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New inequalities of Fejér–Jackson-type

By HORST ALZER (Waldbröl) and MAN KAM KWONG (Hunghom)

Abstract. The classical Fejér–Jackson inequality states that for n ≥ 0 and

x ∈ [0, π],
n∑

k=0

sin((k + 1)x)

k + 1
≥ 0.

Here, we present an extension and a counterpart of this result. We prove that the

inequalities

n∑
k=0

sin((ck + 1)x)

ck + 1
≥ 0 and

n∑
k=0

(−1)k
sin((ck + 1)x)

ck + 1
≥ 0

are valid for all integers c ≥ 1, n ≥ 0, and real numbers x ∈ [0, π].

1. Introduction

A classical result in the theory of trigonometric polynomials states that

Fn(x) =

n∑
k=0

sin((k + 1)x)

k + 1
≥ 0 (n ∈ N0 = {0, 1, 2, ...}, 0 ≤ x ≤ π). (1.1)

In 1910, Fejér conjectured the validity of (1.1), and one year later Jackson [8]

published the first proof. The inequality of Fejér–Jackson motivated the work

of many mathematicians, who discovered numerous new proofs and various ex-

tensions, refinements and interesting related results. Inequalities for trigono-

metric polynomials have remarkable applications in geometric function theory,
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in the theory of absolutely monotonic functions and other branches. For de-

tailed information on this subject, we refer to Alzer and Koumandos [1],

Askey [2], Askey and Gasper [3], Dimitrov and Merlo [6], Koumandos [10],

Milovanović et al. [13, Chapter 4], and the references cited therein.

From (1.1), we obtain

1

2

(
F2n(x) + F2n(π − x)

)
=

n∑
k=0

sin((2k + 1)x)

2k + 1
≥ 0 (n ∈ N0, 0 ≤ x ≤ π). (1.2)

In 1974, Askey and Steinig [4] presented two elegant companions of (1.1) and

(1.2). In fact, they proved

n∑
k=0

sin((3k + 1)x)

3k + 1
≥ 0 (n ∈ N0, 0 ≤ x ≤ 2π/3), (1.3)

and
n∑
k=0

sin((4k + 1)x)

4k + 1
≥ 0 (n ∈ N0, 0 ≤ x ≤ π); (1.4)

see also Brown and Hewitt [5]. If we replace in (1.1) and (1.3) x by π−x, then

we obtain inequalities for alternating sine sums,

n∑
k=0

(−1)k
sin((k + 1)x)

k + 1
≥ 0 (n ∈ N0, 0 ≤ x ≤ π), (1.5)

and
n∑
k=0

(−1)k
sin((3k + 1)x)

3k + 1
≥ 0 (n ∈ N0, π/3 ≤ x ≤ π). (1.6)

With regard to (1.1)–(1.6), it is natural to ask for all positive integers a and b

such that the inequalities

n∑
k=0

sin((ak + 1)x)

ak + 1
≥ 0 and

n∑
k=0

(−1)k
sin((bk + 1)x)

bk + 1
≥ 0

are valid for all n ≥ 0 and x ∈ [0, π]. It is the aim of this paper to solve

both problems. In order to prove our theorems, we need some lemmas. They are

collected in the next section. The main results are stated and proved in Section 3.

We conclude the paper with a few remarks given in Section 4.



New inequalities of Fejér–Jackson-type 111

2. Lemmas

Our first lemma is known in the literature as comparison principle;

see Koumandos [10] and Kwong [11].

Lemma 1. Let ak, bk and ck (k = 0, 1, ..., n) be real numbers. If

ak > 0 (k = 0, 1, . . . , n),
b0
a0
≥ b1
a1
≥ · · · ≥ bn

an
≥ 0, (2.1)

and
m∑
k=0

akck ≥ 0 (m = 0, 1, ..., n), (2.2)

then
n∑
k=0

bkck ≥ 0. (2.3)

Proof. Let an+1 = 1 and bn+1 = 0. By summation by parts, we obtain

n∑
k=0

bkck =

n∑
k=0

σk

(
bk
ak
− bk+1

ak+1

)
with σk =

k∑
j=0

ajcj . (2.4)

Applying (2.1), (2.2) and (2.4) reveals that (2.3) is valid. �

We define

An(x, c) =

n∑
k=0

cos(ckx)

ck + 1
, Bn(x, c) =

n∑
k=1

sin(ckx)

ck + 1
, (2.5)

Ãn(x, c) =

n∑
k=0

(−1)k
cos(ckx)

ck + 1
, B̃n(x, c) =

n∑
k=1

(−1)k
sin(ckx)

ck + 1
. (2.6)

The following two lemmas provide inequalities for these sums.

