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Real hypersurfaces in the complex hyperbolic quadric
with parallel structure Jacobi operator

By YOUNG JIN SUH (Daegu), JUAN DE DIOS PEREZ (Granada)
and CHANGHWA WOO (Jeonbuk)

Abstract. We introduce the notion of parallel structure Jacobi operator for real
hypersurfaces in the complex hyperbolic quadric Q™™ = SOSJ,L /50250, m > 3, and
prove a non-existence result for real hypersurfaces in Q™" = SO%m/SOgSOm, m > 3,
with parallel structure Jacobi operator.

1. Introduction

As a kind of Hermitian symmetric space with rank 2 of non-compact type,
we can give the example of complex hyperbolic quadric @Q™* = S Og)m /S0350,,,
where SO, denotes the connected component of indefinite (m + 2)x(m + 2)-
special orthogonal group SOs ,,. The complex hyperbolic quadric can also be
regarded as a kind of real Grassmann manifold of non-compact type with rank 2
(see KoBAYASHI and Nomizu [KO96], SuH [Suhl18]). Accordingly, the complex
hyperbolic quadric admits two important geometric structures, a complex con-
jugation structure A and a Kéhler structure J, which anti-commute with each

other, that is, AJ = —JA. Then for m > 2, the triple (Q™", J, g) is a Hermitian
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symmetric space of compact type with rank 2 and its minimal sectional curvature
is equal to —4 (see KLEIN [KI108], KLEIN and SuH [KS], SMYTH [Smy67]).

In addition to the complex structure J, there is another distinguished geo-
metric structure on Q™*, namely a parallel rank 2 vector bundle 2( which contains
an S'-bundle of real structures, that is, complex conjugations A on the tangent
spaces of @™*. The set is denoted by 2, = {Axz| X € ST'CC}, [z] € Q™, and
it is the set of all complex conjugations defined on @™”. Then 2l,; becomes
a parallel rank 2 subbundle of End T},;Q™", [2] € @™". This geometric struc-
ture determines a maximal 2-invariant subbundle Q of the tangent bundle T'M
of a real hypersurface M in Q™*. Here the notion of parallel vector bundle 2A
means that (VxA)Y = ¢(X)JAY for any vector fields X and Y on Q™*, where
V and ¢ denote a connection and a certain 1-form defined on T Q™" [2] € Q™7
respectively (see SMYTH [Smy67]).

Recall that a nonzero tangent vector W € T,Q™" is called singular if it is
tangent to more than one maximal flat in @Q™*. There are two types of singular
tangent vectors for the complex hyperbolic quadric Q™":

(1) If there exists a conjugation A € 2 such that W € V(A), then W is singular.
Such a singular tangent vector is called 2-principal.

(2) If there exist a conjugation A € 2 and orthonormal vectors X,Y € V(A)
such that W/||W|| = (X + JY)/v/2, then W is singular. Such a singular
tangent vector is called 2(-isotropic,

where V(A) = {X € TjQ™"|AX = X} and JV(A) = {X € T,)Q""| AX =

—X}, [2] € Q™", are the (41)-eigenspace and (—1)-eigenspace for the involu-

tion A on Tp,;Q™", [2] € Q™.

On the other hand, OKUMURA [Ok75] proved that the Reeb flow on a real
hypersurface in CP™ = SU,,+1/S(U1U,,) is isometric if and only if M is an open
part of a tube around a totally geodesic CP* ¢ CP™ for some k € {0,...,m—1}.
For the complex 2-plane Grassmannian Go(C™%2) = SU,,12/S(UsU,,), a clas-
sification was obtained by BERNDT and SuH [BS02]. The Reeb flow on a real
hypersurface in Go(C™*2) is isometric if and only if M is an open part of a tube
around a totally geodesic Go(C™T1) C Go(C™*2). For the complex quadric
Q™ = SOy, 4+2/50250,,,, BERNDT and SUH [BS13] have obtained the following
result:

Theorem A. Let M be a real hypersurface of the complex quadric Q™,
m > 3. Then the Reeb flow on M is isometric if and only if m is even, say m = 2k,
and M is an open part of a tube around a totally geodesic CP* C Q%".
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For the complex hyperbolic space CH™, a full classification was obtained by
MoNTIEL and ROMERO [MR91]. They proved that the Reeb flow on a real hyper-
surface in CH™ = SUj 4, /S(U,,Uy) is isometric if and only if M is an open part of
a tube around a totally geodesic CH* C CH™ for some k € {0,...,m — 1}. The
classification problems related to the Reeb parallel shape operator, parallel Ricci
tensor, and harmonic curvature for real hypersurfaces in the complex quadric Q™
were recently given in [Suh14], [Suh15-2] and [Suh16], respectively.

The classification of isometric Reeb flow, for the complex hyperbolic 2-plane
Grassmannian G3(C™*?) = SU, ,,/S(U,,Uz), was obtained by SuH [Suh13-2].
In this case, the Reeb flow on a real hypersurface in G3(C™*2) is isometric if
and only if M is an open part of a tube around a totally geodesic G%(C™*!) C
G3(C™*2) or a horosphere with singular normal JN € JN. The notion of iso-
metric Reeb flow was introduced by HUTCHING and TAUBES [HT09], and the
geometric construction of horospheres in a non-compact manifold of negative
curvature was mainly discussed in the book due to EBERLEIN [Eb96].

In [Suh18], SUH investigated this problem of isometric Reeb flow for the com-
plex hyperbolic quadric Q™" = SO3 ,, /SO350,,. In view of the previous results,
naturally, we expected that the classification might include at least the totally
geodesic Q1" ¢ Q™*. But, the results are quite different from our expecta-
tions. The totally geodesic submanifolds of the above type are not included. Now
compared to Theorem A, we introduce the classification as follows:

Theorem B. Let M be a real hypersurface of the complex hyperbolic
quadric Q™*, m > 3. The Reeb flow on M is isometric if and only if m is
even, say m = 2k, and M is an open part of a tube around a totally geodesic
CH* c Q" or a horosphere whose center at infinity is 2-isotropic singular.

On the other hand, Jacobi fields along geodesics of a given Riemannian man-
ifold (M, g) satisfy a well-known differential equation. This equation naturally
inspires the so-called Jacobi operator. That is, if R denotes the curvature opera-
tor of M, and X is a tangent vector field to M, then the Jacobi operator Ry €
End(T, M) with respect to X at « € M, defined by (RxY)(z) = (R(Y, X)X)(z)
for any Y € T, M, becomes a self-adjoint endomorphism of the tangent bundle
TM of M. Thus, each tangent vector field X to M provides a Jacobi operator
Rx with respect to X. In particular, for the Reeb vector field &, the Jacobi
operator I is said to be the structure Jacobi operator.

Recently K1, PEREZ, SANTOS and SUH [KPSS07] investigated the Reeb par-
allel structure Jacobi operator in the complex space form M,,(c), ¢ # 0, and
used it to study some principal curvatures for a tube over a totally geodesic
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submanifold. In particular, PEREZ, JEONG and SUH [PJS05] investigated real
hypersurfaces M in Go(C™*2) with parallel structure Jacobi operator, that is,
VxR = 0 for any tangent vector field X on M. JEONG, SUH and WoO [JSW14]
and PEREZ and SANTOS [PSO08] generalized such a notion to the recurrent struc-
ture Jacobi operator, that is, (VxRe)Y = B(X)RcY for a certain 1-form § and
any vector fields X, Y on M in Go(C™*2) or CP™. Moreover, PEREZ, SANTOS
and SUH [PSS05] further investigated the property of the Lie £-parallel structure
Jacobi operator in complex projective space CP™, that is, L¢Re = 0.

