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Composantes isotypiques de pro-p-extensions de corps
de nombres et p-rationalité

By CHRISTIAN MAIRE (Besançon) and MARINE ROUGNANT (Besançon)

Abstract. Let p be a prime number, and let K{k be a finite Galois extension

of number fields with Galois group ∆ of order coprime to p. Let S be a finite set of

non-Archimedean places of k including the set Sp of p-adic places, and let KS be the

maximal pro-p extension of K unramified outside S. Let G :“ GS{H be a quotient of

GS :“ GalpKS{Kq on which ∆ acts trivially. Put X :“ H{rH,Hs. In this paper, we

study the ϕ-component Xϕ of X for all Qp-irreductible characters ϕ of ∆, and, in partic-

ular, by assuming the Leopoldt conjecture, we show that for all non-trivial characters ϕ,

the ZpvGw-module Xϕ is free if and only if the ϕ-component of the Zp-torsion of

GS{rGS , GSs is trivial. We also make a numerical study of the freeness of Xϕ in cyclic

extensions K{Q of degree 3 and 4 (by using families of polynomials given by Balady,

Lecacheux, and more recently by Balady and Washington), but also in degree 6 dihedral

extension over Q: the results we get support a recent conjecture of Gras.

Introduction

Dans cet article, nous étudions la structure galoisienne de certaines pro-

p-extensions de corps de nombres à ramification restreinte. Le cadre algébrique

général est le suivant. Soit G un pro-p-groupe de type fini et soit H un sous-groupe

fermé normal de G. Posons G :“ G{H puis X :“ H{rH,Hs, le quotient abélien

maximal de H. Dans [20] le premier auteur étudie la liberté du ZpvGw-module

X suivant les contextes arithmétiques (et la structure du groupe G). Dans ce
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présent article, nous étendons ce travail au cas où les objets en jeu sont munis

d’une action semi-simple.

Typiquement, soit p un nombre premier et soit K{k une extension galoi-

sienne finie de groupe de Galois ∆ d’ordre étranger à p. Soit S un ensemble fini

de places finies de k contenant l’ensemble des places p-adiques Sp. Notons par

KS la pro-p-extension maximale de K non-ramifiée en dehors de S et posons

G “ GK,S :“ GalpKS{Kq (lorsque p “ 2, nous supposons donc que les éventuelles

places archimédiennes réelles de K restent réelles le long de KS{K). Soit ensuite

F{K une sous-extension de KS{K obtenue par compositum avec le corps K d’une

sous-extension galoisienne L{k de kS{k. Posons H “ GalpKS{Fq puis G :“ G{H.

Le groupe ∆ agit semi-simplement sur X “ H{rH,Hs. Notons alors par Xϕ la

ϕ-composante de X , où ici ϕ désigne un caractère Qp-irréductible de ∆. Comme ∆

et G commutent, Xϕ peut être également muni d’une structure de ZpvGw-module.

Dans ce travail, nous regardons à quelle condition le ZpvGw-module Xϕ est libre.

Le résultat que nous obtenons montre que le caractère trivial ϕ “ 1 joue un rôle

bien particulier. En effet, l’obstruction obtenue à la liberté du ZpvGw-module X 1

dépend du corps F et du groupe G (retrouvant au passage le résultat principal

de [20]). En revanche, en dehors de ce cas, nous prouvons entre autres le résultat

suivant :

Théorème A. Supposons la conjecture de Leopoldt vraie. Alors sous les

notations précédentes, pour tout caractère ϕ non-trivial, le module Xϕ est ZpvGw-
libre si et seulement si TorZp

`

GabK,S

˘ϕ
est trivial. De plus, quand Xϕ » ZpvGwdϕ ,

on a dϕ “ rgZp

`

GabK,S

˘ϕ
.

Ici, TorZp

`

GabK,S

˘ϕ
désigne la ϕ-composante de la torsion du Zp-module

GabK,S :“ GK,S{rGK,S , GK,Ss. Remarquons que le résultat ne dépend pas du choix

du sous-groupe H de GK,S .

L’objet arithmétique essentiel est donc le Zp-module de torsion TorZp
GabK,S .

