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Composantes isotypiques de pro-p-extensions de corps
de nombres et p-rationalité

By CHRISTIAN MAIRE (Besangon) and MARINE ROUGNANT (Besangon)

Abstract. Let p be a prime number, and let K/k be a finite Galois extension
of number fields with Galois group A of order coprime to p. Let S be a finite set of
non-Archimedean places of k including the set S, of p-adic places, and let Kg be the
maximal pro-p extension of K unramified outside S. Let G := Gs/H be a quotient of
Gs := Gal(Ks/K) on which A acts trivially. Put X := H/[H, H]. In this paper, we
study the ¢-component X' of X for all Q,-irreductible characters ¢ of A, and, in partic-
ular, by assuming the Leopoldt conjecture, we show that for all non-trivial characters ¢,
the Z,[G]-module X% is free if and only if the ¢-component of the Z,-torsion of
Gs/|Gs,Gs] is trivial. We also make a numerical study of the freeness of X¥ in cyclic
extensions K/Q of degree 3 and 4 (by using families of polynomials given by Balady,
Lecacheux, and more recently by Balady and Washington), but also in degree 6 dihedral
extension over Q: the results we get support a recent conjecture of Gras.

Introduction

Dans cet article, nous étudions la structure galoisienne de certaines pro-
p-extensions de corps de nombres a ramification restreinte. Le cadre algébrique
général est le suivant. Soit G un pro-p-groupe de type fini et soit H un sous-groupe
fermé normal de G. Posons G := G/H puis X := H/[H,H], le quotient abélien
maximal de H. Dans [20] le premier auteur étudie la liberté du Z,[G]-module
X suivant les contextes arithmétiques (et la structure du groupe G). Dans ce
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présent article, nous étendons ce travail au cas ou les objets en jeu sont munis
d’une action semi-simple.

Typiquement, soit p un nombre premier et soit K/k une extension galoi-
sienne finie de groupe de Galois A d’ordre étranger a p. Soit S un ensemble fini
de places finies de k contenant I’ensemble des places p-adiques .S,. Notons par
Kgs la pro-p-extension maximale de K non-ramifiée en dehors de S et posons
G = Gk,s = Gal(Kg/K) (lorsque p = 2, nous supposons donc que les éventuelles
places archimédiennes réelles de K restent réelles le long de Kg/K). Soit ensuite
F/K une sous-extension de Kg/K obtenue par compositum avec le corps K d’une
sous-extension galoisienne L/k de kg/k. Posons H = Gal(Kg/F) puis G := G/H.
Le groupe A agit semi-simplement sur X = H/[H,H]. Notons alors par X% la
p-composante de X', ot ici ¢ désigne un caractere Qp-irréductible de A. Comme A
et G commutent, X'¥ peut étre également muni d’une structure de Z,[G]-module.
Dans ce travail, nous regardons a quelle condition le Z,[G]-module X'¥ est libre.
Le résultat que nous obtenons montre que le caractere trivial ¢ = 1 joue un role
bien particulier. En effet, 'obstruction obtenue a la liberté du Z,[G]-module X!
dépend du corps F et du groupe G (retrouvant au passage le résultat principal
de [20]). En revanche, en dehors de ce cas, nous prouvons entre autres le résultat
suivant :

Théoréme A. Supposons la conjecture de Leopoldt vraie. Alors sous les
notations précédentes, pour tout caractére ¢ non-trivial, le module X% est Z,[G]-
libre si et seulement si Torz, (G‘fgs)“{J est trivial. De plus, quand X% ~ Z,[G]%,
onad, = 87, (G%”S)w.

Ici, Torg, (G?(b} S)q’ désigne la ¢-composante de la torsion du Z,-module
G‘fgs := Gk,s/[Gk.s, Gk,s]- Remarquons que le résultat ne dépend pas du choix
du sous-groupe H de Gk, s.

L’objet arithmétique essentiel est donc le Zy-module de torsion Torgz, G‘I’é” 5
Par un théoréme de déploiement (voir [12, Chapitre III, §4, Théoréme 4.1.5]), son
étude se ramene au cas ou S = S,. Le groupe fini ToerGf(’i s, est un profond
objet arithmétique qui mesure 'obstruction au groupe Gk s, a étre pro-p-libre
(sous la conjecture de Leopoldt). Lorsque ce groupe est trivial on dit que le corps
K est p-rationnel (toujours sous la conjecture de Leopoldt).

L’étude des corps p-rationnels a fait ’'objet d’'une grande quantité de travaux :
citons par exemple MOVAHHEDI-NGUYEN [23], GRAS—JAULENT [13]|, JAULENT—
NGUYEN [15], et plus récemment GREENBERG [14], GRAS [8], [9], mais aussi
PITOUN—VARESCON [27] et BARBULESCU-RAY [3], au sujet notamment des heu-
ristiques “a la Cohen-Lenstra” (p est fixé et K varie dans des familles d’extensions
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de signature donnée). On renvoie & [12, Chapitre IV, §3] pour une présentation
détaillée de I’étude des corps p-rationnels.
Récemment, GRAS a émis la conjecture suivante ([11, Conjecture 7.11]) :

Conjecture (Gras). Soit un corps de nombres K. Pour p assez grand, le
corps K est p-rationnel.

Ainsi, le théoreme A associé a la conjecture de Gras indique que pour p assez
grand le module X% est libre (pour tout caractere ¢ # 1 et quand S = Sp).

Le calcul de TorZPG‘f(b’ s, fait intervenir deux quantités dont l'une devient
triviale dés que le p-Sylow du groupe des classes Cl(K) de K est trivial. Lorsque
c’est le cas, le module Torz, G?(lf s, s’identifie a la torsion du quotient des unités des
complétés p-adiques par la fermeture des unités globales. La présence de racines p-
emes de I'unité dans un complété p-adique peut faire apparaitre “trivialement” de
la torsion dans ce dernier quotient. Ainsi, si on s’assure de plus qu’aucun complété
p-adique ne contient de racine d’ordre p (ce qui est toujours le cas dés que p > [K :
Q] + 1), alors I’étude de Torz, G%’i s, ‘serésume” a celle du régulateur normalisé
défini par GRAS [10, Définition 5.1]. Cette observation que 'on trouve déja dans
[12, Chapitre III, §4.14] montre que la liberté de X¥ est propice & une étude
numérique : c’est ce que nous faisons également dans ce travail. Nous utilisons
pour cela des familles de polynémes P données par BALADY [1], LECACHEUX [19]
et BALADY-WASHINGTON [2]. Le corps de décomposition K/Q d'un tel P est
cyclique de degré 3 ou 4 et son groupe des unités est engendré par les racines de P.
A I’exception d’un nombre fini et bien déterminé de nombres premiers p, le test
pour prouver la liberté de X% (en fait sa trivialité pour les situations étudiées ici)
équivaut dans ce cas a vérifier qu'un certain polynome a coefficients entiers n’est
pas nul dans le quotient Z[ X ]/(P, p?). Ce cadre rend les calculs simples et rapides :
il n’est pas nécessaire de passer par le corps de nombres K et donc d’utiliser les
fonctions du corps de classes de PARI/GP. Cela nous permet de tester, pour
quelques corps de ces familles, la liberté de X% pour p < 23 x 107 dans le cas
cubique et pour p < 15 x 107 dans le cas quartique. Nous développons également
cette étude numérique dans une famille d’extensions diédrales de degré 6 (pour
p < 10°). Notons enfin que PITOUN—VARESCON [27] et plus récemment GRAS [9]
ont donné des algorithmes qui déterminent Torz,, G%’i s, en toute généralité ; afin
d’étre complet, nous utilisons ces programmes pour traiter le cas des nombres
premiers mis de coté des le départ.

Notre travail comporte trois sections.
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Dans un premier temps, nous donnons les éléments algébriques essentiels
pour notre étude. Nous nous appuyons en particulier sur le livre de NEUKIRCH—
SCHMIDT-WINGBERG [24, Partie : Algebraic Theory] pour montrer que la suite
exacte a sept termes issue de la suite spectrale de Hochschild—Serre est également
une suite de A-modules. Nous passons alors en revue les applications immédiates
de ce résultat clef, notamment quand G est pro-p-libre ou quand G est de Demu-
shkin.

Nous développons ensuite quelques situations arithmétiques desquelles il res-
sort le théoreme A et ses corollaires.

La troisieme section est dédiée a I’étude numérique dans des familles d’exten-
sions cubiques cycliques, des familles cycliques totalement réelles de degré 4 et des
familles d’extensions diédrales de degré 6. Les tableaux présentant les résultats de
cette étude sont dressés en Appendice. Nous observons alors de facon éclatante
la rareté des nombres premiers pour lesquels X' n’est pas libre, confirmant ainsi
la conjecture de Gras évoquée précédemment.

L’ensemble des calculs ont été effectués a l'aide du logiciel PARI/GP [26].

Notations

Soit p un nombre premier. Si M désigne un Zy-module de type fini, nous
notons par

— rgZpM le Zy-rang de M, i.e la dimension sur Q, de Q, ®z, M ;

— Torz, M, le sous-module de torsion de M ;

M[p] = {x € M, px = 0}, les éléments de p-torsion de M ;

— d,M le nombre minimal de générateurs de M, i.e. la dimension sur F, de
F, ®z, M.
Si de plus M est muni d’une action d’un groupe fini A, nous notons par
— M? le sous-groupe des invariants de M sous laction de A ;
— M les coinvariants de M sous 'action de A.

On étend ces deux dernieres notations au cas ou A est profini avec action
continue de A.

