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New inequalities of Fejér—Jackson-type

By HORST ALZER (Waldbrél) and MAN KAM KWONG (Hunghom)

Abstract. The classical Fejér—Jackson inequality states that for n > 0 and
€ [0, ],

n

Z sin gf +11 ) Z 0.
k=0 +

Here, we present an extension and a counterpart of this result. We prove that the
inequalities

are valid for all integers ¢ > 1, n > 0, and real numbers z € [0, 7].

1. Introduction

A classical result in the theory of trigonometric polynomials states that

Fn(x)zis‘in(gfllmzo (nelNo={0,1,2,.},0<z<x). (L1
k=0

In 1910, Fejér conjectured the validity of (1.1), and one year later JACKSON [§]
published the first proof. The inequality of Fejér—Jackson motivated the work
of many mathematicians, who discovered numerous new proofs and various ex-
tensions, refinements and interesting related results. Inequalities for trigono-
metric polynomials have remarkable applications in geometric function theory,
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in the theory of absolutely monotonic functions and other branches. For de-
tailed information on this subject, we refer to ALZER and KOUMANDOS [1],
ASKEY [2], ASKEY and GASPER [3], DIMITROV and MERLO [6], KOUMANDOS [10],
MILOVANOVIC et al. [13, Chapter 4], and the references cited therein.

From (1.1), we obtain

((2 Dz
sin((2k+ D) (meNy, 0<z<m). (1.2)

(F2n()+F2n7T_x :Z 2]€+1 =

N |

In 1974, ASKEY and STEINIG [4] presented two elegant companions of (1.1) and
(1.2). In fact, they proved

n .
3k+1
ZMEO (n €Ny, 0 <z <27/3), (1.3)
3k+1
k=0
and
n . 4k 1
= 4]<;+1

see also BROWN and HEWITT [5]. If we replace in (1.1) and (1.3) = by 7 —z, then
we obtain inequalities for alternating sine sums,

- (k4 1)z
Z S+ D) o e Ny, 0 <5 < ), (1.5)
= k+1
and
ksm (3k + 1)x)

With regard to (1.1)—(1.6), it is natural to ask for all positive integers a and b
such that the inequalities

sin((ak + 1)x) ksm (bk + 1)x)
> d 7>
kzo ak+ 1 0 an Z TESEE

are valid for all n > 0 and = € [0,7]. It is the aim of this paper to solve
both problems. In order to prove our theorems, we need some lemmas. They are
collected in the next section. The main results are stated and proved in Section 3.
We conclude the paper with a few remarks given in Section 4.
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2. Lemmas

Our first lemma is known in the literature as comparison principle;
see KOUMANDOS [10] and Kwona [11].

Lemma 1. Let ak, by and ¢ (k=0,1,...,n) be real numbers. If

b b bn,
ak>0 (kzoal,"'an)v 7027122720; (21)
ap ay Qp,
and .
D arer >0 (m=0,1,..,n), (2.2)
k=0
then .
> iy > 0. (2.3)
k=0

PrOOF. Let a,4+1 =1 and b,41 = 0. By summation by parts, we obtain

n n k
b, brpi1 .
bci = LU th op = ajc;. 2.4
kzzo L kzak (ak W Tk Zajc] (2:4)

-0 k41 =0
Applying (2.1), (2.2) and (2.4) reveals that (2.3) is valid. O
We define
A (2, 0) = i cos(ckx) By (5,¢) i sin(ckx) (2.5)
n ) _k:O Ck+17 n ) _k:1 Ck+17 .

n n

- B ykcos(ckz) B (1. c) = .k sin(ckz)
Ao = VG B = S CUTEET e

The following two lemmas provide inequalities for these sums.

Lemma 2. Let ¢ > 1 be an integer. For all natural numbers n and real
numbers x, we have

~ C

An(z,0) 2 d Ap(z,c) 2 :
(z,c) > an (z,0) o)

c
2.
c+1 (2.7)

PRrROOF. Let

" cos(ky)
n\Y, = S R, 0 S S 1).
n(,7) k; et y<1)
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We define
1
a/Ozia bozla 60:1,
1 1+7y
= —— = = — f— = > .
w =17 e=b(7) et cr(y) = cos(ky) (k=>1)
Then,
bk/ak Z bk+1/ak+1 (k‘ Z O) (28)