When we consider a hypersurface M in the complex hyperbolic quadric Q™*,
the unit normal vector field N of M in Q™" can be either 2-isotropic or 2-
principal (see [BS13], [BS15], [Suh14] and [Suh15]). In the first case, we considered
the fact that a real hypersurface M in the complex hyperbolic quadric Q™" has
isometric Reeb flow, which means that the Riemannian metric is invariant along
the Reeb direction £, and algebraically it is equivalent to the notion of commuting,
that is, S¢ = ¢S. In this case, we asserted in Theorem B that M is locally
congruent to a tube over a totally geodesic CH* in Q%* or a horosphere. In the
second case, when N is 2-principal for a contact real hypersurface in Q™", we
proved that M is locally congruent to a tube over a totally geodesic and totally
real submanifold RH™ in Q™" (see [BS15]).

In this paper, we consider the case when the structure Jacobi operator R
of M in the complex hyperbolic quadric Q™" = SOgvm/SOQSOm is parallel,
that is, Vx R¢ = 0 for any tangent vector field X on M, and first we prove the
following:

Main Theorem 1. Let M be a Hopf real hypersurface in Q™*, m > 3,
with parallel structure Jacobi operator. Then the unit normal vector field N is
singular, that is, N is 2-isotropic or -principal.

On the other hand, in [Suh17], we considered the notion of parallel normal
Jacobi operator Ry for a real hypersurface M in Q™, that is, Vx Ry = 0 for any
tangent vector field X and a unit normal vector field N on M, and proved a non-
existence property, where the normal Jacobi operator Ry is defined by Ry X =
R(X,N)N from the curvature tensor R of the complex quadric Q™. Motivated
by this result, and using Theorem A and Main Theorem 1, we give another non-
existence property for Hopf real hypersurfaces in the complex hyperbolic quadric
Q™" with parallel structure Jacobi operator as follows:

Main Theorem 2. There does not exist a Hopf real hypersurface in the
complex hyperbolic quadric Q™*, m > 3, with parallel structure Jacobi operator,
that is, Vx R¢ = 0 for any tangent vector field X on M.
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2. The complex hyperbolic quadric

In this section, let us introduce known results about the complex hyperbolic
quadric @Q™*. This section is due to KLEIN and Sun [KS].

The m-dimensional complex hyperbolic quadric Q™" is the non-compact dual
of the m-dimensional complex quadric Q™ i.e., the simply connected Riemannian
symmetric space whose curvature tensor is the negative of the curvature tensor
of Q™.

The complex hyperbolic quadric Q™" cannot be realized as a homogeneous
complex hypersurface of the complex hyperbolic space CH™*!. In fact, SMYTH
[Smy68, Theorem 3 (ii)] has shown that every homogeneous complex hypersur-
face in CH™*! is totally geodesic. This is in marked contrast to the situation
for the complex quadric @™, which can be realized as a homogeneous complex
hypersurface of the complex projective space CP™*! in such a way that the shape
operator for any unit normal vector to @™ is a real structure on the corresponding
tangent space of Q™, (see [Re95] and [KI108]). Another related result by Smyth
[Smy68, Theorem 1], which states that any complex hypersurface of CH™*! for
which the square of the shape operator has constant eigenvalues (counted with
multiplicity) is totally geodesic, also precludes the possibility of a model of Q™*
as a complex hypersurface of CH™*! with the analogous property for the shape
operator.

Therefore, we realize the complex hyperbolic quadric Q™" as the quotient
manifold SOg)m /50550,,. As Q'" is isomorphic to the real hyperbolic space
RH? = SO%Q /S04, and Q?" is isomorphic to the Hermitian product of complex
hyperbolic spaces CH' x CH', we suppose m > 3 in the sequel and through-
out this paper. Let G := SOg_ym be the transvection group of @Q™*, and K :=
50550, be the isotropy group of Q™" at the “origin” pg := eK € Q™*. Then

0:G—=G, g—sgs b with s:= 1

is an involutive Lie group automorphism of G with Fix(¢)y = K, and there-
fore Q™" = G/K is a Riemannian symmetric space. The center of the isotropy
group K is isomorphic to SO, and therefore Q™" is in fact a Hermitian symmetric
space.

The Lie algebra g := so02 ,,, of G is given by

g={Xecglm+2,R)[X" - s=—s-X}
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(see [Kna02, p. 59]). In the sequel, we will write members of g as block matrices
with respect to the decomposition R™*2 = R? @ R™, i.e., in the form

X = (%)

where X11, X192, Xo1, Xoo are real matrices of dimensions 2 X 2, 2 X m, m X 2
and m x m, respectively. Then

g={ (¥ %) | Xt = X1, Xbh = Xo1, Xy = —Xop }.

Xo1 Xo2

The linearisation o7, = Ad(s) : g — g of the involutive Lie group automorphism o
induces the Cartan decomposition g = £ @ m, where the Lie subalgebra

t = Big(os,1) = {X € g|sXs™ ! = X}
= { (XOH X022) | Xfl = 7X11, X§2 = 7X22 } = 500 D S0,

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace
m = Eig(o,,—1) = {X e g[sXs ' =-X}={ (O, *) | X}o=Xo }

is canonically isomorphic to the tangent space T),,Q™". Under the identification
Tp, Q™" = m, the Riemannian metric g of Q™" (where the constant factor of the
metric is chosen so that the formulae become as simple as possible) is given by

1
g(X,Y) = 3 tr(Y' - X) =tr(Yio- Xo1) for X,Y €m.

g is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant
Riemannian metric on @Q™*. The complex structure J of the Hermitian symmetric
space is given by

JX =Ad(j)X for X €¢m, wherej:= 1 € K.

Because j is in the center of K, the orthogonal linear map J is Ad(K )-invariant,
and thus defines an Ad(G)-invariant Hermitian structure on @™*. By identifying
the multiplication with the unit complex number ¢ with the application of the
linear map J, the tangent spaces of Q™" thus become m-dimensional complex
linear spaces, and we will adopt this point of view in the sequel.
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As for the complex quadric (again compare [Re95] and [K108], [K109]), there
is another important structure on the tangent bundle of the complex quadric
besides the Riemannian metric and the complex structure, namely an S'-bundle
2 of real structures. The situation here differs from that of the complex quadric
in that for Q™*, the real structures in 2 cannot be interpreted as the shape
operators of a complex hypersurface in a complex space form, but as the following
considerations will show, 2 still plays an important role in the description of the
geometry of QM*.

Let

Note that we have ag € K, but only ag € O3 SO,,,. However, Ad(ag) still leaves
m invariant, and therefore defines an R-linear map Ay on the tangent space m =
T,,Q™". Ay turns out to be an involutive orthogonal map with AgoJ = —J o Ay
(i.e., Ag is anti-linear with respect to the complex structure of T,,, @™"), and hence
a real structure on T),,Q™". But Ay commutes with Ad(g) not for all g € K, but
only for g € SO,, C K. More specifically, for g = (g1,92) € K with g1 € SO,

and go € SO, say g1 = (Z:fg)) sz(lg)) with ¢t € R (so that Ad(g1) corresponds

to multiplication with the complex number yu := €%), we have
Ag o Ad(g) = p% - Ad(g) o Ao.

This equation shows that the object which is Ad(K)-invariant and therefore ge-
ometrically relevant is not the real structure Ag by itself, but rather the “circle
of real structures”

A, = {N Ao\ € S'}.

2, is Ad(K)-invariant, and therefore generates an Ad(G)-invariant S'-subbundle
2 of the endomorphism bundle End(TQ™"), consisting of real structures on the
tangent spaces of Q™. For any A € 2, the tangent line to the fibre of 2l through A
is spanned by JA.