1. Quelques précisions algébriques

Une bonne référence pour une partie des résultats présentés dans cette sec-
tion est le livre de NEUKIRCH, SCHMIDT et WINGBERG [24, Partie “Algebraic
Theory”].
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1.1. Le contexte algébrique.

1.1.1. Généralités. Soient G un pro-p-groupe de type fini, H un sous-groupe
fermé normal de G et le quotient G := G/H. Posons X := H® = H/[H,H].
Soit 'algebre d’Iwasawa complete

Zy[G] = im Z,[G/U],
U

ou la limite projective est prise sur les sous-groupes ouverts normaux U de G.
Notons I I'idéal d’augmentation de Z,[G], c’est le noyau du morphisme d’aug-
mentation :

Ig =ker (Z,[|G] — Z,).

L’algebre Z,[G] est un anneau local d’idéal maximal M¢ := pZ,[G] + I¢ pour
laquelle il vient Z,[G]/Mg ~ F,,.

Lemme 1.1. Le pro-p-groupe abélien X est naturellement muni d’une struc-
ture de Z,[G]-module (d’action continue pour les topologies naturelles sous-
jacentes issues des limites projectives).

Par le lemme de Nakayama topologique (voir par exemple [24, Chapitre V,
§2]), le Z,[G]-module X est de type fini si et seulement si le F,-module X'/M¢
Iest. L’étude de la suite exacte

1 H g G 1

apporte le lemme suivant :

Lemme 1.2. Si I'on suppose finis les groupes de cohomologie H?(G,F,) et
HY(G,F,), alors le Z,|G]-module X est de type fini.

Remarque 1.53. Dans nos contextes arithmétiques on aura G = Gk g, et ces
groupes sont bien de présentations finies (voir par exemple [16, Chapter 11],
[24, Chapter X, §7] ou encore [12, Annexe]).

1.1.2. Action semi-simple. Soit A un groupe fini d’ordre premier & p. L’algebre
Zp[A] est munie d'un systeme fondamental d’idempotents orthogonaux (e, ),
¢ parcourant l'ensemble Irr(A,Q,) des caractéres Qp-irréductibles de A. Si ¢
désigne un caractere Q,-irréductible de A, nous notons par M¥ := e, M la -
composante de M. Soient 1 le caractere trivial puis Irr®* (A, Q,) = Irr(A, Q,)\{1},
I’ensemble des Q,-caracteres irréductibles et non-triviaux de A.
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Notons que M2 = M?'; la décomposition de M suivant les caracteres
irréductibles nous indique que M“ = {0} si et seulement si Ma = {0}. Pour
plus de détails, voir par exemple [5].

A présent, on suppose que A est un sous-groupe du groupe des automor-
phismes (continus) d’un pro-p-groupe de type fini G. Notons par G(A) la cloture
lo(g),g€ G, o€ A, et
posons Ga = G/G(A). Ainsi, Ga est le plus grand quotient de G sur lequel A
agit trivialement. Soit le produit semi-direct I' := A x G induit par l'action de A

normale dans G du groupe engendré par les élements g~

sur G.

Proposition 1.4 (Wingberg). On a Ga ~ I'(p), ouT'(p) est le pro-p-quotient
maximal de T'. De plus, H'(Ga,F,) ~ H(G)? et H*(Ga,F,) — H*(G,F,)?. En
particulier Ga est pro-p-libre dés que H?(G,F,)* = {0}.

DEMONSTRATION. Voir [34, Lemme 2] (la preuve y est donnée quand A est
d’ordre 2 mais elle reste valable des que A est d’ordre premier a p). Voir également
[32, Proposition 1.4]. O

Lorsque G est de Demushkin (pour un rappel sur les groupes de Demushkin
voir par exemple [24, Chapitre III, §9]), on a méme plus :

Proposition 1.5 (Wingberg). Supposons G de Demushkin de dimension
cohomologique stricte 2. Alors H*(Ga,F,) ~ H?*(G,F,)?. Si de plus H*(G,F,)"
n’est pas trivial, le quotient Ga est également de Demushkin.

DEMONSTRATION. Voir [32, proposition 2.2] (ici il est inutile de se restreindre
a la condition ou A est d’ordre 2). (]

Pour toute la suite, on prend H un sous-groupe fermé normal de G conte-
nant G(A) pour la raison suivante : le groupe A agit trivialement sur le quotient
Ga — G/H := G. Ainsi comme G et A commutent, le Z,-module X = H/[H,H]
hérite d’une structure de Z,[G]-module, de type fini si X I'est. Traitons le ca-
ractere trivial.

Proposition 1.6. Pour H = G(A), il vient X! = {0}.

DEMONSTRATION. En effet, supposons que X' n’est pas trivial. Alors il
existe un sous-groupe normal Hy de G, sous-groupe strict de G(A), tel que A
agisse trivialement sur le quotient G’ := G(A)/H, (on peut par exemple s’assurer
que |G'| = p) : cela repose sur le fait que le pro-p-groupe Ga agit sur le pro-
p-groupe XL, Posons G = G/H, et regardons I'action de A sur G. Soit o € A
d’ordre n # 1, et soit g € G. Alors o(g) = gh avec h € G'. Or o(h) = h. Ainsi
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g = c™(g) = gh™ et par conséquent h™ = 1. Comme G’ est un p-groupe, il vient
que h = 1 et donc o(g) = g. On vient ainsi de montrer que le groupe A agit
trivialement sur un quotient de G contenant strictement Ga, ce qui contredit la
maximalité de Ga. U

Terminons ce paragraphe par une premiere réduction possible quand ¢ €
Irr*(A,Q,) : par la proposition suivante, 'étude de la p-composante X% pour
un tel ¢ est réduite a la situation o G = Ga. Conservons le contexte de la
section 1.1.2.

Proposition 1.7. Soient H, < Hs deux sous-groupes normaux fermés de G
contenant G(A). Pour i = 1,2, soient les quotients G; = G/H;. Posons X; = H$®
puis H := Hgy/H1. Alors pour tout caractére ¢ € Irr*(A,Q,), il vient Iisomor-
phisme de Z,[G2]-module : (X1 g)? ~ XS . En particulier, si X{ est Z,[G1]-libre,
il en est de méme pour X3 en tant que Z,|G2]-module.

DEMONSTRATION. On part de la suite exacte 1 —> H; —> Ho — H — 1
qui devient

HHl(H,ZP) Xl,H XQ Ha‘b 1.

Il suffit ensuite de prendre les ¢-composantes et d’utiliser le fait que A agit
trivialement sur le quotient H et donc aussi sur Hy(H,Z,) et sur H. O

1.2. Suite spectrale a sept termes. Le point de départ algébrique de notre
étude est, comme dans [20], la suite exacte & sept termes issue de la suite spectrale
de Hochschild-Serre que I'on peut trouver dans [24, Chapitre II, §2, exercice 5].

Proposition 1.8. Soit G un pro-p-groupe de type fini et soit H un sous-
groupe de G, distingué et fermé. On note G le quotient de G par H et on suppose
que le groupe de cohomologie H*(H,Q,/Zy) est trivial. Alors on a la suite exacte
d’homologie :

H3(G,Z,) — H1(G, H*™) — H>(G,Z,) (1)

|

Hy (G, Z,) — (X%®)g — G — G

La nouveauté ici consiste & regarder la suite exacte (1) dans le contexte d’une
action semi-simple de A, en supposant que G(A) < H. Rappelons que 1'on note
le quotient G := G/H.
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Proposition 1.9. Conservons le contexte de la proposition 1.8 et supposons
H?*(G,Q,/Z,) et H*(H,Q,/Z,) triviaux. Alors la suite exacte (1) est également
une suite exacte de Z,|[A]-modules.

DEMONSTRATION. Sous I'hypothese H?(G, Q,/Z,) = {0} la suite exacte (1)
se scinde en deux suites exactes :

HY(G,Qp/Zy)— H'(G,Qp/Zy) — H'(H,Qp/Z,)" —» H*(G,Qy/Zy), (2)

HY (G, HY(H,Qy/Zp)) — H*(G,Qp/Zy). 3)

L’action de o € A commute avec les applications inflation et restriction, donc
avec les deux premiers morphismes de la suite exacte (2). Il nous reste & prouver
que P’action de o commute aussi avec la transgression (ce qui montrera également
que o commute avec le morphisme de la suite exacte (3)). La fin de la preuve
est inspirée de [24, Chapitre I, §6, exercice 3]. Soit A un G-module (discret). On
définit le G-module A; par la suite exacte

0— A—Indg(A) — A1 — 0,

ot Indg(A) est le module induit de A. On a alors la suite exacte longue de
cohomologie

0 — A" —— Indg(A)"* — A} — HY(H, A) — H*(H,Indg(A)) = {0}
que l'on coupe en deux en notant B I'image de Indg(A)* dans A7 :

0— A" — Indg(A)"* — B—0, (4)

0 B AH HY(H,A) —0. (5)

Soit maintenant n > 1. La suite exacte (4) donne
H™(G,Indg(A)*) — H™(G, B) — H"TY(G, A™) — H""1(G,Indg(A)") ,
ot les termes H"(G,Indg(A)") et H"*1(G,Indg(A)*) sont triviaux puisque
Indg(A)* est un G-module induit. Finalement le d-morphisme de connexion
§': H™(G,B) — H"(G, A™)
est un isomorphisme. Sa composée avec le §-morphisme
§": H"'(G,H"(M,A)) — H"(G, B)

obtenu & partir de la suite exacte (5) est, d’apres [24, Chapitre II, §1, exercice 3],
le morphisme dg_l’l associé a la suite spectrale de Hochschild—Serre. Comme
I’action de o commute avec les d-morphismes de connexion, elle commute avec les

. 1,1 - .
morphismes dy " et donc en particulier avec la transgression. ([l
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1.3. Liberté des p-composantes.