Let y € R. A result of ROGOSINSKI and SZEGO [14] states that

1 Kceos(ky) &
< E = E . .
0< -+ 2 k1 2 akCr (m € No) (2 9)

N |

Applying (2.8) and (2.9), we conclude from Lemma 1 that

n

0< Zbkck =1+ 1 +7)only, ) (2.10)
k=0

We set v = 1/c and y = cz. Then, (2.10) leads to

1 1 1 c
Az, ) =1+ ~¢plca,1/c)>1— = —— = ,
(z¢) +c¢ (e, 1/c) ¢c 1+1/c c¢+1

and

Ap(z,e) =1+ %d)n(ﬂ' —cx,1/c) > ¢

c+1
This completes the proof of Lemma 2. ([

Lemma 3. Let ¢ > 1 be an integer. For all natural numbers n and real
numbers x, we have

Bo(z,0) < 2T gnd (Buw o) < 2 (2.11)
C &
where o
Si(r) = / hlmt(t)dtz1.85193....
0
PROOF. Let

" sin(k
Oulrn) = T er o<y <),
k=1 v
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First, we show that
©n(y, )] < Si(m) (y €R). (212)

Since
|®n(y7’7)| = ‘Gn(fy/)/)‘ and Gn(y+2ﬂ-a7) = en(yvv)’

it suffices to prove (2.12) for y € [0, 7).
Let y € [0, 7]. We have

" sin(ky)
®n y70 - 677, y7 - . 2.13
0= nw) =13 1Y (213)
Let
a*l b*b()*# ek = cg(y) =sin(ky) (K >1)
k—k, k*k’Y*k(k_‘_,y)a E=Ck\Y) = Y = 1)
Since
bk/ak > bk+1/ak+1 (k' > 1)
and
Zakck = Z smlggky) >0 (meN),
k=1 k=1
we conclude from Lemma 1 that
" ", sin(ky)
> brer =Y s >0. (2.14)
= =kt
Using (2.13), (2.14) and
3 Smg‘:y) < Si(m), (2.15)
k=1
see JACKSON [8], yields
On(y,7) < On(y,0) < Si(m). (2.16)
Let
Gy — & bo = bo(y) = ! Go=1
0—2, 0—07—2(14_7)7 0= 4
- ~ ~ 1 _ _
ak =1,  bp=bi(y)=7—2, & =2al(y) =sin(ky) (k=1)
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We have
bi/ar > bry1/ary1 (k> 0).

Moreover,

2sin(y/2)

M>O (m € N).

2sin(y/2) —

; aCr = % + Z:sin(ky) = % + cos(y/2) — cos((2m +1)y/2)
1
S+

Applying Lemma 1 leads to

P 21+~ — kit
Thus,
1 1
>~ > __ > _Sin). ,
On(y,v) > T > — Si(n) (2.17)

From (2.16) and (2.17), we conclude that (2.12) is valid. It follows that for ¢ > 1
and = € R, we have

Ba(e,0)] = <|On(cz,1/6)| < - Si(r),
and ) .
|B,(z,¢)| = ~1On(m = cz,1/0)| < - Si(m).

The proof of Lemma 3 is complete. O

3. Main results

We are now in a position to answer the questions posed in Section 1.
Moreover, we show that the inequalities (1.3) and (1.6) are valid for all = € [0, 7].

Theorem 1. Let ¢ be a natural number. For all integers n > 0 and real
numbers z € [0, 7], we have

n

Z sin((ck + 1)x) > 0. 3.1)
= ck+1
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PRrOOF. In view of (1.1) and (1.2), we may assume that ¢ > 3. We have
Sp(x,c) =sin(z) A, (z, ¢) + cos(x) By (z, ¢), (3.2)

where A, (z,c) and By, (z,c) are given in (2.5). To prove (3.1), we consider three
cases.

Case 1. 0 <z <m/ec
Since S, (0, ¢) = 0, we suppose that > 0. We have the integral representation

st

2Jo a(t)
where
Pn(t) = pu(t, ¢) = sin((c — 2)t/2) + sin((2¢cn + ¢ + 2)t/2),
and
q(t) = q(t,c) = sin(ct/2).
Let

Un () = up(t,c) = /0 DPr(8)ds

2 2
- (1 —cos((c—2)t/2)) + m(l — cos((2en + ¢+ 2)t/2)),
and .
U(t) = U(t,c) = W

Integration by parts gives for € € (0, z),

Tenll) gy mu' v = up(t)v A zu o
/6 a(t) dt = / n(Ou(t)dt = un(t)o(t)| _ / 2O (1)t
Since
Un(t) >0 and '(t) = —m <0 (0<t<n/o),

we conclude that

“pn(t)
/6 ) dt > up (z)vp () — un(e)v(e) > —upn(€)v(e).