Par un théorème de déploiement (voir [12, Chapitre III, §4, Théorème 4.1.5]), son

étude se ramène au cas où S “ Sp. Le groupe fini TorZp
GabK,Sp

est un profond

objet arithmétique qui mesure l’obstruction au groupe GK,Sp
à être pro-p-libre

(sous la conjecture de Leopoldt). Lorsque ce groupe est trivial on dit que le corps

K est p-rationnel (toujours sous la conjecture de Leopoldt).

L’étude des corps p-rationnels a fait l’objet d’une grande quantité de travaux :

citons par exemple Movahhedi–Nguyen [23], Gras–Jaulent [13], Jaulent–

Nguyen [15], et plus récemment Greenberg [14], Gras [8], [9], mais aussi

Pitoun–Varescon [27] et Barbulescu–Ray [3], au sujet notamment des heu-

ristiques “à la Cohen–Lenstra” (p est fixé et K varie dans des familles d’extensions
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de signature donnée). On renvoie à [12, Chapitre IV, §3] pour une présentation

détaillée de l’étude des corps p-rationnels.

Récemment, Gras a émis la conjecture suivante ([11, Conjecture 7.11]) :

Conjecture (Gras). Soit un corps de nombres K. Pour p assez grand, le

corps K est p-rationnel.

Ainsi, le théorème A associé à la conjecture de Gras indique que pour p assez

grand le module Xϕ est libre (pour tout caractère ϕ ‰ 1 et quand S “ Sp).

Le calcul de TorZp
GabK,Sp

fait intervenir deux quantités dont l’une devient

triviale dès que le p-Sylow du groupe des classes ClpKq de K est trivial. Lorsque

c’est le cas, le module TorZp
GabK,Sp

s’identifie à la torsion du quotient des unités des

complétés p-adiques par la fermeture des unités globales. La présence de racines p-

èmes de l’unité dans un complété p-adique peut faire apparâıtre “trivialement” de

la torsion dans ce dernier quotient. Ainsi, si on s’assure de plus qu’aucun complété

p-adique ne contient de racine d’ordre p (ce qui est toujours le cas dès que p ą rK :

Qs ` 1q, alors l’étude de TorZpG
ab
K,Sp

“se résume” à celle du régulateur normalisé

défini par Gras [10, Définition 5.1]. Cette observation que l’on trouve déjà dans

[12, Chapitre III, §4.14] montre que la liberté de Xϕ est propice à une étude

numérique : c’est ce que nous faisons également dans ce travail. Nous utilisons

pour cela des familles de polynômes P données par Balady [1], Lecacheux [19]

et Balady–Washington [2]. Le corps de décomposition K{Q d’un tel P est

cyclique de degré 3 ou 4 et son groupe des unités est engendré par les racines de P .

À l’exception d’un nombre fini et bien déterminé de nombres premiers p, le test

pour prouver la liberté de Xϕ (en fait sa trivialité pour les situations étudiées ici)

équivaut dans ce cas à vérifier qu’un certain polynôme à coefficients entiers n’est

pas nul dans le quotient ZrXs{pP, p2q. Ce cadre rend les calculs simples et rapides :

il n’est pas nécessaire de passer par le corps de nombres K et donc d’utiliser les

fonctions du corps de classes de PARI/GP. Cela nous permet de tester, pour

quelques corps de ces familles, la liberté de Xϕ pour p ă 23 ˆ 107 dans le cas

cubique et pour p ă 15ˆ 107 dans le cas quartique. Nous développons également

cette étude numérique dans une famille d’extensions diédrales de degré 6 (pour

p ă 109). Notons enfin que Pitoun–Varescon [27] et plus récemment Gras [9]

ont donné des algorithmes qui déterminent TorZpG
ab
K,Sp

en toute généralité ; afin

d’être complet, nous utilisons ces programmes pour traiter le cas des nombres

premiers mis de côté dès le départ.

Notre travail comporte trois sections.
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Dans un premier temps, nous donnons les éléments algébriques essentiels

pour notre étude. Nous nous appuyons en particulier sur le livre de Neukirch–

Schmidt–Wingberg [24, Partie : Algebraic Theory] pour montrer que la suite

exacte à sept termes issue de la suite spectrale de Hochschild–Serre est également

une suite de ∆-modules. Nous passons alors en revue les applications immédiates

de ce résultat clef, notamment quand G est pro-p-libre ou quand G est de Demu-

shkin.