For any p € Q™" and A € 2, the real structure A induces a splitting

T,Q™ =V (A) @ JV(A)

into two orthogonal, maximal totally real subspaces of the tangent space T,Q™".
Here V(A) (resp., JV(A)) is the (+1)-eigenspace (resp., the (—1)-eigenspace)
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of A. For every unit vector Z € T,Q™", there exist t € [0,F], A € 2, and
orthonormal vectors X,Y € V(A) so that

Z = cos(t) - X +sin(t) - JY

holds; see [Re95, Proposition 3]. Here ¢ is uniquely determined by Z. The vector Z
is singular, i.e., contained in more than one Cartan subalgebra of m, if and only if
either £ = 0 or t = 7 holds. The vectors with ¢ = 0 are called 2-principal, whereas
the vectors with ¢t = 7 are called &l-isotropic. If Z is regular, i.e., 0 < ¢ < 7 holds,
then also A and X,Y are uniquely determined by Z.

As for the complex quadric, the Riemannian curvature tensor R of Q™™ can
be fully described in terms of the “fundamental geometric structures” g, J and 2.
In fact, under the correspondence T,,,Q™" = m, the curvature R(X,Y)Z corre-
sponds to —[[X, Y], Z] for X,Y, Z € m, see [KO96, Chapter XI, Theorem 3.2 (1)].
By evaluating the latter expression explicitly, one can show that one has

RX,)Y)Z =—g(Y,2)X+9(X,2)Y —g(JY,Z2)J X +g(JX, Z)JY +29(JX,Y)JZ
—g(AY, 2)AX +g(AX, Z2)AY —g(JAY, Z)JAX +g(JAX, Z)JAY

for arbitrary A € 2,,. Therefore, the curvature of Q™" is the negative of that

of the complex quadric @™, compare [Re95, Theorem 1]. This confirms that the

symmetric space Q™" which we constructed here is indeed the non-compact dual
of the complex quadric.

3. Some general equations

Let M be a real hypersurface in the complex hyperbolic quadric Q™*. For any
vector field X on M in Q™", we may decompose JX as

JX = ¢X +n(X)N,

where N denotes a unit normal vector field to M, the vector field £ = —JN is
said to be Reeb vector field, and the 1-form 7 is given by 7(X) = ¢g(£, X). Then
naturally M admits an almost contact metric structure (¢,&,7, g) induced from
the Kéahler structure J of Q™" given by

¢* =T+, ¢¢=0, n€)=1.

The tangent bundle TM of M splits orthogonally into TM = C @ RE, where
C = ker(n) is the maximal complex subbundle of TM. The structure tensor
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field ¢ restricted to C coincides with the complex structure J restricted to C, and
P =0.
At each point z € M, we again define the maximal 2(-invariant subspace of
.M
Q,={XeT,M|AX €T, M for all Ae,}.

Lemma 3.1. For each z € M, we have:
(i) If N, is Q-principal, then Q, = C,.

(ii) If N, is not A-principal, there exist a conjugation A € 2l and orthonormal
vectors X,Y € V(A) such that N, = cos(t) X +sin(t)JY for somet € (0,7/4].
Then we have Q, =C, ©C(JX +Y).

PRroOF. First assume that IV, is 2-principal. Then there exists a conjugation
A € A such that N, € V(A), that is, AN, = N,. Then we have A, = —AJN, =
JAN, = JN, = —£,. It follows that A restricted to CN, is the orthogonal
reflection in the line RN,. Since all conjugations in 2 differ just by a rotation
on such planes, we see that CNN, is invariant under 2. This implies that C, =
T.Q™" © CN, is invariant under 2, and hence Q, = C..

Now assume that IV, is not 2-principal. Then there exist a conjugation A € 2
and orthonormal vectors X,Y € V(A) such that N, = cos(t)X + sin(¢)JY for
some t € (0, 7/4]. The conjugation A restricted to CX @CY is just the orthogonal
reflection in RX @ RY. Again, since all conjugations in 2l differ just by a rotation
on such invariant spaces, we see that CX @ CY is invariant under 2. This implies
that Q, = T.Q™* 6 (CX @ CY) =C, © C(JX +Y) is invariant under 2, and
hence @, =C, ©C(JX +Y). O

We see from the previous lemma that the rank of the distribution Q is in
general not constant on M. However, if N, is not 2-principal, then N is not
2-principal in an open neighborhood of z € M, and Q defines a regular distribu-
tion in an open neighborhood of z.

We are interested in real hypersurfaces for which both C and Q are invariant
under the shape operator S of M. Real hypersurfaces in a Kahler manifold for
which the maximal complex subbundle is invariant under the shape operator are
known as Hopf hypersurfaces. This condition is equivalent to that the Reeb flow
on M, that is, the flow of the structure vector field £, must be geodesic. We assume
now that M is a Hopf hypersurface. Then the shape operator S of M in Q™"
satisfies

S&E=af
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for the Reeb vector field £ and the smooth function o = ¢(S¢, &) on M. Then we
now consider the Codazzi equation

g(VxS)Y = (VyS8)X,Z) = —n(X)g(¢Y, Z) + n(Y)g(¢X, Z) + 21(Z)g(¢X,Y)
- g(X’ AN)g(AY7 Z) + g(K AN)g(AX7 Z)
—9(X, A g(JAY, Z) + g(Y, A)g(JAX, Z).

Putting Z = &, we get
g((VxS)Y = (VyS8)X, &) =29(¢X,Y) — g(X, AN)g(Y, A) + g(Y, AN)g(X, A¢)
+9(X, Af)g(JY, AL) — g(Y, A&)g(J X, AS).
On the other hand, we have
g(VxS)Y — (Vy5)X,§)
= (Xa)n(Y) = (Ya)n(X) + ag((S¢ + ¢5)X,Y) — 29(S¢SX.Y).

Comparing the previous two equations and putting X = £ yields

Ya = (§a)n(Y) —29(€, AN)g(Y, A) + 29(Y, AN)g(&, AS). (3.1)

Reinserting this into the previous equation yields

g(VxS)Y — (VyS)X,€) = 2g(§, AN)g(X, AE)n(Y) — 29(X, AN)g(&, AE)n(Y)
—29(& AN)g(Y, ASn(X) +29(Y, AN)g(€, An(X)
+ag((¢S+ SHX,Y) —29(SpSX,Y).

Altogether this implies

0=2g(SdpSX,Y) — ag((¢S+ S9)X,Y) + 29(¢pX,Y)
—g(X, AN)g(Y, A§) + g(Y, AN)g(X, AS)
+ 9(X, AQ)g(JY, AL) — g(Y, A&)g(J X, AE)
—2g(&, AN)g(X, AOn(Y) + 29(X, AN)g(&, AOn(Y)
+29(§, AN)g(Y, An(X) — 29(Y, AN)g(&, A )n(X).

At each point z € M, we can choose A € 2(, such that

N = cos(t)Zy + sin(t)J Zs
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for some orthonormal vectors Z;, Zo € V(A) and 0 <t < T (see [Re95, Proposi-
tion 3]). Note that ¢ is a function on M. First of all, since { = —JN, we have
N = costZy +sintJZs, AN = costZy —sintJ Zs,
& =sintZy — costJ 2y, A& =sintZy + costJ Zy.

This implies g(&, AN) = 0, and hence

0=29(SpSX,Y) — ag((¢S + SH)X,Y) + 29(¢X,Y)
— g(X, AN)g(Y, AS) + g(Y, AN)g(X, A¢)
+ 9(X, A)g(JY, AE) — g(Y, A&)g(J X, AS)
+29(X, AN)g(&, An(Y) — 29(Y, AN)g(&, A )n(X).