Lemma 2. Let c ≥ 1 be an integer. For all natural numbers n and real

numbers x, we have

An(x, c) ≥ c

c+ 1
and Ãn(x, c) ≥ c

c+ 1
. (2.7)

Proof. Let

φn(y, γ) =

n∑
k=1

cos(ky)

k + γ
(y ∈ R, 0 ≤ γ ≤ 1).
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We define

a0 =
1

2
, b0 = 1, c0 = 1,

ak =
1

k + 1
, bk = bk(γ) =

1 + γ

k + γ
, ck = ck(y) = cos(ky) (k ≥ 1).

Then,

bk/ak ≥ bk+1/ak+1 (k ≥ 0). (2.8)

Let y ∈ R. A result of Rogosinski and Szegö [14] states that

0 ≤ 1

2
+

m∑
k=1

cos(ky)

k + 1
=

m∑
k=0

akck (m ∈ N0). (2.9)

Applying (2.8) and (2.9), we conclude from Lemma 1 that

0 ≤
n∑
k=0

bkck = 1 + (1 + γ)φn(y, γ). (2.10)

We set γ = 1/c and y = cx. Then, (2.10) leads to

An(x, c) = 1 +
1

c
φn(cx, 1/c) ≥ 1− 1

c
· 1

1 + 1/c
=

c

c+ 1
,

and

Ãn(x, c) = 1 +
1

c
φn(π − cx, 1/c) ≥ c

c+ 1
.

This completes the proof of Lemma 2. �

Lemma 3. Let c ≥ 1 be an integer. For all natural numbers n and real

numbers x, we have

|Bn(x, c)| ≤ Si(π)

c
and |B̃n(x, c)| ≤ Si(π)

c
, (2.11)

where

Si(π) =

∫ π

0

sin(t)

t
dt = 1.85193....

Proof. Let

Θn(y, γ) =

n∑
k=1

sin(ky)

k + γ
(y ∈ R, 0 ≤ γ ≤ 1).
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First, we show that

|Θn(y, γ)| ≤ Si(π) (y ∈ R). (2.12)

Since

|Θn(y, γ)| = |Θn(−y, γ)| and Θn(y + 2π, γ) = Θn(y, γ),

it suffices to prove (2.12) for y ∈ [0, π].

Let y ∈ [0, π]. We have

Θn(y, 0)−Θn(y, γ) = γ

n∑
k=1

sin(ky)

k(k + γ)
. (2.13)

Let

ak =
1

k
, bk = bk(γ) =

1

k(k + γ)
, ck = ck(y) = sin(ky) (k ≥ 1).

Since

bk/ak > bk+1/ak+1 (k ≥ 1)

and
m∑
k=1

akck =

m∑
k=1

sin(ky)

k
≥ 0 (m ∈ N),

we conclude from Lemma 1 that

n∑
k=1

bkck =

n∑
k=1

sin(ky)

k(k + γ)
≥ 0. (2.14)

Using (2.13), (2.14) and
n∑
k=1

sin(ky)

k
≤ Si(π), (2.15)

see Jackson [8], yields

Θn(y, γ) ≤ Θn(y, 0) ≤ Si(π). (2.16)

Let

ã0 =
1

2
, b̃0 = b̃0(γ) =

1

2(1 + γ)
, c̃0 = 1,

ãk = 1, b̃k = b̃k(γ) =
1

k + γ
, c̃k = c̃k(y) = sin(ky) (k ≥ 1).



114 Horst Alzer and Man Kam Kwong

We have

b̃k/ãk ≥ b̃k+1/ãk+1 (k ≥ 0).

Moreover,

m∑
k=0

ãk c̃k =
1

2
+

m∑
k=1

sin(ky) =
1

2
+

cos(y/2)− cos((2m+ 1)y/2)

2 sin(y/2)

≥ 1

2
+

cos(y/2)− 1

2 sin(y/2)
≥ 0 (m ∈ N).