Nous développons ensuite quelques situations arithmétiques desquelles il res-

sort le théorème A et ses corollaires.

La troisième section est dédiée à l’étude numérique dans des familles d’exten-

sions cubiques cycliques, des familles cycliques totalement réelles de degré 4 et des

familles d’extensions diédrales de degré 6. Les tableaux présentant les résultats de

cette étude sont dressés en Appendice. Nous observons alors de façon éclatante

la rareté des nombres premiers pour lesquels Xϕ n’est pas libre, confirmant ainsi

la conjecture de Gras évoquée précédemment.

L’ensemble des calculs ont été effectués à l’aide du logiciel PARI/GP [26].

Notations

Soit p un nombre premier. Si M désigne un Zp-module de type fini, nous

notons par

´ rgZp
M le Zp-rang de M , i.e la dimension sur Qp de Qp bZp

M ;

´ TorZp
M , le sous-module de torsion de M ;

´ M rps “ tx PM, px “ 0u, les éléments de p-torsion de M ;

´ dpM le nombre minimal de générateurs de M , i.e. la dimension sur Fp de

Fp bZp
M .

Si de plus M est muni d’une action d’un groupe fini ∆, nous notons par

´ M∆ le sous-groupe des invariants de M sous l’action de ∆ ;

´ M∆ les coinvariants de M sous l’action de ∆.

On étend ces deux dernières notations au cas où ∆ est profini avec action

continue de ∆.

1. Quelques précisions algébriques

Une bonne référence pour une partie des résultats présentés dans cette sec-

tion est le livre de Neukirch, Schmidt et Wingberg [24, Partie “Algebraic

Theory”].
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1.1. Le contexte algébrique.

1.1.1. Généralités. Soient G un pro-p-groupe de type fini, H un sous-groupe

fermé normal de G et le quotient G :“ G{H. Posons X :“ Hab “ H{rH,Hs.
Soit l’algèbre d’Iwasawa complète

ZpvGw “ lim
ÐÝ
U

ZprG{U s,

où la limite projective est prise sur les sous-groupes ouverts normaux U de G.

Notons IG l’idéal d’augmentation de ZpvGw, c’est le noyau du morphisme d’aug-

mentation :

IG “ ker pZpvGw� Zpq.

L’algèbre ZpvGw est un anneau local d’idéal maximal MG :“ pZpvGw ` IG pour

laquelle il vient ZpvGw{MG » Fp.

Lemme 1.1. Le pro-p-groupe abélien X est naturellement muni d’une struc-

ture de ZpvGw-module (d’action continue pour les topologies naturelles sous-

jacentes issues des limites projectives).

Par le lemme de Nakayama topologique (voir par exemple [24, Chapitre V,

§2]), le ZpvGw-module X est de type fini si et seulement si le Fp-module X {MG

l’est. L’étude de la suite exacte

1 // H // G // G // 1

apporte le lemme suivant :

Lemme 1.2. Si l’on suppose finis les groupes de cohomologie H2pG,Fpq et

H1pG,Fpq, alors le ZpvGw-module X est de type fini.

Remarque 1.3. Dans nos contextes arithmétiques on aura G “ GK,S , et ces

groupes sont bien de présentations finies (voir par exemple [16, Chapter 11],

[24, Chapter X, §7] ou encore [12, Annexe]).

1.1.2. Action semi-simple. Soit ∆ un groupe fini d’ordre premier à p. L’algèbre

Zpr∆s est munie d’un système fondamental d’idempotents orthogonaux peϕqϕ,

ϕ parcourant l’ensemble Irrp∆,Qpq des caractères Qp-irréductibles de ∆. Si ϕ

désigne un caractère Qp-irréductible de ∆, nous notons par Mϕ :“ eϕM la ϕ-

composante de M. Soient 1 le caractère trivial puis Irr‚p∆,Qpq “ Irrp∆,Qpqzt1u,
l’ensemble des Qp-caractères irréductibles et non-triviaux de ∆.
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Notons que M∆ “ M1 ; la décomposition de M suivant les caractères

irréductibles nous indique que M∆ “ t0u si et seulement si M∆ “ t0u. Pour

plus de détails, voir par exemple [5].