We have JAE = —AJE = —AN, and inserting this into the previous equation
implies

Lemma 3.2. Let M be a Hopf hypersurface in the complex hyperbolic
quadric Q™" with (local) unit normal vector field N. For each point z € M,

we choose A € U, such that N, = cos(t)Z; + sin(t).JJ Z holds for some orthonor-
mal vectors Zy, Zy € V(A) and 0 <t < §. Then

0=29(5¢5X,Y) —ag((¢S + 5¢)X,Y) +29(¢X,Y) — 29(X, AN )g(Y, Af)
+29(Y, AN)g(X, AE) — 29(&, A){g(Y, AN)n(X) — (X, AN)n(Y)}

holds for all vector fields X andY on M.

We can write for any vector field Y on M in Q™"
AY = BY + p(Y)N,

where BY denotes the tangential component of AY and p(Y') = g(AY, N).

If N is Q-principal, that is, AN = N, we have p = 0, because p(Y) =
g(Y,AN) = g(Y,N) = 0 for any tangent vector field Y on M in Q™*. So we
have AY = BY for any tangent vector field Y on M in @™". Otherwise, we can
use Lemma 3.1 to calculate p(Y) = g(Y,AN) = g(Y,AJE) = —g(Y,JAE) =
—g(Y, JBE) = —g(Y, ¢B¢) for any tangent vector field Y on M in @™*. From
this, together with Lemma 3.2, we proved
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Lemma 3.3. Let M be a Hopf hypersurface in the complex hyperbolic
quadric Q™*, m > 3. Then we have

(25¢8 — (S + S¢) 4 2¢) X = 2p(X)(BE — BE) + 29(X, BE — BE) o B,
where the function § is given by 8 = g(&, AS) = —g(N, AN).

If the unit normal vector field N is 2A-principal, we can choose a real structure
A € A such that AN = N. Then we have p = 0 and ¢B{ = —¢& = 0, and
therefore

2565 — a(¢S + S¢) = —2¢. (3.2)

If NV is not 2A-principal, we can choose a real structure A € 2 as in Lemma 3.1
and get

p(X)(BE = BE) + g(X, BE — BE)¢BE
= —g(X, ¢(BE — BE))(BE — BE) + g(X, BE — BE)d(BE — BE)
||BE — B¢||*{g(X, U)oU — g(X, 0U)U}
sin?(2t){g(X,U)oU — g(X, pU)U}, (3.3)

which is equal to 0 on Q and equal to sin?(2t)¢X on C © Q. Altogether we have
proved:

Lemma 3.4. Let M be a Hopf hypersurface in the complex hyperbolic
quadric Q™*, m > 3. Then the tensor field

25¢S — a(dS + So)
leaves Q and C © Q invariant, and we have
25¢S — a(pS + S¢p) = —2¢ on Q

and
2548 — a(pS + S¢) = —28%¢p on C © Q,
where = g(AE, &) = — cos 2t as in Section 3.

Then from the equation of Gauss, the curvature tensor R of M in complex
quadric Q™" is defined as follows:

R(X,Y)Z = —g(Y,Z2) X +9(X, 2)Y —g(¢Y, Z)pX +9(6X, Z)pY +29(6X,Y ) Z
—g(AY, Z2)(AX)T + g(AX, Z)(AY)T — g(JAY, Z)(JAX)T
+ g(JAX, Z)(JAY)T + ¢(SY, Z)SX — ¢(SX, Z)SY,
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where (AX)T and S denote the tangential component of the vector field AX and
the shape operator of M in Q™ respectively.
From this, putting Y = Z = £ and using g(A&, N) = 0, the structure Jacobi
operator is defined by
Re(X) = R(X,€)§ = =X +n(X)¢ — g(A¢, §)(AX)" + g(AX, £) A¢
+g(X, AN)(AN)T + g(96,€)SX — g(SX, )SE.

Then we may put the following:
(AY)T = AY — g(AY,N)N.

Now let us denote by V and V the covariant derivative of M and the covari-
ant derivative of Q™*, respectively. Then by using the Gauss and Weingarten
formulas, we can assert the following

Lemma 3.5. Let M be a real hypersurface in the complex quadric Q™.
Then

Vx(AY)T = ¢(X)JAY + AVxY + g(SX,Y)AN
— g({qg(X)JAY + AVxY + g(SX,Y)AN},N)N
+g(AY, SX)N + g(AY,N)SX — g(SX,AY)N. (3.4)

PROOF. First let us use the Gauss formula to (AY)T = AY — g(AY, N)N.
Then it follows that

Vx(AY)T = Vx(AY)! — o(X, (AY)T)
= Vx{AY — g(AY,N)N} — g(SX, (AY)")N
= (VxA)Y + AVxY — g((VxA)Y + AVxY,N)N
— g(AY,VxN)N — g(AY,N)Vx N — g(SX, (AY)")N,
where o denotes the second fundamental form and N the unit normal vector field

on M in Q™*. Then from this, if we use Weingarten formula Vx N = —SX, then
we get the above formula. ]

By putting Y = £ and using g(A¢&, N) = 0, we have

Vx (A€) = ¢(X)JAE + ApSX + an(X)AN
= —{q(X)g(JAE N) + g(ApSX, N) + an(X)g(AN, N)}N.  (3.5)
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Moreover, let us use also Gauss and Weingarten formula to (AN)T = AN —
g(AN, N)N. Then it follows that

Vx(AN)T = Vx(AN)T—o(X,(AN)") = Vx{AN—g(AN,N)N} - (X, (AN)T)
= (VxA)N + AVxN — g((VxA)N + AVxN, N)
—g(AN,VxN)N — g(AN,N)VxN — o(X, (AN)T)
= q(X)JAN-ASX—g(q(X)JAN—ASX,N)N+g(AN,N)SX. (3.6)

On the other hand, we know that

= 9(q(X)JAL + APSX + g(SX,§)AN, &) + g(AL, pSX + g(SX,E)N)
=29(ApSX,¢). (3.7)

4. Some key lemmas and Proof of Theorem 1

We will now apply some results in Section 3 to get more information on Hopf
hypersurfaces for which the normal vector field is 2(-principal everywhere.

Lemma 4.1. Let M be a Hopf hypersurface in the complex hyperbolic
quadric Q™*, m > 3, with U-principal normal vector field everywhere. Then
the following statements hold:

(i) The Reeb function « is constant.
(ii) If X € C is a principal curvature vector of M with principal curvature A,
then a = 42, A = +1 for a = 2\ or ¢X is a principal curvature vector with

principal curvature p = 3)\)\:2 for av # 2.

PrOOF. Let A € U such that AN = N. Then we also have A{ = —¢. In this
situation we get

Ya = (€a)n(Y). (4.1)

Since gradM a = (£a)€, we can compute the Hessian HessM o by
(Hess™ a)(X,Y) = g(Vx grad™ a,Y) = X (€a)n(Y) + (£)g(¢SX,Y).
As HessM v is a symmetric bilinear form, the previous equation implies

(€a)g((So + ¢5)X,Y) =0,
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for all vector fields X, Y on M which are tangent to the distribution C.