Applying Lemma 1 leads to

0 ≤
n∑
k=0

b̃k c̃k =
1

2(1 + γ)
+

n∑
k=1

sin(ky)

k + γ
.

Thus,

Θn(y, γ) ≥ − 1

2(1 + γ)
≥ −1

2
> −Si(π). (2.17)

From (2.16) and (2.17), we conclude that (2.12) is valid. It follows that for c ≥ 1

and x ∈ R, we have

|Bn(x, c)| = 1

c
|Θn(cx, 1/c)| ≤ 1

c
Si(π),

and

|B̃n(x, c)| = 1

c
|Θn(π − cx, 1/c)| ≤ 1

c
Si(π).

The proof of Lemma 3 is complete. �

3. Main results

We are now in a position to answer the questions posed in Section 1.

Moreover, we show that the inequalities (1.3) and (1.6) are valid for all x ∈ [0, π].

Theorem 1. Let c be a natural number. For all integers n ≥ 0 and real

numbers x ∈ [0, π], we have

Sn(x, c) =

n∑
k=0

sin((ck + 1)x)

ck + 1
≥ 0. (3.1)
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Proof. In view of (1.1) and (1.2), we may assume that c ≥ 3. We have

Sn(x, c) = sin(x)An(x, c) + cos(x)Bn(x, c), (3.2)

where An(x, c) and Bn(x, c) are given in (2.5). To prove (3.1), we consider three

cases.

Case 1. 0 ≤ x ≤ π/c.
Since Sn(0, c) = 0, we suppose that x > 0. We have the integral representation

Sn(x, c) =
1

2

∫ x

0

pn(t)

q(t)
dt,

where

pn(t) = pn(t, c) = sin((c− 2)t/2) + sin((2cn+ c+ 2)t/2),

and

q(t) = q(t, c) = sin(ct/2).

Let

un(t) = un(t, c) =

∫ t

0

pn(s)ds

=
2

c− 2

(
1− cos((c− 2)t/2)

)
+

2

2cn+ c+ 2

(
1− cos((2cn+ c+ 2)t/2)

)
,

and

v(t) = v(t, c) =
1

sin(ct/2)
.

Integration by parts gives for ε ∈ (0, x),∫ x

ε

pn(t)

q(t)
dt =

∫ x

ε

u′n(t)v(t)dt = un(t)v(t)
∣∣∣t=x
t=ε
−
∫ x

ε

un(t)v′(t)dt.

Since

un(t) ≥ 0 and v′(t) = − c cos(ct/2)

2 sin2(ct/2)
≤ 0 (0 < t ≤ π/c),

we conclude that∫ x

ε

pn(t)

q(t)
dt ≥ un(x)vn(x)− un(ε)v(ε) ≥ −un(ε)v(ε).

Thus,

2Sn(x, c) = lim
ε→0+

∫ x

ε

pn(t)

q(t)
dt ≥ lim

ε→0+
(−un(ε)v(ε)) = 0.
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Case 2. π/c < x < π − π/c.
Since x 7→ sin(x)/x is decreasing on (0, π], we obtain

c sin(π/c) ≥ 3 sin(π/3) =
3

2

√
3.

Thus,

sin(x) ≥ sin(π/c) ≥ 3
√

3

2c
. (3.3)

Using (2.7), (2.11), (3.2) and (3.3) leads to

Sn(x, c) ≥ 3
√

3

2c
· c

c+ 1
− Si(π)

c
≥ 0.74c− 1.86

c(c+ 1)
> 0.

Case 3. π − π/c ≤ x ≤ π.

We consider two subcases.

Case 3.1. c is even.

We set x = π − y. Then, 0 ≤ y ≤ π/c. Hence,

0 ≤ Sn(y, c) = Sn(π − x, c) = Sn(x, c).

Case 3.2. c is odd.

The following method of proof is due to Landau [12]. We use induction on n.

We have S0(x, c) = sin(x) ≥ 0. Let Sn−1(x, c) ≥ 0. We suppose that Sn(x, c)

attains its absolute minimum at x0. Since

Sn(π − π/c, c) = sin(π/c)

n∑
k=0

1

ck + 1
> 0 and Sn(π, c) = 0,

we may assume that π − π/c < x0 < π. Then,

0 =
∂

∂x
Sn(x, c)

∣∣∣x=x0
=

n∑
k=0

cos((ck + 1)x0)

=
sin((c− 2)x0/2) + sin((2cn+ c+ 2)x0/2)

2 sin(cx0/2)
.