1.3.1. Résultat préparatoire. Soit G un pro-p-groupe de type fini et soit A un
groupe fini d’ordre premier & p. On se donne un Z,[G][A]-module Y de type fini
sur lequel les actions de G et A commutent.

Proposition 1.10. Pour tout caractere irréductible ¢ de A, on a I’isomor-
phisme de A-modules : Hi(G,Y¥) ~ H1(G,Y)¥.

DEMONSTRATION. Commencons par le lemme suivant :

Lemme 1.11. Sous les conditions précédentes, on a I’isomorphisme de
A-modules : (Ya)? ~ (Y¥?)q. On notera par Y ce A-module.

DEMONSTRATION. Cela repose sur le fait que les actions de G et de A com-
mutent. [l

Soit une présentation minimale du Z,[G x A]-module Y :

1 R F Y 1, (6)

ou F ~ Z,[]G x A]". Pour ¢ un caractére irréductible de A, on projette la
présentation de ) sur les p-composantes pour obtenir :

1 — RY — F¥ —— ¥ 1, (7)
ou ici F¥ est Z,[G]-libre. La suite exacte (7) donne la suite exacte longue d’ho-
mologie :

1 — Hy(G, V%) — Ho(G, R?) — Ho(G, F¥) — Ho(G,V?) — 1. (8)

(R*)c (F?)a Y¥)a

D’autre part, la G-homologie de (6) et les projections sur les ¢-composantes

donnent :
1— H1(G,Y)? — Hy(G, R)Y — Hy(G,F)¥ — Hy(G,Y)? — 1. (9)
(Rg)? (Fa)# Ya)#
Le résultat se déduit des suites exactes (8) et (9) associées au lemme 1.11. O

Corollaire 1.12. Pour ¢ € Irr(A,Q,), le Z,[G]-module Y¥ est libre si et
seulement si les deux conditions suivantes sont satisfaites :

(i) H1(G, )% est trivial;
(i) Y& est Z,-libre.
DEMONSTRATION. Il est bien connu qu'un Z,[G]-module M de type fini est

libre si et seulement si Hy(G, M) est trivial et Mg est sans p-torsion. Il suffit
alors simplement d’utiliser la proposition 1.10. O
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1.3.2. Un premier résultat et quelques conséquences. Revenons au contexte de
la section 1.1.2 et donnons une extension du résultat de [20] (voir aussi [24, Cha-
pitre V, §6]) :

Théoréme 1.13. Soit G un pro-p-groupe de présentation finie et soit A un
sous-groupe fini d’ordre premier a p du groupe des automorphismes de G. Soit
‘H un sous-groupe fermé normal de G contenant G(A) ; posons X = H/[H,H] et
G=G/H.

Supposons Ha(H,Z,) et Hao(G,Z,) triviaux et fixons un caractére Q-
irréductible ¢ de A.

(i) Pour ¢ # 1, le Z,,[G]-module X¥ est libre si et seulement si le groupe (G)%?
est sans Zy-torsion et, dans ce cas, X¥ est de Z[G]-rang d, = rgy_ (Gb)».
(ii) Pour ¢ = 1, supposons de plus G de dimension cohomologique cd(G) au

plus 2. Alors X' est Z,[G]-libre dés que le morphisme Torz, (G**)' — G

est injectif, et, dans ce cas, X! est de Z,|G]-rang

dy = dyHy(G,Fy) — dpG +1gg (G*)".

Remarque 1.1j. Lorsque Y ~ Z,[G]", lentier ¢ est unique. On l'appelle le
Zy[G]-rang de Y.

DEMONSTRATION. Supposons ¢ # 1. Par hypothese, le groupe A agit trivia-
lement sur G et ainsi les p-composantes H3(G,Z,)?, Ha(G,Z,)%? et (G™)% sont
triviales. La suite exacte de la proposition 1.8 implique alors

Hy(G,X)% = {0} et X&~(G%)*,

et on conclut grace au corollaire 1.12.

Le cas du caractere trivial se traite de la méme fagon. Sous I’hypothese
cd(G) < 2, le groupe Hs(G,Z,)" est trivial et il en est de méme du groupe
H1(G, X)!. La suite exacte de la proposition 1.8 devient :

0 — Hy(G,Zp) — X& — (G — (G — 0

dont on déduit que le Z,-module X} est sans torsion si et seulement si le mor-
phisme Torz, (G°)' — (G*)! est injectif (car Ha(G,Z,) est sans torsion), et
on peut conclure grace au corollaire 1.12. Les calculs sur les rangs sont ensuite
immédiats. (I

Remarque 1.15. Notre résultat principal peut étre vu comme une réciproque
a la proposition 1.7. En effet, pour ¢ # 1, nous montrons que X'¥ est Z,[G]-libre
pour tout quotient G de Ga si et seulement si X7 est Z-libre o Ay := G en
d’autres termes pour le plus petit quotient de Ga.
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Remarque 1.16. Sous les conditions du théoréme 1.13 et pour H = G(A), on
obtient que H?(Ga,Q,/Z,) est trivial : en effet, dans ce cas, X! = {0}.

Donnons & présent quelques situations immédiates (dans le contexte de la
section 1.1.2).

Corollaire 1.17. Soit G un pro-p-groupe de dimension cohomologique
stricte 2 et soit H un sous-groupe fermé et distingué de G contenant G(A). Soit
Go un sous-groupe ouvert et distingué de G contenant H. Posons G = G/H et
Go = Go/H. Alors pour ¢ € Irt*(A,Qp), le Zy|G]-module X¥ est libre si et
seulement si il I'est en tant que Z,[Go]-module.

DEMONSTRATION. Un sens est immédiat, mais nous allons montrer ce
résultat par équivalence directe. Comme G est de dimension cohomologique
stricte 2, les hypotheses du théoréme 1.13 sont satisfaites et ainsi X'? est Z,[G]-
libre si et seulement si Torg,, (gab)"” est trivial. Il en est de méme de X'¥ en tant
que Z,[Go]-module. Mais ’hypothese sur la dimension cohomologique stricte as-

sure également un isomorphisme entre ToerQ“b et (Toer ggb)g/ Go

induit par le
morphisme de transfert (voir par exemple [24, Chapitre III, Théoréme 3.6.4]).
Ainsi, les p-composantes de Torg, G et de Tornggb sont simultanément nulles

ou non. Le résultat s’en déduit. O

Corollaire 1.18. Soit G un pro-p-groupe libre a d générateurs. Soit H un
sous-groupe fermé et distingué de G contenant G(A). Alors pour ¢ € Irr* (A, Q,),
on a X? ~ 7Z,[G]%, ot d, = rgzp(g“b)“’.

DEMONSTRATION. Immédiat. O

A ce niveau, on peut avancer un résultat un peu plus précis lorsque
H = G(A). Rappelons que si Fy est le pro-p-groupe libre & d générateurs, algebre
Z,[F 4] est isomorphe & 'algebre de Magnus des séries formelles non commutatives
Zy[ X1, .., Xa]™ (voir par exemple [16, Chapitre 7, §7.6]).

Corollaire 1.19. Sous les conditions du théoréme 1.13, prenons H = G(A).
Supposons (G®)¢ et (G)! sans Z,-torsion, ou1 ¢ € Irr* (A, Q,). Alors
nc d
X? ~ (Zp[[Xl,...,Xdﬂﬂ ) “,

ou d, =18y (Gb)%.

DEMONSTRATION. Le théoreme 1.13 indique ici que X'¥ est libre de rang d.,.
De plus, la suite exacte 1 — Z, — Z,, — F,, — 1 apporte la suite exacte de
A-modules
+ = Hy(G,Zy) — Ha(G,Fp) — G*%[p].
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Par hypothese Ha(G,Z,) = {0} et (Q“b[p])Tl = {1}. Ainsi, H2(G,F,)" = {0} et la
proposition 1.4 indique que Ga est pro-p-libre de rang égal au p-rang de (G2°)!,
c’est-a-dire & rgzp(gab)ﬂ. O

Pour le dernier corollaire de cette section, faisons le rappel suivant : un groupe
de Demushkin G est de dimension cohomologique stricte 2 si et seulement si pour
tout sous-groupe ouvert U de G, H*(U,Q,/Z,) = 0, ou encore si et seulement si
Torzpuab # {0}. La derniére équivalence provient de la suite exacte

1l— H2<U7ZP)/p — H2<uan) ‘)uab[p] —1

associée au fait que Ho(U,F,) ~ Z/pZ (pour la premiere équivalence voir par
exemple [30, Chapitre I §3 Proposition 19]). Cette suite exacte indique également
que si G est de dimension cohomologique stricte 2, on a l'isomorphisme de
A-modules :

Hy(G,Fp) ~a G**[p)-

Corollaire 1.20. Soit G un groupe de Demushkin de dimension cohomolo-
gique stricte 2. Soit w le caractére de A résultant de I’action sur Torng“b.

(i) SiGa est pro-p-libre, alors X* est non libre en tant que Z,[Ga]-module et,
pour ¢ # w, X¥ est Z,[Ga]-libre.

(ii) Si Ga est de Demushkin, alors pour tout ¢ € Irr*(A,Qp), on a X¥ =
Zp[[gA]}d*’, avec d, = I8z, (G)%.