Now let us consider an open subset U = {p € M| ({c), # 0}. Then (S¢ +
@S) = 0 onU. Now, hereafter let us continue our discussion on this open subset U.
Since AN = N and A¢ = —¢, Lemma 3.2 and the condition (S¢ + ¢S) = 0 imply

S2pX — pX = 0. (4.2)
From this, replacing X by ¢ X, it follows that
S2X = X + (? — 1)n(X)E. (4.3)
Then differentiating (4.3) and using Xa = (£a)n(X) give
(VxS)SY +5(VxS)Y

(
= 20(Xa)n(Y)E + (o® = 1){g(Vx& Y)E+n(Y)VxE}
= 20(Ea)n(X)n(Y)E + (@ = D{g(dSX,Y)E+n(Y)pSX}.  (4.4)

From this, taking skew-symmetric part and using the anti-commuting shape op-
erator on U, we have

(Vx8)SY — (VyS)SX + S((VxS)Y — (VyS)X)
= (@ = D{n(Y)pSX —n(X)pSY}. (4.5)

On the other hand, the Codazzi equation in Section 3, for the 2-principal
unit normal vector field N, becomes
(Vx8)Y = (Vy9)X = —n(X)oY +n(Y)¢X + 29(6X,Y)¢
+1(X)pAY —n(Y)pAX, (4.6)
where we used the tangential part of JAY = ¢AY + n(AY)N for any tangent

vector field Y on M in Q™. From this, by applying the shape operator, we can
write as follows:

S(VxS)Y — (VyS)X) = —n(X)SeY +n(Y)S¢X + 2ag(d X, Y)E
+1(X)SPAY —n(Y)SPAX. (4.7)

Moreover, if we differentiate A = —¢ from the 2A-principal and use the equation
of Gauss, we have

ApSX = —¢SX and SPAX = —S¢X, (4.8)



90 Young Jin Suh, Juan de Dios Pérez and Changhwa Woo

where the latter formula can be obtained by the first formula and the inner
product

for any tangent vector fields X and Z on M.
Substituting (4.7) into (4.5) and using (4.8) in the obtained equation, we have

(Vx8)SY — (VyS)SX = (a® — 1){n(Y)pSX — n(X)pSY} + 1(X)S¢Y
—n(Y)S9pX —2ag(¢X,Y)E—n(X)SPAY +n(Y)SpAX
= (& +1){n(Y)pSX —n(X)pSY } —20g(¢ X, Y)E. (4.9)

Now replacing X by Z in (4.9) gives
(V29)SY —(VyS)SZ = (&> + 1) {n(Y)pSZ —n(Z)pSY} —209(¢Z, Y )E. (4.10)
From this, by taking the inner product with X, we have

g(SY,(VzS)X) —g(SZ,(VyS)X)
=@+ D){n(Y)g(¢SZ,X) —1(Z)g(¢SY, X)} — 2a9($Z, Y )(X).

Here let us use the equation of Codazzi (4.6) for the first and the second terms
in the left side of the above equation. Then it follows that

9(8Y, (Vx8)2) = 9(5%,(VxS)Y)
=1(2)g(SY, 6X) —n(X)g(SY, ¢Z) — 2ag(¢Z, X)n(Y) — n(Z)g(SY, ¢AX)
+0(X)g(SY,9AZ) = n(Y)g(5Z, ¢X) + n(X)g(SZ, $Y)
+ 2a9(0Y, X)n(Z) + n(Y)g(¢AX, SZ) — n(X)g(¢AY, SZ)
+ (@2 + ){n(V)g(6SZ, X) — n(2)g(6SY, X)} — 2a9(6Z, Y )n(X). (4.11)
Then by using the formulas in (4.8) from 2-principal unit normal vector

field N and the anti-commuting property S¢ + ¢S = 0 on the open subset U,
equation (4.10) can be reformed as follows:

9(SY, (VxS)Z) — 9(52,(VxS)Y)

= (@ +3){n(2)g(5¢X.Y) —n(Y)g(S¢X, Z)}
+2an(Y)g(¢X, Z) — 2an(Z)g(¢X,Y) + 2ag(9Y, Z)n(X). (4.12)
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Then equation (4.12) can be written as follows:

(Vx8)SY — S(VxS)Y = (a? + 3){g(S¢X,Y)¢ —n(Y)So X}
+20n(Y)9pX — 2ag(¢pX,Y)E + 2an(X)pY. (4.13)

Finally summing up (4.4) and (4.13) gives

(VxS8)SY =29(SoX, Y )& + alEa)n(X)n(Y )¢
+(@P+1n(Y)$S X +an(Y)sX —ag(eX,Y)é+an(X)eY. (4.14)

Then, by taking the inner product of (4.14) with the Reeb vector field £, and
using (4.1) and the formula

(Vx9)¢E = (Xa)é + apSX — SpSX,

we have

SeX =0

for any tangent vector field X on M in Q™*. This gives that SX = an(X)¢.
From this, applying the shape operator S and using (4.3) imply

S$2X = a®n(X)E = X + (a? — D)n(X)E,

which gives X = n(X)&. This gives a contradiction, because we assumed m > 3.
So the open subset U = {peM|({a),#0} of M is empty. This implies (o = 0
on M by the continuity of the the Reeb function o. Then from (4.1), it follows
that Xa = (£a)n(X) = 0. So the Reeb function « is constant on M.

The remaining part of the lemma follows easily from the equation

(2A — @)S$X = (aX — 2)pX

of Lemma 3.2. O

Remark 4.1. All the calculation in the proof of Lemma 4.1 will be given
in detail in [LS]. In it, from the condition of anti-commuting shape operator
So+¢S = 0, we will prove that the unit normal vetor field IV of real hypersurfaces
in the complex hyperbolic quadric Q™" is singular, that is, either N is 2A-principal
or A-isotropic.

Now, we want to give a new lemma which will be useful to prove our main
theorem as follows:
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Lemma 4.2. Let M be a Hopf real hypersurface in the complex hyper-
bolic quadric Q™*, m > 3, such that the normal vector field N is {-principal
everywhere. Then we have the following:

(i) VxA =0, for any X € C.
(i) ASX = SX, for any X €C.

PROOF. In order to give a proof of this lemma, let us put VxA = ¢(X)JA
for any X € TQ™". Now let us differentiate g(AN, JN) = 0 along any X € T, M,
p € M. Then it follows that

0

g((va)N+Ava7 JN) —l—g(AN, (va)N+vaN)
= Q(X) _g(ASX7 ‘]N) _g(§7SX)

for any X € T,M, x € M. Then the 1-form ¢ becomes
q(X) = —g(ASX, &) + g(&, 5X) = g(S¢, X) + g(§, §X) = 2an(X),  (4.15)

where we used that the unit normal N is 2(-principal, that is, A = —£. Then
this gives (i) for any X € C.

On the other hand, we differentiate the formula AJN = —JAN = —JN
along the distribution C. Then by the Ké&hler structure and the expression of
VxA=q(X)JA, we have

q(X)JAJN — AJSX = JSX.

From this, together with (i), it follows that —AJSX = JASX = JSX, which
implies ASX = SX for any X €C. |

Now let us assume that M is a real hypersurface in the complex hyper-
bolic quadric @™ with isometric Reeb flow. Then the commuting shape operator
S¢ = ¢S implies S¢ = «&, that is, M is Hopf. We will now prove that the
Reeb curvature « of a Hopf hypersurface is constant if the normal vector field is
2A-isotropic. Assume that the unit normal vector field IV is 2(-isotropic everywhere.
Then we have 8 = g(AE,€) = 0 in Lemma 3.3. So (3.1) implies

Yo = (§a)n(Y)

for all Y € TM. Since grad™ oo = (£a)¢, we can compute the Hessian Hess o
by

(HessM a)(X,Y)=¢g(Vx grad™ a, Y)=X(a)n(Y) + ((a)g(pSX,Y).
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As Hess™ « is a symmetric bilinear form, the previous equation implies

(€a)g((S¢ +¢5)X,Y) =0,

for all vector fields X,Y on M which are tangential to C.

Now let us assume that S¢ + ¢S = 0. For every principal curvature vector
X € C such that SX = AX, this implies S¢X = —pSX = —A¢pX. We assume
[|X]| =1 and put Y = ¢X. Using the normal vector field N is 2-isotropic, that
is f = 0 in Lemma 3.3, we know that

—N9X + ¢X = p(X)BE + g(X, BE)¢BE.
From this, taking the inner product with ¢X and using
9(X, BE) = g(X, Af) = —g(¢X, AN) = —p(¢X),
we have
AN +1 = p(X)n(BoX)—p(¢X)n(BX) = g(X, AN)*+g(X, A¢)* = || Xcool” < 1,

where X¢go denotes the orthogonal projection of X onto C & Q.
On the other hand, from the commutativity of S and ¢ and the above equa-
tion for SX = AX, it follows that

—XX = —$SX = 56X = pSX = \pX.