This gives

sin((2cn+ c+ 2)x0/2) = − sin((c− 2)x0/2),

and

cos((2cn+ c+ 2)x0/2) = ± cos((c− 2)x0/2).
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It follows that

sin((cn+ 1)x0)

= sin((2cn+ c+ 2)x0/2− cx0/2)

= sin((2cn+ c+ 2)x0/2) cos(cx0/2)− cos((2cn+ c+ 2)x0/2) sin(cx0/2)

= − sin((c− 2)x0/2) cos(cx0/2)∓ cos((c− 2)x0/2) sin(cx0/2).

Thus, we obtain

sin((cn+1)x0) = − sin((c−1)x0) > 0 or sin((cn+1)x0) = sin(x0) > 0. (3.4)

Using the induction hypothesis and (3.4) yields

Sn(x0, c) = Sn−1(x0, c) +
sin((cn+ 1)x0)

cn+ 1
> 0.

This completes the proof of Theorem 1. �

Next, we study the alternating counterpart of Sn(x, c).

Theorem 2. Let c be a natural number. For all integers n ≥ 0 and real

numbers x ∈ [0, π], we have

S̃n(x, c) =

n∑
k=0

(−1)k
sin((ck + 1)x)

ck + 1
≥ 0. (3.5)

Proof. We consider two cases.

Case 1. c is odd.

Then,

S̃n(x, c) = Sn(π − x, c).

Applying Theorem 1 reveals that (3.5) is valid for x ∈ [0, π].

Case 2. c is even.

Since

S̃n(x, c) = S̃n(π − x, c),

it suffices to prove (3.5) for x ∈ [0, π/2]. First, let c = 2. By differentiation,

we obtain for x ∈ [0, π/2),

d

dx
S̃n(x, 2) =

n∑
k=0

(−1)k cos((2k + 1)x) =
1 + (−1)n cos(2(n+ 1)x)

2 cos(x)
≥ 0.

Thus, for x ∈ [0, π/2],

S̃n(x, 2) ≥ S̃n(0, 2) = 0.

Next, let c ≥ 4. We distinguish two subcases.
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Case 2.1. 0 ≤ x ≤ π/c.
We use induction on n. We have S̃0(x, c) = sin(x) ≥ 0. Next, let S̃n−1(x, c) ≥ 0.

We suppose that S̃n(x, c) attains its absolute minimum at x1. Since S̃n(0, c) = 0

and S̃n(π/c, c) > 0, we may assume that 0 < x1 < π/c. Then,

0 =
∂

∂x
S̃n(x, c)

∣∣∣x=x1 =

n∑
k=0

(−1)k cos((ck + 1)x1)

=
cos((c− 2)x1/2) + (−1)n cos((2cn+ c+ 2)x1/2)

2 cos(cx1/2)
.

This leads to

cos((2cn+ c+ 2)x1/2) = (−1)n+1 cos((c− 2)x1/2).

It follows that

sin((2cn+ c+ 2)x1/2) = ± sin((c− 2)x1/2).

Thus,

sin((cn+ 1)x1)

= sin((2cn+ c+ 2)x1/2) cos(cx1/2)− cos((2cn+ c+ 2)x1/2) sin(cx1/2)

= ± sin((c−2)x1/2) cos(cx1/2)+(−1)n cos((c−2)x1/2) sin(cx1/2). (3.6)

Case 2.1.1. n is even.

Then, (3.6) yields

sin((cn+ 1)x1) = sin((c− 1)x1) > 0 or sin((cn+ 1)x1) = sin(x1) > 0. (3.7)

Using the induction hypothesis and (3.7) gives

S̃n(x1, c) = S̃n−1(x1, c) +
sin((cn+ 1)x1)

cn+ 1
> 0.

Case 2.1.2. n is odd.

We obtain from (3.6)

sin((cn+1)x1) = − sin((c−1)x1) < 0 or sin((cn+1)x1) = − sin(x1) < 0. (3.8)

From the induction hypothesis and (3.8), we conclude that

S̃n(x1, c) = S̃n−1(x1, c)−
sin((cn+ 1)x1)

cn+ 1
> 0.
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Case 2.2. π/c < x ≤ π/2.

