Aξ)N,

and

∇Y (AN) = ∇̄Y (AN)− σ(Y,AN) = (∇̄YA)N +A∇̄YN − σ(Y,AN)

= q(Y )JAN −ASY − g(SY,AN)N.

Substituting these formulas into (7.3) and using the assumption of parallel

structure Jacobi operator, we have

0 = (∇YRξ)X = g(φSY,X)ξ + η(X)φSY + {q(Y )g(Aξ,X) + g(AφSY,X)

+ g(SY, ξ)g(AN,X)}Aξ + g(X,Aξ){q(Y )JAξ +AφSY + g(SY, ξ)AN

− g(SY,Aξ)N}+ {q(Y )g(X,AN)− g(X,ASY )}AN
+ g(X,AN){q(Y )JAN −ASY − g(SY,AN)N}+ (Y α)SX

+ α(∇Y S)X − (Y α2)η(X)ξ − α2g(φSY,X)ξ − α2η(X)φSY. (7.4)

From this, taking the inner product of (7.4) with the Reeb vector field ξ, we have

0 = g(φSY,X) + g(X,Aξ)g(AφSY, ξ)− g(X,AN)g(ASY, ξ)

+ (Y α)αη(X) + αg((∇Y S)X, ξ)− (Y α2)η(X)− α2g(φSY,X). (7.5)

Here by the assumption of M being Hopf, we can use the following:

(∇Y S)ξ = ∇Y (Sξ)− S(∇Y ξ) = (Y α)ξ + αφSY − SφSY.

Then it follows that

αg((∇Y S)X, ξ) = g(α(Y α)ξ + α2φSY − αSφSY,X). (7.6)
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Taking the inner product of (7.4) with the unit normal N , it follows that

0 = g(X,Aξ)g(AφSY,N)− g(X,Aξ)g(SY,Aξ)

− g(X,AN)g(ASY,N)g(X,AN)g(SY,AN). (7.7)

From this, putting X = AN and using that N is A-isotropic, we have SAN = 0.

This also gives SφAξ = 0.

On the other hand, g(SY,Aξ) in (7.4) becomes

g(SY,Aξ) = −g(SY,AJN) = g(SY, JAN)

= g(SY, φAN + η(AN)N) = −g(AφSY,N).

Substituting this term into (7.7) gives SφAN = 0. Summing up these formulas,

we can write

SAξ = 0, SAN = 0, SφAξ = 0, and SφAN = 0. (7.8)

Taking the inner product of (7.4) with the Reeb vector field ξ, and using (7.6),

(7.8), we have

φSY = αSφSY. (7.9)

Now we consider the two cases that either α(p) = 0 or α(p) 6= 0. That is,

we consider two open subsets in M given by U = {p ∈ M |α(p) 6= 0} and V =

Int(M − U), where “Int” denotes the interior of the given set.

For the first case on the open subset V with the Reeb function α vanishing,

(7.9) gives φSY = 0, which implies SY = αη(Y )ξ = 0 for any vector field Y ,

that is, M is totally geodesic. Then by putting X = ξ into the equation of

Codazzi in Section 3 for A-isotropic unit normal vector field N and using M is

totally geodesic, we have

0 = −g(φY,Z) + g(Y,AN)g(Aξ,Z) + g(Y,Aξ)g(JAξ, Z).

Then for any vector fields Y, Z ∈ Q, where Y, Z are orthogonal to the vector fields

Aξ and AN , we have g(φY,Z) = 0, which gives a contradiction. So such an open

subset V cannot exist.

Then naturally, we may consider the case that Ū = M , where Ū denotes the

closure of the set U . Then the Reeb function α 6= 0 on U . Now let us continue

our discussion on the open subset U .