This gives that the principal curvature A = 0. Then the above two equation give
|| Xcooll? = 1, for all principal curvature vectors X € C with ||X|| = 1. This is
only possible if C = C © Q, or equivalently, if @ = 0. Since m > 3, this is not
possible. Hence we must have S¢ + ¢S # 0 everywhere, and therefore da(§) = 0.
From this, together with (3.1), we get grad™ o = 0. Since M is connected, this
implies that « is constant. Thus we have proved:

Lemma 4.3. Let M be a real hypersurface in the complex hyperbolic quadric
Q™*, m > 3, with isometric Reeb flow and f-isotropic normal vector field N
everywhere. Then « is constant.

5. Parallel structure Jacobi operator

The curvature tensor R(X,Y)Z for a Hopf real hypersurface M in the com-
plex hyperbolic quadric Q™" = SOS,m /S0350,, induced from the curvature
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tensor of Q™" is given in Section 3. Now the structure Jacobi operator R¢ from
Section 3 can be rewritten as follows:

Re(X) = R(X, 8¢ = — X +n(X)¢ = B(AX)" + g(AX, ) A¢
+ g(AX, N)(AN)T + aSX — g(SX, €)SE, (5.1)
where we put @ = ¢(5¢,€) and 8 = g(Ag, &), because we assume that M is Hopf.
The Reeb vector field £ = —JN and the anti-commuting property AJ = —JA
gives that the function 8 becomes § = —g(AN, N). When this function f =
g(AE &) identically vanishes, we say that a real hypersurface M in Q™" is
2-isotropic as in Section 1.

Here we use the assumption of R, being a parallel structure Jacobi operator,
that is, Vy Re = 0. Then (5.1), together with (3.4) and (3.6), gives that

0=VxRe(Y) =Vx(Re(Y))=Re(VxY) =g(¢SX,Y)E+n(Y)hSX — (X B)(AY)"
-3 [q(X)JAY + AV XY + g(SX,Y)AN — g({q(X)JAY + AVxY
+9g(SX,Y)ANY}, N)N + g(AY, SX)N + g(AY, N)SX — g(SX, (AY)T)N]
+ g(q(X)JAE + ABSX + an(X)AN, Y) A€ + g(AY, €) [q(X>JAg T AGSX
+an(X)AN — {g(X)g(JAE, N) + g(ASX, N) + an(X)g(AN, N)} N |
+ 1g(q(X)JAN —ASX +g(AN, N)SX,Y)(AN)T +¢(Y, (AN)T){q(X)JAN
— ASX + g(AN,N)SX — g(q(X)JAN — ASX, N)N}]
+ (X)SY +a(VxS)Y =X (a®)n(Y)E-a®(Vxn)(Y)E-a®n(Y)VxE, (5:2)

where we used g(A¢, N) = 0.
From this, by taking the inner product of (5.2) with the Reeb vector field &,
we have

0=g(¢SX,Y) = (XB)g(AY, ) — B{q(X)g(JAY, &) + g(AVxY,E)
+ 9(q(X)JAL + ApSX + an(X)AN,Y)g(AE, §) + 9(AY, N)g(SX,{)}
+9(AY, €)g(ApSX, &) + g(Y, (AN)"){g(q(X)JAN,€) — g(ASX, )
+ 9(AN, N)g(SX, &)} + a(Xa)n(Y) + ag(Vx S)Y,€)
— X(@)n(Y) = a*(Vxn)(Y). (5.3)
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Then first, by putting Y = £, and using g(A&, N) = 0 and (3.7), we have

0=—XPBg(AL, &) — Bg(ApSX, £) + Bg(ApSX, &) + Bg(ApSX, £)
= —2B9(A¢SX, €) + Bg(ApSX,§) = —Bg(AdSX, ). (5.4)

From this, we have either 3 =0 or S(AN)” = 0. The first part 8 = g(A4&,£) =0
implies N is 2-isotropic. Now let us work on the open subset U = {p € M|3(p) #
0}. Now let us differentiate the formula S(AN)T = 0. Then by using (3.3),
it follows that

0= (VxS)(AN)T + SVx(AN)T
= (VxS)(AN)T + S{q(X)JAN — ASX
— g(q(X)JAN — ASX,N)N + g(AN,N)SX}. (5.5)

Then by putting X = £ in (5.5) and taking the inner product of the equation
with &, it follows that

9((VeS)(AN)T,€) — q(§)ag(AN, N) — a?g(Ag, €) + a’g(AN, N) = 0.
From this, together with g((AN)T, (V¢S)€) = g(AN, (£a)€) = 0 and

it follows that
0= ap{q(§) —2a}.

So for each point p € U = {p € M|B(p) # 0}, we have a(p) = 0 or q({(p)) =
2a(p). Then by (3.1), in Section 3, for « = 0 we have g(Y, AN)g(§, A) = 0 for
any tangent vector field Y on M. This gives the following lemma.

Lemma 5.1. Let M be a real hypersurface in the complex hyperbolic quadric
Q™*, m > 3, with parallel structure Jacobi operator. Then on the open subset U
we have q(§) = 2« or the unit normal N is -principal.

The formula ¢(§) = 2« holds only for the open subset W = {p € U| a(p) # 0},
and the unit normal N becomes -principal on Int(U — W) = Int{p € U| a(p) =
0}, because of (3.1).

Now let us proceed with our discussion on the open set W in M. Putting
X =¢ in (5.3) and using ¢(§) = 2« in Lemma 5.1, we have
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0= —(£8)g(AY,§) — B{a(§)g(JAY,§) + g(AVY, &) + ag(AY, N)} + g(q(§) JAE
+aAN,Y)g(AE,§) + g(Y, AN){q(§)g(JAN, §) — ag(AE,§) + ag(AN, N)}

= —ﬁg(AV§Y, f)’ (56)

where we used {8 =0 in (3.7).
Then we can take Y = (AN)T in g(AV¢Y,&) = 0 in (5.6). Then first,
by (3.6), we have

AV (AN)T = A{q(§)JAN — AS¢ — g(q(€)JAN — ASE, N)N'} 4+ g(AN, N)ASE.
Then, from this and (5.7) it follows that
0= g(AV¢(AN)T &) = 2ag(JAN, A¢) — g(S¢,€) + ag(AN, N)g(AE, )
=20 —a— B2a=a(l - p%). (5.7)

Then from (5.7) on the open subset W, we have 32 = 1. This means that
B =—cos2t =1or f = —cos2t = —1 if the Reeb function « is non-vanishing.
Since the function § = g(AE, &) = — cos2t as in Section 3, we have, respectively,
t =% ort=0. But in Lemma 3.1, (ii), in Section 3, we know that 0 <t < 7.
So we have only ¢ = 0, and the unit normal vector field N becomes 2-principal,
that is, AN = N. Then including the case of vanishing Reeb curvature a;, we can

prove the following

Lemma 5.2. Let M be a Hopf real hypersurface in the complex hyperbolic
quadric Q™*, m > 3, with parallel structure Jacobi operator. Then the unit
normal vector field N is 2-principal or 21-isotropic.

PRrROOF. When the Reeb function « is non-vanishing, we have shown that the
unit normal NN is 2f-isotropic or 2-principal according to the function g = 0 of
B = —1, respectively. When the Reeb function « identically vanishes, let us show
that NV is RA-isotropic or XA-principal. In order to do this, from the condition of
the hypersurface being Hopf, we can differentiate S¢ = a& and use the equation
of Codazzi in Section 3, then we get the formula

Ya= (a)n(Y) —29(§, AN)g(Y, AE) +29(Y, AN)g(§, AS).