We have

S̃n(x, c) = sin(x)Ãn(x, c) + cos(x)B̃n(x, c), (3.9)

with Ãn(x, c) and B̃n(x, c) as defined in (2.6). Applying (2.7), (2.11), (3.9) and

sin(x) ≥ sin(π/c) ≥ 4

c
sin(π/4) =

2
√

2

c

gives

S̃n(x, c) ≥ 2
√

2

c
· c

c+ 1
− Si(π)

c
≥ 0.97c− 1.86

c(c+ 1)
> 0.

The proof of Theorem 2 is complete. �

4. Remarks

(i) The sums Sn(x, c) and S̃n(x, c) are connected by the identity

Sn(x, c) + S̃n(x, c) = 2S[n/2](x, 2c).

(ii) Theorems 1 and 2 state that Sn(x, c) and S̃n(x, c) are nonnegative on [0, π].

Do there exist integers c0 ≥ 1 and m ≥ 0 such that Sm(x, c0) or S̃m(x, c0) are

nonnegative on a larger interval, that is, on [a, b], where a < 0 or b > π? We show

that the answer is “no”.

By direct computation, we obtain

• Sn(0, c) = 0, S′n(0, c) = n+ 1;

• Sn(π, c) = 0, S′n(π, c) = −(n+ 1), if c is even;

• Sn(π, c) = 0, S′n(π, c) = −1, if c is odd and n is even;

• Sn(π, c) = S′n(π, c) = S′′n(π, c) = 0, S′′′n (π, c) = −
∑n
k=0(ck + 1)2, if c and n

are odd;

and

• S̃n(0, c) = 0, S̃′n(0, c) = 1, if n is even;

• S̃n(0, c) = S̃′n(0, c) = S̃′′n(0, c) = 0, S̃′′′n (0, c) = c
2 (n+ 1)(cn+ 2), if n is odd;

• S̃n(π, c) = 0, S̃′n(π, c) = −(n+ 1), if c is odd;

• S̃n(π, c) = 0, S̃′n(π, c) = −1, if c and n are even;

• S̃n(π, c) = S̃′n(π, c) = S̃′′n(π, c) = 0, S̃′′′n (π, c) = − c
2 (n+1)(cn+2), if c is even

and n is odd.
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(Here, the prime means differentiation with respect to x.) It follows that Sn(x, c)

and S̃n(x, c) are negative on (−δ, 0) and (π, π + δ), where δ > 0 is sufficiently

small.

(iii) An application of Theorems 1 and 2 and Lemma 1 leads to the following

extension of (3.1) and (3.5).

Corollary. Let c be a natural number. If

(ck + 1− c)αk−1 ≥ (ck + 1)αk ≥ 0 (k ≥ 1),

then, for all integers n ≥ 0 and real numbers x ∈ [0, π],

n∑
k=0

αk sin((ck + 1)x) ≥ 0 and

n∑
k=0

(−1)kαk sin((ck + 1)x) ≥ 0.

In particular, setting c = 1 and αk = 1/(k + 1) leads to the Fejér–Jackson

inequality (1.1) and its companion (1.5).

(iv) Let c ≥ 1 be an integer. What are the smallest real numbers βc and β̃c such

that the inequalities

βc +

n∑
k=1

sin((ck + 1)x)

(ck + 1) sin(x)
≥ 0 and β̃c +

n∑
k=1

(−1)k
sin((ck + 1)x)

(ck + 1) sin(x)
≥ 0

hold for all n ≥ 1 and x ∈ (0, π)?

So far, only partial answers to this question are known. In 1936, Fejér [7]

proved that β2 = 1/3, and in 1996, Koumandos [9] showed that β4 = 1/4.

If n = 1, then

lim
x→π

n∑
k=1

sin((ck + 1)x)

(ck + 1) sin(x)
= (−1)c and lim

x→0

n∑
k=1

(−1)k
sin((ck + 1)x)

(ck + 1) sin(x)
= −1.

Using these limit relations and Theorems 1 and 2, we conclude that βc = 1 if c is

odd and that β̃c = 1. It remains an open problem to determine βc for even c ≥ 6.
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