Thus,

T “ pa(t) : -
28, (z,c) = 6£%1+ S dt > 61H1%1+(—un(e)v(e)) =0.
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Case 2. /e <z <m—m/e.
Since = — sin(z)/x is decreasing on (0, 7], we obtain

csin(m/c) > 3sin(w/3) = %\/5

Thus,

sin(x) > sin(w/c) > 32—? (3.3)

Using (2.7), (2.11), (3.2) and (3.3) leads to

> 0.

i .74c — 1.
Sn(%c)zsx/??. c _SI(F)ZO7C 86
2¢c c+1 c c(c+1)

Case 8. m—7/c<x <.
We consider two subcases.

Case 3.1. cis even.
We set © = 7 —y. Then, 0 < y < 7/c. Hence,

0 S Sn(y7c) = Sn(ﬂ- - a:,c) = Sn('r7c)'

Case 3.2. cis odd.
The following method of proof is due to LANDAU [12]. We use induction on n.
We have Sy(z,c) = sin(z) > 0. Let S,,_1(z,¢) > 0. We suppose that S, (z,c)
attains its absolute minimum at xg. Since

n

Sp(m—m/ec,c) =sin(rn/c) Z

k=0

7> 0 and Sp(mc)=0,

we may assume that m — /¢ < xg < w. Then,

0= %Sn(x ) \w=ao = Zcos((ck + D)ag)
k=0
_ sin((¢ — 2)xo/2) + sin((2en + ¢ + 2)x0/2)
2sin(czo/2) '
This gives
sin((2en + ¢ 4 2)x/2) = —sin((c — 2)x0/2),
and

cos((2¢en + ¢+ 2)xg/2) = £ cos((c — 2)xo/2).
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It follows that
sin((en + 1)zg)

= sin((2cn + ¢+ 2)x0/2 — cxp/2)

= sin((2¢n + ¢+ 2)xo/2) cos(cxo/2) — cos((2¢n + ¢ + 2)xo/2) sin(cxo/2)

= —sin((c — 2)x0/2) cos(cxo/2) F cos((c — 2)xo/2) sin(czo/2).
Thus, we obtain

sin((en+1)z) = —sin((c—1)xo) >0 or sin((ecn+1)xo) = sin(zg) > 0. (3.4)

Using the induction hypothesis and (3.4) yields

sin((en 4 1)xo)
en+1
This completes the proof of Theorem 1. O

Sn(xo,c) = S,L_1($0,C) + > 0.

Next, we study the alternating counterpart of Sy, (z, c).

Theorem 2. Let ¢ be a natural number. For all integers n > 0 and real
numbers z € [0, 7], we have

n

Sula,e) = S (1)

k=0

sin((ck + 1)x)
kw > 0. (3.5)

PRrOOF. We consider two cases.

Case 1. ¢ is odd.
Then,

Sn(x,¢) = Sp(m — z,¢).
Applying Theorem 1 reveals that (3.5) is valid for = € [0, 7].

Case 2. c is even.
Since

Sp(z,¢) = Sp(m —x,0),

it suffices to prove (3.5) for « € [0,7/2]. First, let ¢ = 2. By differentiation,
we obtain for z € [0, 7/2),

n

%Sn(:v, 2) =Y (~1)Fcos((2k + 1)) =

k=0
Thus, for x € [0, 7/2],

1+ (=1)"cos(2(n + 1)x)
2 cos(x)

> 0.

S, (x,2) > 5,(0,2) = 0.

Next, let ¢ > 4. We distinguish two subcases.
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Case 2.1. 0 <z < /e
We use induction on n. We have So(x, ¢) = sin(z) > 0. Next, let Sn_l(z,c) > 0.
We suppose that S, (z, ¢) attains its absolute minimum at z;. Since S,(0,¢) =0
and S, (7 /¢, ¢) > 0, we may assume that 0 < 1 < 7/c. Then,

n

0= (,%gn(x, )Nomay = Z(—l)k cos((ck + 1)z1)
k=0
cos((c—2)x1/2) + (=1)" cos((2¢n + ¢ + 2)x1/2)

2 cos(cx1/2)
This leads to
cos((2cn + ¢+ 2)x1/2) = (—=1)" T cos((c — 2)x1/2).
It follows that
sin((2en + ¢ + 2)x1/2) = £sin((c — 2)z1/2).
Thus,

sin((en + 1)xq)
= sin((2¢n + ¢ 4 2)x1/2) cos(cx1 /2) — cos((2en + ¢+ 2)x1/2) sin(cx /2)
= +sin((c—2)x1/2) cos(cx1/2)+(—1)" cos((c—2)x1 /2) sin(cxy /2). (3.6)