DEMONSTRATION. Comme G est de Demushkin de dimension cohomologique
stricte 2, les conditions sur les multiplicateurs de Schur H?*(G, Q,/Z,) = {0} et
H?(H,Qp/Z,) = {0} sont satisfaites pour tout sous-groupe fermé H de G. Suivant
la proposition 1.5, Ga est pro-p-libre si et seulement si H(G,F,)! = {0}. Dans
ce cas w # 1 et X'* n’est pas libre. En revanche les autres p-composantes sont
libres. Dans l'autre cas, H(G,F,)! n’est pas trivial, ainsi w = 1 et X% est libre
pour tout ¢ € Irr* (A, Q,). O

2. Etudes de quelques contextes arithmétiques

Si K désigne un corps de nombres ou un corps local et si p désigne un nombre
premier, on note par py» (K) le groupe des racines de 1'unité d’ordre une puissance
de p contenues dans K.



Composantes isotypiques et p-rationalité 135

2.1. La situation locale. Soit une extension locale K/k de Q,, galoisienne
de groupe de Galois A, d’ordre premier & p. Notons par K la pro-p-extension
maximale de K et posons G = Gal(K/K). Soit I' = A x G. Posons H = G(A),
X = H® G = G/Ga. Le pro-p-groupe G ~ G(p) est isomorphe au groupe de
Galois Gal(k/k) : c’est un pro-p-groupe a [k : Q,] + 1 + dppp= (K) générateurs.
Suivant que k contient les racines p-emes de 'unité ou non, le pro-p-groupe G
est un groupe de Demushkin (de dimension cohomologique stricte 2) ou un pro-
p-groupe libre.

Corollaire 2.1. Supposons que K ne contient pas les racines p-émes de
Iunité. Alors pour tout caractére Qp-irréductible ¢ € Irr®(A,Q,), il vient
X ~ L,y[G]%, avec d, = 1gz, (G*)¢ = deg(p)[k : Qp)-

DEMONSTRATION. Ici G est pro-p-libre, et c’est alors une application
immédiate du corollaire 1.18. a

Supposons maintenant que K contient les racines p-emes ), de 'unité. Alors G
est un groupe de Demushkin et ’on se retrouve dans la situation du corollaire 1.20.
Soit w le caractere de A résultant de I'action sur py,.

Corollaire 2.2. Supposons que K contient les racines p-émes de 1’unité.
(i) Pour ¢ # w et ¢ # 1, il vient X® ~ Z,[G]%, ot d, = deg(¢)[k : Q,].
(ii) Quand w # 1, X¥ n’est pas Z,[G]-libre.
(iii) Quand w =1, X1 = {0}.

DEMONSTRATION. Seuls les caractéres 1 et w sont & discuter. Si w n’est pas
le caractere trivial, c’est le point (i) du corollaire 1.20 qui s’applique. Si w = 1,
cela signifie que G est de Demushkin de dimension cohomologique stricte 2 et
cette fois-ci, c’est le point (ii) qui s’applique. |

2.2. Extensions de corps de nombres.

2.2.1. Rappels. Le contexte que I’on va considérer par la suite est celui des exten-
sions a ramification restreinte. Rappelons les points essentiels pour notre étude.
Soit p un nombre premier.

(i) Soit K un corps de nombres et soit .S un ensemble fini de places finies de
K contenant les places p-adiques. Notons par Kg la pro-p-extension maximale de
K non-ramifiée en dehors de S, et posons Gk s = Gal(Kg/K). Pour une place v
de S, on note par U, le p-Sylow du groupe des unités locales en v. Soit ensuite
Ex = Zp ® Ex le p-adifié du groupe des unités Ex de K. L’ensemble S étant fixé,
on note enfin par ¢ (= tg) le plongement diagonal de £k dans [ [, g Us-
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L’étude de G?(b’s := (Gk,s)® peut se faire de fagon relative, par exemple &
travers le p-groupe des classes C1(K) de K (via I'application d’Artin). Typique-
ment (voir par exemple [12, Chapitre III]), on a :

Proposition 2.3. Soit p tel que C1(K) est trivial. Alors

ab HUESU'U
GK,S* L(SK) .

Cette proposition montre que les nombres premiers qui divisent 'ordre du
groupe des classes jouent un role bien particulier pour notre étude. Nous les
appelons nombres premiers exceptionnels. Rappelons que le théoreme de Brauer—
Siegel (cf [18, Chapitre X VI, §1]) apporte I'inégalité |C1(K)| < |Disck|“, ot Disck
est le discriminant du corps K et ou C est une constante universelle. Rappelons
également qu'il est conjecturé que pour tout e > 0 : |CI(K)[p]| <. k.q) |Disck|®.
Voir par exemple ELLENBERG-VENKATESH [6] pour une présentation de cette
conjecture.

(ii) Soit K/k une extension galoisienne de corps de nombres de groupe de
Galois A d’ordre premier a p. Pour S (= Sk) un ensemble fini de places de k,
nous notons également par S (= Sk = {w|v,v € Sk, w place de K}) I’ensemble
des places de K au-dessus de celles de Sk. La proposition 2.3 fait apparaitre le
A-module [,
de k et soit w|v une place de K au-dessus de w. Par abus, posons D, = D, le

U,,, et sa structure est bien connue. En effet, soit v une place

groupe décomposition de w dans K/k. Si v ne divise pas p, le A-module le » Uw
est isomorphe au module induit Ind%v pipr (Ko) 1= Zp[A] ®p, pipe (Ku). A noter
que si k,, contient une racine primitive p-eéme de I'unité, alors D,, agit trivialement
Uy ~ Zp[A) ®p, Z/NZ, o N = |pp»(ky)|. Lorsque
Uy ~ Indp, pp= (Ku) ®

sur pp- (Ky) et ainsi [,

v divise p, le logarithme p-adique permet d’obtenir ||
(A1),

(iii) La conjecture de Leopoldt pour le corps de nombres K et le nombre

wlv

premier p stipule que I’application de semi-localisation induit un Z,-morphisme
injectif de £k dans le produit ]_[,U|p U,,. (Voir [12, Chapitre III, §3] ou [24, Chapitre
X, §3] pour plus de précisions.) Rappelons que la conjecture de Leopoldt équivaut
a la trivialité du multiplicateur de Schur H2(Gk, s, Zp) du pro-p-groupe Gx g deés
que S contient 'ensemble S, (voir [25], et [29] pour p = 2). Comme le pro-p-
groupe Gx g est de dimension cohomologique au plus 2 (pour p = 2, voir [29]),
la conjecture de Leopoldt le long de Kg/K équivaut au fait que le pro-p-groupe
Gk,s est de dimension cohomologique stricte au plus 2, pour tout ensemble fini
S contenant Sp,.
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On suppose pour toute la suite que la conjecture de Leopoldt est vérifiée pour
toutes les extensions finies de K. Ainsi pour tout sous-groupe fermé H de Gk g
le groupe Hy(H,Z,) est trivial : les hypotheses du théoreme 1.13 seront vérifiées
dans les contextes globaux a venir.

Terminons ce point en rappelant un théoreme de déploiement de la ramifica-
tion ([12, Chapitre III, §4, Théoréme 4.1.5]) :

Théoréme 2.4. Supposons la conjecture de Leopoldt vérifiée pour le corps
de nombres K et le premier p. Alors il vient la suite exacte

b b
1 — [lies\s, Yo — Torz, G¥ g — Torg, Gg) — 1.

(iv) On se place donc sous la conjecture de Leopoldt. A I’exception d’un
nombre fini de nombres premiers p d’apres la proposition 2.3, nous verrons que
I'object central de notre étude est la torsion du quotient | [, s, Uo /t(€k). Lorsqu’il
est trivial, le corps K est dit p-rationnel. Si de plus |pp«o (ky)| = 1 pour tout v|p,
alors notre étude est ramenée a celle du module de torsion

Torz, | log, n U,/ log, 1(&k) |,

veS),
appelé régulateur (p-adique) normalisé de K ([10, Définition 5.1]).

2.2.2. Quelques situations immédiates. Soit K/k une extension galoisienne de
corps de nombres de groupe de Galois A d’ordre premier a p. Soit S un ensemble
fini de places finies de k. On va appliquer les résultats de la section 1 au groupe
Gal(Kg/k) =:T = A x G, ot 'on a posé G := Gal(Ks/K).
On notera v une place de Sk et w|v une place de Sk au-dessus de v. Pour
qu’une place w € .S puisse jouer un role, nous nous assurons que :
— ou bien w est une place p-adique;

— ou bien, si w ¢t p, le corps local K,, contient une racine primitive d’ordre p.

Remarquons que pour v|w, avec v { p, on peut avoir |uy» (k)| = 1.

Soit G := Ga le plus grand quotient de G sur lequel A agit trivialement.
On a alors :

Lemme 2.5. Le groupe de Galois G est isomorphe au groupe de Galois
Gal(kg/k).
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DEMONSTRATION. En effet, on sait d’aprés la proposition 1.4 que G est iso-
morphe a T'(p), le plus grand pro-p-quotient de I'. Par conséquent le résultat se
déduit facilement en se rappelant que kg /k est la pro-p-extension mazimale de k
non ramifiée en dehors de S. O

En d’autres termes, le sous-corps fixé par G(A) correspond, par la théorie de
Galois, au compositum Kkg/K.

Si I'on suppose de plus que S contient .S, la conjecture de Leopoldt nous
assure la trivialité des multiplicateurs de Schur Hy(#, Z,) pour tout sous-groupe
fermé H de Gg. Le théoreme A se déduit alors du théoreme 1.13 : pour ¢ # 1,
I'étude de la liberté du module X% équivaut a I’étude de la torsion de (Gf{b’S)*".
Dans ce contexte, la proposition 2.3 nous permet d’obtenir :

Corollaire 2.6. Soit p tel que p { |CI(K)| et soit ¢ € Irr*(A,Q)). Alors le
module X¥ est Z,[G]-libre si et seulement si
(1) (HweS\SP uw)‘»" = {1}7 et

©

(Hwesp uw)
LK)

DEMONSTRATION. C’est une simple application du théoréme A (ou alter-

nativement du théoréme 1.13) associée & la proposition 2.3 et au théoréme de
déploiement 2.4. O

(ii) Torz, = {1}, ot1 ¢ est le plongement diagonal sous-jacent.