From the assumption of & = 0 combined with the fact g(¢, AN) = 0 proved in
Section 3, we deduce g(Y, AN)g(&, A§) =0 for any Y € T,M, p € M. This gives
that the vector AN is normal, that is, AN = g(AN, N)N or g(A&, &) = 0, which
implies that the unit normal N is 2-principal or 2-isotropic, respectively. This
completes the proof of our Lemma. O
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By virtue of Lemma 5.2, we can consider two classes of real hypersurfaces
in complex hyperbolic quadric Q™* with parallel structure Jacobi operator: with
2A-principal unit normal vector field N or otherwise, with 2l-isotropic unit normal
vector field V. We will consider each case in Sections 6 and 7, respectively.

6. Parallel structure Jacobi operator with 2(-principal
normal vector field

In this section, we consider a real Hopf hypersurface M in the complex hyper-
bolic quadric Q™" = SOg,m /S0250,, with 2-principal unit normal vector field.
Then the unit normal vector field N satisfies AN = N for a complex conjugation
A € 2. Then it follows that A = —¢ and g(AE, &) = 5= —1.

Then the structure Jacobi operator R¢ is given by

Re(X) = =X 4+ 2n(X)§ + AX +g(5¢,£)5X — g(SX, §)S¢. (6.1)
Since we assume that M is Hopf, (6.1) becomes
Re(X) = —X +2n(X)é + AX + aSX — o’n(X)E. (6.2)

By the assumption of the structure Jacobi operator R¢ being parallel, the
derivative of R¢ along any tangent vector field Y on M is given by

0= (VyRe)(X) = Vy(Re(X)) — Re(Vy X)
=2{(Vyn)(X)E + n(X)Vy&} + (Vy )X + (Ya)SX
+a(Vy8)X = (Ya?)n(X)E — a®(Vyn)(X)E — a®n(X) Vy . (6.3)

Then it follows that

(VyA)X = Vy(AX) — AVy X = Vy(AX) — o(Y,AX) — AVy X
= (VyA)X + A{Vy X +a(Y,X)} —o(Y, AX) — AVy X
=q(Y)JAX + Ac(Y, X) — o(Y, AX)
=q(Y)JAX + g(SX,Y)AN — g(SY, AX)N, (6.4)

where we used the Gauss and Weingarten formulae. From this, together with (6.3)
and using the notion of 2A-principal, we have
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0= (VyRe)(X) = (2= ) {(Vyn)(X)€ + n(X)VyE}
+{q(Y)JAX + g(SX,Y)N — g(SY, AX)N}
+(Ya)SX +a(VyS)X — (Yo )n(X)E. (6.5)

From this, taking the inner product of (6.5) with the unit -principal normal
vector field IV, that is, AN = N, we have

q(Y)g(JAX,N) + g(SX,Y) — g(SY, AX) = 0.

Since A = —¢, the formula g(JAX,N) = g(4X,€§) = —n(X) holds. Then we
have

—q(Y)¢+ SY — ASY =0.
By putting Y = £ and using the assumption of M being Hopf, we have
a(¢) = 2a. (6.6)

Putting X = ¢ into (6.5), and using (6.6) and Lemma 4.2 for the Reeb function
a = g(S¢,§), it follows that

0= (2—a?)Vy&+{2an(Y)JAE+2an(Y)N}+a(Vy S)E = 20SY—aS¢SY, (6.7)
where we used ¢(Y) = g(SY — ASY, &) = 2an(Y) and the following:
(VyS)E =Vy (58 — SVyE& =aVy€& — SoSY = apSY — S¢SY. (6.8)

If we put SY = \Y, Y € C = [¢]+, where Y is orthogonal to the Reeb vector
field &, then (6.7) gives

220Y = aASeY. (6.9)

Here we can show that the principal curvature A identically vanishes on M.
In fact, if we assume that there is a principal curvature vector field Y € C such
that SY = AY, A # 0, then (6.9) yields o # 0 and

Sov = 24y, (6.10)
«
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But by Lemma 4.1, we know that S¢Y = oY, p = g))\‘:i for SY = Y.
From this, together with (6.10), it follows that a? — 4 = 0, which implies o = 4-2
and A = 1. Then the expression of the shape operator S of M in Q™ satisfies

@ 0 0 0 0 0]

00 0 0 0

: 0

S=10 0 0 0 0

00 0 0 0 0

00 0 0 0 0]

or ~

+2 0 0 0 0 07

0 +1 0 0 0
. oo 0
S=10 0 0 =41 0
0 0 0 0 =+1 0
L0 0 0 0 0 - +1]

This gives SY = an(Y)¢ for any tangent vector field Y on M, where 7 is an 1-form
corresponding to the Reeb vector field £, or otherwise, M is totally n-umbilical,
that is, S = n®& + Iy, where Iy, denotes the identity transformation on the
tangent space T,M, p € M, in the complex hyperbolic quadric Q™*. This gives
S¢ = 0 and ¢S = 0, thus, in any case, the shape operator S commutes with
the structure tensor ¢. Then by Theorem B in the Introduction, M is locally
congruent to a horosphere or a tube over a totally geodesic complex hyperbolic
space CH* in Q2" m = 2k. That is, the Reeb flow on M is isometric.

On the other hand, we want to introduce the following proposition (see
[Suh18]).

Proposition 6.1. Let M be a real Hopf hypersurface in the complex hy-
perbolic quadric Q™*, m > 3, with isometric Reeb flow. Then the unit normal
vector field N is 2A-isotropic everywhere.

By Proposition 6.1, we know that the unit normal vector field N of M is
2A-isotropic, not A-principal. This rules out the existence of a real hypersurface in
the complex hyperbolic quadric Q™*, m > 3, with parallel structure Jacobi field
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and QA-principal unit normal vector field N. Accordingly, such an 2-principal case
for parallel structure Jacobi operator never happens. So we give a proof of our
main theorem with 2A-principal unit normal N.

7. Parallel structure Jacobi operator with 2(-isotropic
normal vector field

In this section, we assume that the unit normal vector field N of a real
hypersurface M in the complex hyperbolic quadric Q™" = SOS}m /50550, is
2A-isotropic. Then the normal vector field N can be written as

1
V2
for Z1,7Z5 € V(A), where V(A) denotes the +1-eigenspace of the complex con-

jugation A € 2. Here we note that Z; and Zs are orthonormal, i.e., we have
| Z1|| = | Z2]] = 1 and Z; LZ5. Then it follows that

N (Zy + J Zs)

1 1
AN = —(Z, —JZ5), AJN = ——
ﬁ( ! 2) 2

Then it gives that

1
(JZl-l-ZQ), and JN:72(J21—Z2)

N

g(¢. A) = g(JN,AJN) =0, g(§,AN)=0 and g(AN,N)=0.

By virtue of these formulas for 2-isotropic unit normal vector field, the structure
Jacobi operator is given by

Re(X) = R(X,§)¢ = — X +n(X)§ + g(AX, £ AS
+ g(JAX,§)JAE + g(SE,£)SX — g(SX, €8¢ (7.1)

On the other hand, we know that JA¢ = —JAJN = AJ?N = —AN, and
g(JAX,§) = —g(AX,JE) = —g(AX, N). Now the structure Jacobi operator Ry
can be rearranged as follows:

Re(X) = =X +n(X)¢ + g(AX, €)AE + g(X, AN)AN + aSX — o®n(X)¢. (7.2)

Differentiating (7.2), we obtain
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(VyRe)X = Vy (Re(X)) — Re(Vy X)
= (Vyn)(X)€ +n(X)Vy €+ g(X, Vy (A)) AL + g(X, A Vy (AL)
+ g(X,Vy(AN))AN + g(X, AN)Vy (AN) + (Ya)SX
+a(Vy9)X — (Ya?)n(X)E — o (Vyn)(X)E — *n(X)VyE. (7.3)

Here let us use the equation of Gauss and Weingarten formula as follows:

Vy (A8) = Vy (AE) — o (Y, Af) = (Vy A) + AVyE — a(Y) AE)
= q(Y)JAE + A{pSY +n(SY)N} — g(SY, AE)N,
and
Vy(AN) = Vy(AN) — o(Y,AN) = (Vy A)N + AVy N — o(Y, AN)
=q(Y)JAN — ASY — g(SY, AN)N.