Case 2.1.1. n is even.
Then, (3.6) yields

sin((en + 1)z1) =sin((e — 1)x1) >0 or sin((en + 1)a1) =sin(zq) > 0. (3.7)
Using the induction hypothesis and (3.7) gives

- ~ sin((en + 1)x1)

Sn P = Snf 5 0.
(21,¢) 1(x1,0) + ] >

Case 2.1.2. n is odd.
We obtain from (3.6)

sin((en+1)z1) = —sin((c—1)x1) <0 or sin((en+1)zy) = —sin(z;) < 0. (3.8)
From the induction hypothesis and (3.8), we conclude that

- - sin((cn + 1)x1)

Sp(z1,¢) = Sp_1(z1,0) — ] > 0.
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Case 2.2. m/c <z <7/2.
We have

Sp(x,c) = sin(z) Ay (z, ¢) + cos(x) By (z, ¢), (3.9)
with A, (z,¢) and B, (z,c) as defined in (2.6). Applying (2.7), (2.11), (3.9) and

4 2v/2
sin(z) > sin(w/c) > —sin(7/4) = i
c c
gives
~ 2v/2 Si 0.97¢ — 1.86
G0 > V2. _Silm) 0.7 > 0.
¢ c+1 ¢ clc+1)
The proof of Theorem 2 is complete. O
4. Remarks

(i) The sums S, (x,¢) and S, (z, ¢) are connected by the identity

Sn(z,c) + Su(x,c) = 25, /9 (2, 2¢).

(ii) Theorems 1 and 2 state that S, (z,¢) and S, (x,c) are nonnegative on [0, 7].
Do there exist integers ¢ > 1 and m > 0 such that S, (z,co) or Sp(z,¢o) are
nonnegative on a larger interval, that is, on [a, b], where a < 0 or b > 7?7 We show
that the answer is “no”.

By direct computation, we obtain

e 5,(0,¢) =0, S/(0,c) =n—+1;
o Sp(m,e)=0, S, (mc)=—(n+1),if cis even;
o Sp(me)=0, S, (mc)=—1,if cis odd and n is even;
o Sp(me) = Sh(m,c)=Sl(mc) =0, SV(mc)=—>1_o(ck+1)? if cand n
are odd;
and
e 5,(0,¢) =0, S’;(O,c) =1, if n is even;
¢ 5,(0,¢) = 8(0,¢) =8587(0,¢) =0, S"(0,¢) = S$(n+1)(cn +2), if n is odd;
o Sy(m,c) =0, S (7, ¢)=—(n+1),if ¢ is odd;
. gn(ﬂ', c) =0, 5%(77, ¢) = —1, if ¢ and n are even;
o Sp(mc) =8 (m,¢)=8"(m,c)=0, S”(m c)= —5(n+1)(en+2), if ¢ is even

and n is odd.
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(Here, the prime means differentiation with respect to x.) It follows that S, (x, ¢)
and Sy, (z,c) are negative on (—0,0) and (7,7 + ¢), where § > 0 is sufficiently
small.

(iii) An application of Theorems 1 and 2 and Lemma 1 leads to the following
extension of (3.1) and (3.5).

Corollary. Let ¢ be a natural number. If
(ck4+1—-c)ag—1 > (ck+1)ap >0 (k>1),

then, for all integers n > 0 and real numbers z € [0, 7],
Z agsin((ck +1)z) >0 and Z(fl)kak sin((ck + 1)z) > 0.
k=0 k=0

In particular, setting ¢ = 1 and oy = 1/(k + 1) leads to the Fejér-Jackson
inequality (1.1) and its companion (1.5).
(iv) Let ¢ > 1 be an integer. What are the smallest real numbers §. and BC such
that the inequalities

" sin((ck + 1)x) ~ - sin((ck + 1)z)
ot X ot oty 20 4 Bt RV G 2

hold for all n > 1 and z € (0,7)?

So far, only partial answers to this question are known. In 1936, FEJER [7]
proved that B2 = 1/3, and in 1996, KOUMANDOS [9] showed that 84 = 1/4.
If n =1, then

lim ) sin((ck +D2) __jye and  gim S (opyE SRk Do)
a—m £ (ck + 1) sin(z) et (ck + 1) sin(x)
Using these limit relations and Theorems 1 and 2, we conclude that 8. =1 if ¢ is
odd and that Bc = 1. It remains an open problem to determine 3. for even ¢ > 6.
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