Prenons p générique, c’est-a-dire tel que :

— le p-Sylow du groupe des classes C1(K) de K est trivial (le premier p n’est
pas exceptionnel), et

— pour toute place w|p, K ne contient pas de racine primitive p-eme de l'unité.
On a alors :

Corollaire 2.7. Soit p générique et soit un caractere Q,-irréductible
pelr®(A,Qp) de A tels que les deux p-composantes suivantes soient triviales :

(i) &F et,
(i) (MMuess, Uo)™
Alors le module X% est Z,[G]-libre.

DEMONSTRATION. C’est une conséquence directe du corollaire 2.6. ([l

Le cas d’une extension & multiplication complexe est particulierement facile
a décrire.
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Corollaire 2.8. Soit K/k une extension quadratique a multiplication com-
plexe et soit p > 2 générique.

(i) Si une place v € S\S, se décompose dans K/k ou si elle est telle que
ppe (ky) = {1}, alors X~ n’est pas Z,[G]-libre.

(ii) Supposons le contraire, i.e. que pour toute place v € S\Sp, on a pp= (k,) # {1}
et que v est soit inerte, soit ramifiée dans K/k. Alors X~ est Z,[G]-libre de
rang |Sk|.

DEMONSTRATION. D’apres le théoréme 1.13, la liberté du Z,[G]-module X'~
équivaut a la trivialité de Torzp(G‘gf’)_. On utilise ensuite 'isomorphisme de la
proposition 2.3 puis le fait que £ = ppo (K)~ (voir par exemple [31, Chapitre 4,
Théoréme 4.12]) et donc que £ = {1} car p générique, pour arriver a

TOI“ZP (G%b)— zTOI“zp (%) :Torzp < H Uw> :TOI"Zp ( H Uw> ,

weS\Sp
et le résultat est alors immédiat. O

WINGBERG dans [33] étudie les situations ou les groupes Gk, s sont de De-
mushkin, notamment dans le cas a multiplication complexe.

Théoréme 2.9 (WINGBERG, [33]). Soit K/k une extension & multiplication
complexe. Supposons qu’il existe une place w € S telle que p,(K,,) # {1}. Soit
vlw. Alors Gk g est un groupe de Demushkin si et seulement si les conditions
suivantes sont vérifiées :

(i) Sk =5, ={v} et |Sk| =1+ 0k, ot dx =1 si p,(K) # {1}, 0 sinon;
(ii) Gk,s est un groupe de Demushkin et u,(k,) # {1};
(i) G = {1}.
On en déduit alors le corollaire suivant :

Corollaire 2.10. Sous les conditions de cette section, supposons que Gk g
est un groupe de Demushkin. Alors le Z,[G]-module X~ est libre.

DEMONSTRATION. D’apres le théoréme 2.9, le groupe Gy s est de Demush-
kin, c’est alors une simple application du corollaire 1.20. ([

3. Etudes numériques

On se propose de faire quelques simulations numériques dans différentes fa-
milles d’extensions galoisiennes K/Q : cubiques cycliques, cycliques réelles de
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degré 4 et diédrales de degré 6. Pour une raison de semi-simplicité on a tou-
jours p 1 [K : Q]. On suppose la conjecture de Leopoldt vraie dans les extensions
en jeu.

Notre étude est centrée sur les nombres premiers p non exceptionnels, c¢’est-
a~dire ceux qui ne divisent pas |C1(K)|, et 'objet arithmétique & calculer est la
¢-partie de la Z-torsion du quotient [ [, ,Uy/t(€k), i.e. (a l'exception de p = 2)
la p-partie du régulateur normalisé.

Remarque 8.1. On notera que pour p = 3 et p = 5, les complétés K,, étudiés,
w|p, ne contiennent pas les racines p-émes l'unité.

3.1. Le contexte. On va appliquer le corollaire 2.6, redonnons le contexte. Soit
p un nombre premier et soit K/Q une extension galoisienne de groupe de Galois A
d’ordre premier & p. On se fixe un caractere Qp-irréductible non-trivial ¢ de A.
On se donne un ensemble fini S de nombres premiers de Z contenant le nombre
premier p : ainsi S, < S. On pose G = Gk,s. On rappelle alors que Ga ~ Gg,s
et quici Gg,s ~ Z, si et seulement si pour tout premier ¢ € S\S,, il vient
¢ # 1 (mod p). Remarquons que le groupe Gg g n'est pas p-adique analytique
pour S assez grand. On prend H = G(A) = Gal(KQg/K), puis X = H. Enfin,
on suppose que les premiers ¢ € S\S, n’apportent pas d’obstruction & la liberté
de X%, i.e que (leleS\Sp uw)w ~ 1)

Supposons de plus p non exceptionnel. Par le choix des 4, il vient que X% est
Z,[Gq,s]-libre si et seulement si

Toer(GaS{’K)%O ~ Torg, <(1_L“”puw)> — {1}

L(EK)
Si la p-composante EF = (x1,...,zq4) de Ek est de Z,-rang d > 0, alors
(HwES uw)ﬁ"
Tory, ———2—— # {1}
T uER)
si et seulement si il existe aq,...,aq € {0,...,p — 1}, non tous nuls, tels que
Yw e Sy, tw(xlt, ... x5") eUr,

ou (, est le plongement de K dans U,,. Si I'on suppose par exemple a; # 0,
par la relation de Bézout entre a; et p, on se ramene a tester la condition
tw(z12s?, ..., x5") € UP, pour tout w € Sy, quand les puissances a; varient dans

[O,p—l]].
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Remarque 3.2. Remarquons qu’il nous faut des générateurs de £k, ce qui est
moins “fin” que des générateurs de Fx.

Plagons-nous dans le cadre suivant : supposons que & = <5>Zp est engendré
par une unité ¢ de K. Alors, pour p générique, X'¥ est non-libre si et seulement
si tw(e) € UL pour toute place w € S,. Cette derniére condition est alors facile a
tester : c’est une simple condition de congruence dans K impliquant une certaine
relation entre les unités x;. Précisons a ce niveau que tout ceci s’adapte parfaite-
ment au cas ol le caractere Q,-irréductible ¢ s’écrit ¢ = Zd)\ » ¥, ou les 1) sont
des caracteres Cp-irréductible de degré 1; in fine, cela revient aussi a tester si une
certaine unité est une puissance p-éme localement en toutes les places w|p.

Pour les trois situations a venir, nous avons fait le choix suivant : partir d’un
polynéme P dont les racines forment une base des unités du corps K. Dans ce cas,
et quand & = (¢) (ou éventuellement quand 5;@ est monogene), la condition a
tester se réduit & une simple condition de congruence dans Z (a I'exception d’un
ensemble de premiers p bien localisés).

En effet, tout d’abord, pour p > 2 montrer que € est une puissance p-éme
localement en w € S, équivaut a montrer que

w(E —1) > e +1, (10)

ol a, = pf —1, e et f étant respectivement les indices de ramification et d’inertie
de p dans K/Q (dans notre étude on a toujours p > e+ 1) et ot w est la valuation
associée a la place w. Ainsi lorsque p > 2 est non ramifié, montrer que € est une
puissance p-eme localement en toutes les places w € S, équivaut a montrer que

g% —1=0 (mod p?). (11)

Ensuite, dans les situations cycliques, € = u(z) est une fonction polynomiale
en une racine x de P a coefficients dans Q. La congruence (11) dans Ok peut
alors étre vue dans Z de la fagon suivante. En s’assurant que p { Disc(P), on peut
écrire

e —1=Q(x) +p’y,
ot Q =X +MX -+ X 1 X" 1 eZ[X],n=[K:Q],et ol ye Ox. Il est
alors immédiat que (11) équivaut & vérifier que @ est trivial dans le quotient
ZIX]/(P,p?)

Enfin, dans la famille d’extensions diédrales, par un résultat de Maus [22],
on aura Ok = Z[x1,x2] avec P(z;) = 0. La aussi, a 'exception de premiers p bien
localisés, on peut écrire

g 1 = Q(xh DiSC(P)) +p2y7
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ol Q = Ypcico0<j<1 i j X'YI € Z|X,Y], et ot y € Ok. Alors la congruence (11)
équivaut a la trivialité de @ dans le quotient Z[X,Y]/(P(X),Y? — Disc(P), p?).

3.2. Extensions cubiques cycliques. Soit p # 3 et soit un polyndme P de
degré 3 irréductible sur QQ définissant un corps cubique cyclique que ’on note K.
On fait le choix pour la suite d’ordonner les racines de P par ordre croissant :
€1 < g2 < €3, et de prendre pour générateur du groupe A = Gal(K/Q) le mor-
phisme o défini par o(e1) = &3 et o(e2) = e3. Le groupe A a trois caractéres
Cp-irréductibles 1, ¢ et ¢
Supposons que les racines de P engendrent Ek /{(+1).