Substituting these formulas into (7.3) and using the assumption of parallel

structure Jacobi operator, we have

0= (VyRe)X = g(¢SY, X)E +n(X)pSY + {q(Y)g(A¢, X) + g(ApSY, X)
+9(SY,§)g(AN, X) AL + g(X, AH{q(Y)JAE + ApSY + g(SY, §)AN
— g(SY, AN} + {q(Y)g(X, AN) — g(X, ASY)} AN
+9(X, AN){q(Y)JAN — ASY — g(SY, AN)N} + (Ya)SX
+a(Vy8)X = (Ya?)(X)E — a®g(4SY, X )€ — a®n(X)¢SY. (7.4)

From this, taking the inner product of (7.4) with the Reeb vector field £, we have

0= g(¢SY, X) + g(X, A)g(ApSY,§) — g(X, AN)g(ASY, §)
+ (Ya)an(X) + ag((VyS)X, &) — (Yo )n(X) — a?g(¢SY, X). (7.5

Here by the assumption of M being Hopf, we can use the following:
(VyS)E = Vy (5€) — S(Vy) = (Ya)i + agSY — S¢SY.
Then it follows that

ag((VyS)X, &) = gla(Ya)é + a?¢pSY — aS¢SY, X). (7.6)
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Taking the inner product of (7.4) with the unit normal N, it follows that

0 =g(X, A8)g(ApSY,N) — g(X, A§)g(SY, Af)
—g(X,AN)g(ASY, N)g(X, AN)g(SY, AN). (7.7)

From this, putting X = AN and using that N is 2-isotropic, we have SAN = 0.
This also gives SpAE = 0.
On the other hand, g(SY, A¢) in (7.4) becomes

9(SY, A€) = —g(SY, ATN) = ¢(SY, JAN)
= g(SY, AN +n(AN)N) = —g(A$SY, N).

Substituting this term into (7.7) gives SpAN = 0. Summing up these formulas,
we can write

SAE =0, SAN =0, S¢Ac=0, and SHAN =0. (7.8)

Taking the inner product of (7.4) with the Reeb vector field £, and using (7.6),
(7.8), we have
dSY = aS¢SY. (7.9)

Now we consider the two cases that either a(p) = 0 or a(p) # 0. That is,
we consider two open subsets in M given by U = {p € M|a(p) # 0} and V =
Int(M —U), where “Int” denotes the interior of the given set.

For the first case on the open subset ¥V with the Reeb function « vanishing,
(7.9) gives ¢SY = 0, which implies SY = an(Y)¢ = 0 for any vector field Y,
that is, M is totally geodesic. Then by putting X = £ into the equation of
Codazzi in Section 3 for 2A-isotropic unit normal vector field N and using M is
totally geodesic, we have

0=—g(@Y,Z) +g(Y,AN)g(AE, Z) + g(Y, A§)g(J AE, Z).

Then for any vector fields Y, Z € Q, where Y, Z are orthogonal to the vector fields
A€ and AN, we have g(¢Y, Z) = 0, which gives a contradiction. So such an open
subset V cannot exist.

Then naturally, we may consider the case that &/ = M, where U denotes the
closure of the set &/. Then the Reeb function o # 0 on Y. Now let us continue
our discussion on the open subset U.

On the distribution Q, let us introduce a formula mentioned in Section 3 as
follows:

250SY — a(pS + So)Y = —2¢Y, (7.10)
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for any tangent vector field Y on M in @™*. So if SY = AY in (7.10) and
(2A — a), # 0, then (2A — a)SPY = (aX — 2)¢Y, which gives

al —2

Y:
5o 2\ — «

&Y. (7.11)

Here if (2X\ — ), = 0, then (aX — 2), = 0, which implies a® — 4 = 0. That is,
o = £2. Then A = +1.
By (7.9) and (7.10), we know that

2+ a?
«

$SY — aS¢Y = —24Y.

From this, putting SY = \Y and using (7.11), we know that

2A+a2X -2 A—2
Sgby:_#qf)y:a
o 2\ —«

Y. (7.12)
Then by a straightforward calculation, we get the following equation:

M(a? +2)\ = 3a} = 0.

This means A = 0 or A = =3%;. When A = 0, by (7.12), S¢Y = 2¢Y. Then

a?+2°

% = Of;‘j‘_? which gives a? — 4 = 0. In such a case, we may put a = 2.
Now we assume that the other principal curvature is aﬁ—i‘Q Then we denote
the principal curvature ag’—f‘ﬂ by the function . Then the function v becomes

~v =1 for the case o = 2. Accordingly, the shape operator S can be expressed as

a 0 0 0 00 -~ 0
0000 0 0 -~ 0
0000 0 0 -~ 0
00 0 ~ 0 0 -~ 0

S = :

0000 v 0 0
0000 0 0
00 0 0 0 0 7]
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or _ _
20 0 0 00 -0
0000 00 -0
0000 00 - 0
00 0 1 00 - 0
S = :
0000 1 0 0
0000 1 0
0 00 0 0 0 1

In the above expressions, if the principal curvatures of real hypersurface in the
complex hyperbolic quadric Q™" with parallel structure Jacobi operator and
2-principal unit normal vector field satisfy a = 2, 0, A = 1, and p = 1 with
the multiplicities 1, 2, (m — 2) and (m — 2), respectively, then by a theorem due
to Suh [Suh18], M is locally congruent to a horosphere. However, if we put A = 1
and o = 2 in (7.9), and using the commutativity S¢ = ¢S of the horosphere,
we know that ¢Y = 2¢Y, which gives a contradiction. So this case does not
appear in the complex hyperbolic quadric Q™ with parallel structure Jacobi
operator.

Now let us consider the principal curvature v such that SY = ~Y in the
formula (7.9). Then (7.9) gives that v¢Y = ayS¢Y. From this, together with
the expression for S, we have

SoY = oY = Loy = Loy,
ay @

Then 1 = ay = (f’%fg This gives & = 1 and v = 1 in the above expression. This
means that the shape operator S commutes with the structure tensor ¢. Then
by virtue of Theorem B in the Introduction, M is a tube over a totally geodesic
CH?" or a horosphere. Their principal curvatures are given by 2coth2r, 0 and
cothr and tanhr or otherwise 2, 0, 1 and 1 with respective multiplicities 1, 2,
(m—2) and (m—2). So these type of tubes do not satisfy the above expression of
the shape operator. Accordingly, we also conclude that any real hypersurfaces M
in Q™" with 2(-isotropic unit normal vector field and non-vanishing Reeb function
« do not admit a parallel structure Jacobi operator.

Finally, we consider a point p such that a(p) = 0 but the point p is the limit

of a sequence of points where a(p) # 0. Such a sequence will have an infinite
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subsequence which does not admit a parallel structure Jacobi operator. Then by
the continuity, we have the same conclusion as above.

Remark 7.1. In [Suhl5-2], we classified real hypersurfacees M in complex
quadric @™ with parallel Ricci tensor, according to whether the unit normal N
is ™U-principal or A-isotropic. When N is 2-principal, we proved a non-existence
property for Hopf hypersurfaces in Q™. For a Hopf real hypersurface M in Q™
with 2e-isotropic, we gave a complete classification that it has three distinct con-
stant principal curvatures.
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