On the distribution Q, let us introduce a formula mentioned in Section 3 as

follows:

2SφSY − α(φS + Sφ)Y = −2φY, (7.10)
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for any tangent vector field Y on M in Qm∗. So if SY = λY in (7.10) and

(2λ− α)p 6= 0, then (2λ− α)SφY = (αλ− 2)φY , which gives

SφY =
αλ− 2

2λ− α
φY. (7.11)

Here if (2λ − α)p = 0, then (αλ − 2)p = 0, which implies α2 − 4 = 0. That is,

α = ±2. Then λ = ±1.

By (7.9) and (7.10), we know that

−2 + α2

α
φSY − αSφY = −2φY.

From this, putting SY = λY and using (7.11), we know that

SφY = −2λ+ α2λ− 2α

α2
φY =

αλ− 2

2λ− α
φY. (7.12)

Then by a straightforward calculation, we get the following equation:

λ{(α2 + 2)λ− 3α} = 0.

This means λ = 0 or λ = 3α
α2+2 . When λ = 0, by (7.12), SφY = 2

αφY . Then
2
α = 3α

α2+2 , which gives α2 − 4 = 0. In such a case, we may put α = 2.

Now we assume that the other principal curvature is 3α
α2+2 . Then we denote

the principal curvature 3α
α2+2 by the function γ. Then the function γ becomes

γ = 1 for the case α = 2. Accordingly, the shape operator S can be expressed as

S =



α 0 0 0 · · · 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0

0 0 0 γ · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...

0 0 0 0 · · · γ 0 · · · 0

0 0 0 0 · · · 0 γ · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · γ


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or

S =



2 0 0 0 · · · 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0

0 0 0 0 · · · 0 0 · · · 0

0 0 0 1 · · · 0 0 · · · 0
...

...
...

...
. . .

...
... · · ·

...

0 0 0 0 · · · 1 0 · · · 0

0 0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · 1


In the above expressions, if the principal curvatures of real hypersurface in the

complex hyperbolic quadric Qm∗ with parallel structure Jacobi operator and

A-principal unit normal vector field satisfy α = 2, 0, λ = 1, and µ = 1 with

the multiplicities 1, 2, (m− 2) and (m− 2), respectively, then by a theorem due

to Suh [Suh18], M is locally congruent to a horosphere. However, if we put λ = 1

and α = 2 in (7.9), and using the commutativity Sφ = φS of the horosphere,

we know that φY = 2φY , which gives a contradiction. So this case does not

appear in the complex hyperbolic quadric Qm∗ with parallel structure Jacobi

operator.

Now let us consider the principal curvature γ such that SY = γY in the

formula (7.9). Then (7.9) gives that γφY = αγSφY . From this, together with

the expression for S, we have

SφY = γφY =
γ

αγ
φY =

1

α
φY.

Then 1 = αγ = 3α2

α2+2 . This gives α = 1 and γ = 1 in the above expression. This

means that the shape operator S commutes with the structure tensor φ. Then

by virtue of Theorem B in the Introduction, M is a tube over a totally geodesic

CH2k or a horosphere. Their principal curvatures are given by 2 coth 2r, 0 and

coth r and tanh r or otherwise 2, 0, 1 and 1 with respective multiplicities 1, 2,

(m−2) and (m−2). So these type of tubes do not satisfy the above expression of

the shape operator. Accordingly, we also conclude that any real hypersurfaces M

in Qm∗ with A-isotropic unit normal vector field and non-vanishing Reeb function

α do not admit a parallel structure Jacobi operator.

Finally, we consider a point p such that α(p) = 0 but the point p is the limit

of a sequence of points where α(p) 6= 0. Such a sequence will have an infinite
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subsequence which does not admit a parallel structure Jacobi operator. Then by

the continuity, we have the same conclusion as above.

Remark 7.1. In [Suh15-2], we classified real hypersurfacees M in complex

quadric Qm with parallel Ricci tensor, according to whether the unit normal N

is A-principal or A-isotropic. When N is A-principal, we proved a non-existence

property for Hopf hypersurfaces in Qm. For a Hopf real hypersurface M in Qm

with A-isotropic, we gave a complete classification that it has three distinct con-

stant principal curvatures.
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