3.2.1. Quand 3 divise p — 1. Les caracteres ¢ et ? sont définis sur Q,. Soit
¢ € Qp une racine primitive cubique de I'unité. Fixons ¢ tel que ¢(o) = ¢ et
posons
U, = £165° = ¢
o = €169 et w2 =165 .
42 . . 2
Alors o(uy) = uS, o(uy2) = ug» et, ainsi, EF = (up) et EF = (upz).
Nos résultats montrent que pour p générique (et p non ramifié), la p-compo-
sante X'¥ est libre, en fait triviale ici, si et seulement si

(6162_‘1)% — 120 (mod p?),

ounac€ {l,...,p— 1} est tel que ( = a (mod p). Comme nous 'avons vu, cette
congruence se teste facilement. En effet, a I’exception de quelques nombres pre-
miers p (en fait ceux divisant Disc(P)), I’élément (5152_“)% — 1 peut étre vu,
modulo p?Ok, comme un polynéme @ de Z[X], et la condition “ (5152_“)% —1#
0 (mod p?)” équivaut & "Q # 0 (mod(P, p?))”.

C’est cette derniere condition que 'on va tester de fagon intensive. On note
R le couple [e1,£2]. Pour un premier p donné, il suffit alors de considérer un
relevement a d’une racine primitive cubique mod p puis de calculer les
congruences. Le programme (avec PARI/GP) est donc plutot simple. On note
toujours f lindice d’inertie de p dans K/Q.
torsion(P,R,p,f,a)=
{my (Rmodp2,T) ;
T=vector(2);
E1=Mod (Mod(R[1],P),p"2);
E2inv=Mod (Mod (R[2] " (-1),P),p"2);
T[1]1=1ift ((E1*E2inv~a) "~ (p~f-1)-1)==Mod (0,p"2);
T[2]=1ift ((E1*E2inv~(a~2)) " (p~"f-1)-1)==Mod (0,p~2)
T;}
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Ce code renvoie un couple [T'1,T2], ot chacune des composante est 1 ou 0 suivant
si @ =0 (mod(P,p?)) ou non. On peut ensuite faire varier les premiers p.

BALADY dans [1] donne plusieurs familles de polynémes, généralisant celle
de KisHI [17], qui fournissent une base d’unités de K. Ils sont construits de la
maniere suivante : soient f et g deux polyndémes a coefficients entiers et soient
A= (f3 +g°+ 1)/fg puis a = 3(f2 +9%— fg) — )\(f +g). Considérons la famille
de polynéomes P, = X2 + a(n)X?2 + A(n)X — 1,n € Z. Alors sous les hypotheses :
(a) X est un polyndme & coefficients entiers,

(B) n# -1,

(7) 3a(n) + A(n)? est sans facteurs carrés,

les polynomes P, déterminent des corps cubiques cycliques K,, (noté également
K) dont les racines engendrent Fk /{+1).

Introduisons quelques notations pour présenter nos calculs. Lorsque P est
donné, notons respectivement Dgy;s. et D¢y ensemble des diviseurs de Disc(P)
et du nombre de classes du corps K (le corps cubique de polynoéme P). Soit
ensuite P (= Pk) I'ensemble des nombres premiers p vérifiant : (i) p = 1(mod 3),
(ii) p ¢ Doy U Dyise- Posons alors

Fu(X) :={peP, p< X, X¥ou X%?" non libre}.

A p fixé, le caractére irréductible @ est déterminé par la donnée d’un élément a
de {0,...,p — 1}, et pour p € F,,;(X), on renseigne en indice 'entier a associé &
la composante non-libre (non-triviale ici).

e Prenons la famille de polynémes P, donnée par Balady a partir de
f(n) = —n? et g(n) = n® — 1. Pour 1 < n < 100, on trouve 51 polynémes
vérifiant les conditions («), (8) et (7). Le tableau en annexe A.2.1 donne les
résultats obtenus pour X = 23 x 107 (et ces 51 corps cubiques). Notons que 1'on
n’a aucun exemple ol les deux composantes ne sont pas triviales (simultanément).

Remarque 8.3. Afin de réduire au maximum les temps de calcul, la liste des
relevements des racines cubique modulo p pour tous les premiers inférieurs a une
certaine borne (X = 23 x 107 pour nous) est calculée & part. Lorsque, & n fixé,
nous faisons varier p de 1 & 10%, ce principe nous permet de diviser le temps de
calcul par plus de 60.

Dans ces calculs, a n fixé, deux ensembles de premiers sont exclus : Dy
et I’ensemble des premiers exceptionnels D¢y. Il est néanmoins possible de faire
le calcul différemment et de conclure pour ces nombres premiers grace aux algo-
rithmes de GRAS [9] et PITOUN—VARESCON [27] qui utilisent les calculs du corps
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de classes de PARI/GP. En effet, notre hypothése sur I’ensemble S fait que tout
se passe au niveau des complétés p-adiques et ainsi, finalement, tester la liberté
des composantes de X équivaut a tester la p-rationalité du corps K (ce que testent
ces algorithmes) : le défaut de non rationalité de K est localisé en ¢ ou/et ¢? (car
Q est p-rationnel).

(a) Pour les premiers p € Dy;s.\Dcy, le résultat est immédiat : dans 1’ inter-
valle étudié (n < 100 vérifiant («), (8) et (7)), les corps sont p-rationnels.

(b) Pour les premiers p € D¢y, aucun des 51 corps n’est p-rationnel. Concen-
trons-nous sur la trivialité du régulateur normalisé :

— Quand p n’est pas ramifié dans K/Q, le régulateur normalisé est non-trivial
uniquement lorsque : (n,pq) € {(11,74), (16,74), (17,742),(49,74), (67,74)}.
A noter que d,Torz, G‘Il(b,sp =1 pour (11,7) et (67,7), et que d,Torz, G‘ff,sp =
2 pour les couples (16,7), (17,7) et (49,7).

— Quand p est ramifié : le régulateur normalisé est trivial dans tous les cas.

Remarque 8.4. Comme on 'a expliqué plus tot, les algorithmes de Pitoun—
Varescon et de Gras déterminent le module de torsion Tory, G“SZ, testant ainsi si un
corps donné est, ou non, p-rationnel pour un premier p fixé. Nous avons choisi pour
nos calculs d’utiliser d’abord notre code, puis de traiter les cas particuliers avec
lalgorithme de Pitoun—Varescon. Nous calculons donc avec PARI/GP le nombre
de classes de K puis faisons varier p ou les calculs se résument & des congruences
dans Z alors que 'algorithme de Pitoun—Varescon nécessite le calcul d’un corps de
classes de rayon pour chaque premier p. A titre de comparaison, voici les temps
mis par les deux programmes pour le polynéme P = X3 + 309X2 — 10X — 1
(polynome de Balady, n = 2) lorsque 'on fait varier le premier p de 1 & 10° : avec
I’algorithme de Pitoun—Varescon on obtient la liste des corps non p-rationnels
en plus d’une heure, alors que notre algorithme renvoie la liste des composantes
non-libres en 4.808ms (en calculant les racines cubiques au préalable). Pour étre
complet, notons que sur cet exemple 'algorithme de Gras est plus rapide que celui
de Pitoun—Varescon (un peu moins d’une heure).
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e Prenons maintenant la famille de LECACHEUX [19], que lon retrouve a
partir des polynomes de Balady pour f(n) = —1 et g(n) = —n. Pour 1 < n < 100,
on trouve 25 polynémes vérifiant les conditions voulues. Les tableaux en annexe
A.2.2 donnent les résultats obtenus pour X = 23 x 107 (et 1 < n < 100). La
encore, on traite a part en utilisant ’algorithme de Pitoun—Varescon les premiers
de Dy;isc €t de D¢y

(a) Dans les intervalles étudiés, pour chaque premier p € Dg;s.\Dcy, le corps
est p-rationnel, a 'exception des trois situations suivantes : n = 50, n = 62 et
n = 76 pour le nombre premier p = 7. On peut alors faire le calcul directement
dans le corps de nombres pour déterminer quelle p-composante est non-libre. On
voit que pour n = 62 et n = 76, la composante X'¥ est non-libre pour ¢ donné
par la racine cubique 4 mod 7 (lautre composante est libre). Détaillons le cas
n = 50. Ici ug’ = (e165%)° et u = (£165'9)% et un calcul avec PARI/GP donne
g9 = —24517 /494 6009802¢1 + 6007352/49. Enfin, on détermine vy, (u?oj —1) avec

la fonction idealval et on voit qu’aucune des composantes X'¥’ n’est libre (non
triviale ici). Sur tous les exemples étudiés jusqu’a présent, c’est le seul cas ou les
deux composantes non triviales sont simultanément non-libres.

(b) Pour p € D¢y, aucun corps n’est p-rationnel dans les intervalles étudiés.
En revanche, les seules situations ou le régulateur normalisé est non-trivial sont

les suivantes : (n,pq) € {(34,74), (68,1332), (98,74)}.

3.2.2. Quand 3 ne divise pas p — 1. Cette condition est plus contraignante que
la précédente puisqu’elle force la p-torsion de G‘fg s, a étre de p-rang pair.
Prenons p > 3. Un raisonnement identique a celui effectué dans le cas
précédent montre que la trivialité de la composante X o’ équivaut a la condition
(225)™ — 1 # 0 (mod p?).
e Pour f(n) = —n?, g(n) =n3 -1, p < 10° et n < 100 vérifiant (), (B) et
(7), le seul cas non-trivial trouvé est :
- n=62,p=23(f =1).

e Pour f(n) = —1, g(n) = —n, p < 10° et n < 100 vérifiant (), (B) et (v),

les seuls cas non-triviaux trouvés sont :
—n=88p=>5(f=2).

Ici encore 'algorithme de Pitoun—Varescon permet d’étudier la liberté des
p-composantes pour chaque valeur de p € Dy;sc U Dey. Dans le premier cas
(f = —n? g = n3 — 1) tous les corps sont p-rationnels (pour p > 3), donc
toutes les composantes restantes sont en fait libres. Dans le second cas (f = —1,
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g = —n), on trouve seulement deux autres situations ou le corps n’est pas p-
rationnel pour lesquels un calcul dans le corps de nombres permet de conclure :
pour (n,p) € {(26,5),(76,5)}, la (¢ + ¢?)-composante de X n’est pas triviale
(pour ces deux cas, p € Dy;sc\Da).

Enfin, traitons rapidement le cas p = 2. Dans les familles étudiées (2 est
inerte), on peut vérifier que 'obstruction & la non-trivialité de X o’ provient a
chaque fois du groupe des classes.

Exemple 3.5. Soit I'extension cubique cyclique K/Q de polynéme P = X3 +
12286733X2 — 9970X — 1 (polynéme de Balady, n = 10). Alors pour p < 3 x 107,
le régulateur normalisé de K est trivial a I’exception des nombres premiers 3, 43
et 14783491. Pour p = 43, c’est la ¢p-composante associée a la racine cubique
¢ = 62(mod 43) qui est non-triviale. Pour p = 14783491, c’est la @-composante
associée a la racine cubique ¢ = 4865581 (mod p). A noter que p = 3 est a part
pour notre étude a cause de I’hypotheése de semi-simplicité.

3.3. Extensions cycliques totalement réelles de degré 4. On se donne p
un nombre premier impair. Soit ¢ € C, une racine primitive quatrieme de I'unité.

Soit P un polynéme irréductible de degré 4 et K son corps de décomposition,
qu’'on suppose quartique cyclique et totalement réel. On note A le groupe de
Galois de l'extension K/Q et on fixe o un générateur de A. On ordonne alors les
racines ¢; de P de sorte que o soit donné par le cycle (e1,e2,€3,¢4) . Le groupe
A a quatre caracteres Q,(¢)-irréductibles de degré 1 : 1, ¢, ©? et 3, olt ¢ est
défini par p(o) = (.

Supposons alors que les racines de P engendrent le groupe i .

Lorsque p = 1 (mod 4), les caractéres ¢° sont en fait Q,-irréductibles.
On vérifie qu’en posant

+¢ ¢

_ o 1-¢ ¢ _ P
Up = E1E9 €37, Up2 = £1€3 € Ups = €1&9 ED)

il vient &7 = (uy), Efgz = (uy2) et 5{?2 = (uys). Pour p non-ramifié dans I'exten-
sion K/Q, la non-liberté (ou non-trivialité ici) du module X ¢' quivaut donc
étudier la congruence : u‘;‘; = 1 (mod p?), ot a, = p/ —1, avec f le degré résiduel
de p dans l'extension K/Q.

Si maintenant p = 3 (mod 4), le groupe A n’a que deux caractéres Q-
irréductibles non triviaux qui sont ¢? et ¢ + ¢® et la non-liberté du module
X9 +% ¢quivaut dans ce cas a la congruence e2e2e3 =1 (mod p?) (ici p > 5).

Dans [2], BALADY et WASHINGTON exhibent une famille de polynémes

Py= X" +4(s* -2+ 25 — 1) X® +6(—s® — 1) X% +4X + 1,
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s € Z*, dont le corps de décomposition K, est un corps totalement réel cyclique
de degré 4 et dont les racines engendrent soit les unités de K, soit un sous-groupe
d’indice 5 deés que : (o) 3s% — 4s + 4 est un carré, et (') s? + 2 est sans facteurs
carrés.

Cependant, les conditions sur le parametre s sont tres restrictives : pour
|s| < 106, il n’y a que les entiers —34272, —2460, —12, 48, 660, 127908 qui vérifient
(o) et () ala fois.

Lors de la construction de la famille (P;),, Balady et Washington choisissent
pour générateur o de A la matrice d’ordre 4 de PG L (Z)

f -1
P+ |
B g
. 2+4/352 —4s+4 2 —4/352 —4s+ 4 . .
ou f = et g = 5 . Son action sur les racines
de P, donne alors immédiatement
fei—1 (f +g)e1 —2 ger — 1
€9 = —5—5——, €3 = et g4 = 55—,
R T (Pt —g—f T
Ty P ey

et le générateur o du groupe A est bien défini par le cycle (e1,¢e2,€3,4).

On voit encore une fois que I’hypothese de congruence peut se tester direc-
tement dans Z[X]/(Ps) de fagon tres simple.

Les formules données plus haut pour exprimer les racines €5 et €3 du po-
lyndéme P ont des dénominateurs et les diviseurs premiers de ces dénominateurs
doivent étre traités a part. On note par D ’ensemble de ces premiers. Posons

]:nl(X) = {p PremieRP ¢ DUDcl UDdisa 5 < p< X7 die {17273}a Xwi # {0}}

Le programme PARI/GP utilisé pour déterminer si les p-composantes sont,
ou non, libres (i.e. triviales ici) est construit sur le méme modele que celui de
la section 3.2. Les résultats obtenus en faisant varier p de 1 & X = 15 x 107
sous la condition p = 1 (mod 4) sont présentés dans le tableau en annexe A.l.
Le caractere ¢ est donné par la congruence de ( modulo p, que 'on note a, et
comme pour le cas cubique, pour chaque premier p € F,,;(X), on précise en indice
a¥, la composante X o non-triviale ; a noter que quand k = 2, cela signifie que
Pobstruction provient du sous-corps quadratique réel.

Lorsque l'on fait varier p sous la condition p = 3 (mod 4) dans le méme inter-
valle, on ne trouve que cing situations non-libres : (—34272,37511), (—2460, 491),
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(660, 25652023), (127908, 3), (1781520, 7). Dans chacun de ces cas, l'obstruction
provient du sous-corps quadratique réel (via le caractere p?).

Enfin, regardons via l’algorithme de Pitoun—Varescon (ou alternativement de
Gras) les premiers mis de coté.

(a) Les corps sont tous p-rationnels pour p € D U Dy;se.

(b) Pour p € De\D U Dyisc : aucune situation n’est p-rationnelle, mais seuls
les cas (n, p,) € {(—92604732, 532), (—92604732, 3761 ), (1781520, 53:)} ont un

régulateur normalisé non-trivial.

3.4. Extensions diédrales. Soit la famille P, = X3 + nX + 1, n € N. Notons
d, = —4n3 — 27 < 0 le discriminant du polynéme P, que l'on suppose sans
facteurs carrés; par [7], on sait que les entiers n vérifiant cette condition sont
de densité positive. Soit le corps quadratique imaginaire F,, = Q(1/d,,) et soit
¢ une racine réelle de P,. On note K,, le corps Q(v/d,,,¢). Cette fois-ci le corps
de décomposition K = K,, de P, est de groupe de Galois A isomorphe a Ss.
Soit p > 5. Le groupe A a deux représentations Q,-irréductibles de degré 1
(la représentation triviale 1 et une représentation 1)), et une représentation Q-
irréductible ¢ de degré 2.

Le groupe des unités £k a pour caractére ¢ et, pour p générique, le Z,[A]-
module [

Choisissons ensuite les premiers ¢ # p de S tous congrus a 1 modulo p et
tels que P, est irréductible modulo ¢. Pour ¢ € S\S,, l'action de A sur wa Uy
a pour caractere 1 + 1. Par conséquent la composante (G%?K)w est Z,-libre si et

Sh U, a pour caractere 1 + ¢ + 2.

we

seulement si S = S, et dans ce cas, X¥ = {0}. La situation intéressante se trouve
donc dans I'étude de X'?. Pour £ € S\S,, ([ [, Uw)¥ = {1}, on est donc dans le
cadre du corollaire 2.6. En particulier si le module X¥ est Z,[Gq, s][-libre, alors
il est libre de rang 2.

Notons €5 une seconde racine de P,,. Dans [21], Pauteur utilise les estimations
données par CUSICK dans [4] pour minorer le régulateur du corps Q(¢g), ce qui
permet de montrer que ¢ est une unité fondamentale de Q(¢). Un raisonnement sur
les normes permet ensuite de montrer que {¢,e2} forme une Z,-base des unités
de K,,. Ainsi, suivant les calculs de la situation cubique cyclique, il nous faut
simplement tester la condition (pour p non ramifié)

(e23)* =1 (mod p?),
out comme précédemment, a,, = p/ —1, f étant le degrés résiduel de p dans K,,/Q.
La forme particuliere du polynéme considéré nous donne des relations tres

Vd,
g (12ne? — 9 + 16n?) — g, par

simples entre les racines de P (eg = 20201 — dy))
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exemple). Le programme permettant de tester la condition de congruence dans
Ok est alors facile & mettre en oeuvre : ici, €5 s’écrit sous la forme d’un polynoéme
u(e,v/dy,), et comme expliqué dans la section 3.1, la congruence se lit dans le
quotient Z[X,Y]/(P(X),Y? —d,,p?).

Le polynéme P, est irréductible et de discriminant sans facteur carré pour 61
valeurs de n comprises entre 2 et 100. En faisant varier p de 5 & 10° dans chacune
de ces situations, les seuls cas ou la p-composante de X’ n’est pas libre sont :

777':493]):7(.}0:1);
- n=50,p=5(f=2);

—n=98p="7(f=1).
Voir [28] pour le programme détaillé.

Ici encore nous avons écarté des ensembles de nombres premiers : D¢y,
D := {p | 20n? — d,} et Dyam, ot Dyam désigne I'ensemble des nombres pre-
miers ramifiés dans K/Q.

(a) Pour p € D, on trouve, pour n variant de 2 a 100 (tel que d,, soit sans
facteurs carrés) et p inférieur & 10%, deux corps non-7-rationnel : pour n = 52 et
n = 80. Dans ces deux cas, on vérifie que F,, n’est pas 7-rationnel. D’un autre
c6té, un calcul montre que dyTorz, Gf¥g =1, et ainsi, (Torz, Gf . )* = {1}.

(b) Pour les premiers p de D¢;\D, on trouve seulement cing situations non
p-rationnelles : (n,p) € {(19,7), (31,5),(32,7), (97,5), (100, 5)}. Ici, seul le couple
(100, 5) a un régulateur normalisé non trivial (en la composante ¢).

(¢c) Le corps de nombres K est p-rationnel pour tous les premiers p ramifiés
dans K/Q.

Remarque 3.6. La tres faible proportion de couples (n,p) pour lesquels on
détecte une composante non-libre subsiste pour d’autre valeurs de n : lorsque 'on
fait varier & la fois I'entier n et le premier p de 1 & 10%, on balaye 62486 corps,
et on teste plus de 56 x 10® composantes non-triviales associées & ces corps de
nombres pour finalement ne trouver que 4041 couples (n,p) pour lesquels une
des composantes est non-libre, ce qui revient & moins de 7.2 x 107°% des cas
seulement ! Notons enfin que pour 313 < p < 10°, les composantes étudiées (i.e.
non-triviales) sont toutes libres.
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Annexe A. Résultats numériques

A.1. Cas cyclique de degré 4. Voir la section 3.3.

s D Dci Dyisc Fni(15 x 107)
(2,59, 521 {2,3,5,13, {2,59,521, 1889,
—92604732 e ’ 37,53, 251, 2609, 2857, {1193 2,3529 1,3663533 3,1}
2609} 186 808 220189
18464557} 23561, 33721}
2,3,5,131 {2,67,443 {1934,1,313,53, 389,53, 88969 1,
—34272 {2 67,443} { Ll ’ ’ 2 ? 81 25 115 . 21228
) 1597} 587284993} 3019229, 40163, 147718375 001
{2,113,2131,
—2460 {2,2131} {2,3,5,13} 26777} %]
{17,2,19363829 3,
—12 {2,11} {2} {2,11, 73} 4 8692313
’ ’ 1269051334610503,2690051354914053}
13 379849 763597
48 {2,41} {2} {2,41, 1153} {1351, 21533%0713’ 3091792°
2531672
660 {2,571} {2, 5,13} {2, 353,571,617} {349,542, 1949501, 9137, 5003}
{2,7,13,17, {2,73,110771, .
127908 {2,110771} 9337} 112057921} {533,29,51, 11172145, 117889, 0}
{2,5,11,47, {2, 1542841,
1781520 {2, 1542841} 677208593} 1586906755201} {29122}
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A.2. Cas cyclique de degré 3.

151

A.2.1. Famille de polynomes de Balady. Pour les notations, voir la section 3.2.1.

n Dyise Doy Fni(23 x 107)

1 {19} %} {67,502, 19384, 337 5g2, 7321500}
: .1 o R
4 {13,19,79,571} {3,13} o]

7 {17, 23,2383, 3769} {3, 7,223} {19992, 277116}

10 {7,13,157,1051, 9973} {3,7,991} {4352, 147834914865581 }

11 {19, 769, 1451, 19429} {2,3,7,97} {63143}

14 {2939, 38377, 47911} {2, 3,19,2143} {133, 43¢, 6076596727581956 }
16 {19, 79, 181, 229, 439, 829} {2,3,7,2053} {436,439339824}

17 | {7,13,31, 743, 3229, 6421} {2,3,7,37} {157, ,2,937322}

19 {7,79,277,7219, 130267} {2,3,7,1303} o]

20 {7, 193713;7;;772}27, {2,3,31,67} {1666783, .52}

22 {307,877,11131, 234193} {3, 1466473} {742,3152,139627,  gqeo}

25 {16249, 390553, 441403} {3,43,619,691} {197,229, ,2,40953}

26 {7,18251, 73417, 456901} {3,367,10651} {1342, 9151330403 }

29 {25229, 707197, 785671} {3, 57875563} %]

31 {7, 11,3?,171%,819€§L {3,7, 66523} o]

32 {67, 151?‘;93’2?1%7}91’ {2, 3, 3863473} {7923}
NS (2.3, 3107530) R o
35 {11, 19’16;6()251215}26833’ {3,757, 75931} {13,2,54499,,: 000}

37 {103, 7695,22612317}3 19753, (2,3, 19, 193, 463} {73s, 331312,921212%%01;;215132?452508,
40 {7, 181’?};;;%55599’ {2, 3,43, 331} {19,2,674977,, 0.0}

44 13, 18153222?}87119’ {2,3,1033,4129} {4342,23411106}
A s o
w | DGR eares (19501121

50 {59, 67, 2;1):;,1%19?1, 25933, {2,3,7,9130117} {33131}

52 (7,59, 77%*1%176538101’ {2,3,13,229, 71419} o]
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n Dyise Doy Fr1(23 x 107)
55 | (T 27491'330571276;}69399’ {2,3,7, 14667403} (97,52, 4243405, 26004715104}
56 | 1% 44313?;,7’12231”3?731’ {3,7,67,127, 2719} (6243468 126035604}
59 {7, 31’1257822%2;’;)877’ (2,3, 31,127, 1327} {197, 43¢, 22221241127121;2222?790062 ,
61 | {719 27216728841678}21’ 2689, {3,613, 388057} {3710}
62 | {713 2‘21?};;’7;}193443’ (3,31, 3633403} (223,00}
64 (127, 1132;1793622?;5239’ {3,5011,129517} {4352}
65 {2788‘112’7(1)3332‘;33’ {3,19, 547, 57697} {7,2,33131, 369445945444}
67 {13, 215;1?181?’3%;1157}97’ (3,7, 1117, 74797} 1%
70 | 13 193%122‘;2711’}347899’ {2,3,4003, 126151} (503287, o000}
| {438 2683%’25;%5;?3' 58687, {2, 3, 340422079} {74}
74 {59, 6%6112’325959581%357’ {2,3,109,457, 133873} {7342, 3207019467011}
76 W’f%ﬁ%f%&ff% {2, 3,127, 11237029} {197, 7946:;3221:;%’11’;??2523?050602 .
77 | (1923 31552343511}1’ 20107, {3, 1457126959} (7,2, 14894262171500090 }
79 {7*51811‘3?:111’76173’045%39819}’ {3,19, 211,433, 3631} (37,92, 103,02}
R e
g2 | {713 7952?%21?* 558091, (3 13,1777, 41467} %
g5 | 19 2(1)’7;?;’8%2’7%07’ {2,3,7,313, 691, 997} {15355653138606055 }
86 (167, 3565635’53773}0561' {2,3,7,17713, 51043} {7342, 61992645}
go | {701 7;;?2*1)’7;?28557’ (2, 3,127, 48593539} {315,211, 5}
o1 | 1631, 829’19112%’3295}03’ 21397, 2,3, 1483, 52567} {738}
92 | 017,19, 312,33332,}198463, {2,3,61,193, 542197} {10342}
94 {7, 37’gg§ég§§17}4617’ {3,8929, 36396301} {6729, 36783, 829125}
95 {13,79513323,7@(}56399, {2,3,31,37, 631, 2113} @
97 o, 2235?22}1333?081’ {2,3, 763707067} {197,97,.2, 487232}
100 | 123,43913, 99999703, (3, 57709, 1882450} {116708594550018, 542505915 }

103060603}
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A.2.2. Famille de polynomes de Lecacheuz. Voir section 3.2.1.

n Dyiise D¢y Fn1(23 x 107)
14 {13,157, 199} {3,13} {4342,397849 50 0rm2}
16 {3,5,7,37,211} {3,43} {62347,,,02}
22 {3,7,421,487} {3,439} {15132}
26 {5,7,97,601} {2,3,7} {52360}
28 {3, 19, 37, 787} {3,5} {331,,2, 1669248, 64048342506 }
34 {3,7,11,19,61, 151} {3,7,19} {315,4352}
38 {31,37,43, 1447} {3,229} {1352, 738}
40 {3,7,13,229, 1483} {3,709} {7342, 28051,,,,2,588277199858}
44 {7,13,43,139, 277} {2,3,19} {17923613, 8436997300 -g52 }
46 {3,5,7,13,163, 283} {3,7,13} {315}
50 {7,13,181, 2503} {2, 3,37} {454392225, 1602529, 1,442}
52 {3,17,2551, 2707} {2,3,919} {74,157, ,2,10453,,5}
56 {5,11,43,73,2971} {3,13} {742}
58 | {3,7,13,19,31, 37,103} {3,17} {2221543, 725209, 505,92}
62 {7,61, 523, 3847} {2, 3,157} {1352, 147374341}
64 {3,7,3907, 4099} {3,7,127} {103,42,60124}
68 {7,67,661,4423} {3,13,31} {46211763, 159622777, 45001002}
74 {7,73,751, 5479} {3,19, 127} {436, 1078155491 4774937}
76 {3,5,7,13,61,5779} {3,1381} {400339, 50-152}
80 {19, 79, 337, 6163} {3,7,43} {61,420}
88 {3,7,29,61,127, 1069} {2,3,7,151} %]
92 {7,13,8191, 8467} {3,1669} {36783}
94 {3,31, 43, 199, 8839} {2,3,2851} %]
98 {13,67,97,139, 739} {2,3,7,13} {12919, 2, 24730937071}
100 {3,7,11, 31, 313, 1429} {2,3,7,211}  {13,2,6037,(2, 145316557 ,ra0c 052}
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