À présent, on suppose que ∆ est un sous-groupe du groupe des automor-

phismes (continus) d’un pro-p-groupe de type fini G. Notons par Gp∆q la clôture

normale dans G du groupe engendré par les élements g´1σpgq, g P G, σ P ∆, et

posons G∆ :“ G{Gp∆q. Ainsi, G∆ est le plus grand quotient de G sur lequel ∆

agit trivialement. Soit le produit semi-direct Γ :“ ∆˙ G induit par l’action de ∆

sur G.

Proposition 1.4 (Wingberg). On a G∆ » Γppq, où Γppq est le pro-p-quotient

maximal de Γ. De plus, H1pG∆,Fpq » H1pGq∆ et H2pG∆,Fpq ãÑ H2pG,Fpq∆. En

particulier G∆ est pro-p-libre dès que H2pG,Fpq∆ “ t0u.

Démonstration. Voir [34, Lemme 2] (la preuve y est donnée quand ∆ est

d’ordre 2 mais elle reste valable dès que ∆ est d’ordre premier à p). Voir également

[32, Proposition 1.4]. �

Lorsque G est de Demushkin (pour un rappel sur les groupes de Demushkin

voir par exemple [24, Chapitre III, §9]), on a même plus :

Proposition 1.5 (Wingberg). Supposons G de Demushkin de dimension

cohomologique stricte 2. Alors H2pG∆,Fpq » H2pG,Fpq∆. Si de plus H2pG,Fpq∆
n’est pas trivial, le quotient G∆ est également de Demushkin.

Démonstration. Voir [32, proposition 2.2] (ici il est inutile de se restreindre

à la condition où ∆ est d’ordre 2). �

Pour toute la suite, on prend H un sous-groupe fermé normal de G conte-

nant Gp∆q pour la raison suivante : le groupe ∆ agit trivialement sur le quotient

G∆ � G{H :“ G. Ainsi comme G et ∆ commutent, le Zp-module X “ H{rH,Hs
hérite d’une structure de ZpvGw-module, de type fini si X l’est. Traitons le ca-

ractère trivial.

Proposition 1.6. Pour H “ Gp∆q, il vient X 1 “ t0u.

Démonstration. En effet, supposons que X 1 n’est pas trivial. Alors il

existe un sous-groupe normal H0 de G, sous-groupe strict de Gp∆q, tel que ∆

agisse trivialement sur le quotient G1 :“ Gp∆q{H0 (on peut par exemple s’assurer

que |G1| “ p) : cela repose sur le fait que le pro-p-groupe G∆ agit sur le pro-

p-groupe X 1. Posons G “ G{H0 et regardons l’action de ∆ sur G. Soit σ P ∆

d’ordre n ‰ 1, et soit g P G. Alors σpgq “ gh avec h P G1. Or σphq “ h. Ainsi
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g “ σnpgq “ ghn et par conséquent hn “ 1. Comme G1 est un p-groupe, il vient

que h “ 1 et donc σpgq “ g. On vient ainsi de montrer que le groupe ∆ agit

trivialement sur un quotient de G contenant strictement G∆, ce qui contredit la

maximalité de G∆. �

Terminons ce paragraphe par une première réduction possible quand ϕ P

Irr‚p∆,Qpq : par la proposition suivante, l’étude de la ϕ-composante Xϕ pour

un tel ϕ est réduite à la situation où G “ G∆. Conservons le contexte de la

section 1.1.2.

Proposition 1.7. Soient H1 Ă H2 deux sous-groupes normaux fermés de G
contenant Gp∆q. Pour i “ 1, 2, soient les quotients Gi “ G{Hi. Posons Xi “ Hab

i

puis H :“ H2{H1. Alors pour tout caractère ϕ P Irr‚p∆,Qpq, il vient l’isomor-

phisme de ZpvG2w-module : pX1,Hq
ϕ
» Xϕ

2 . En particulier, si Xϕ
1 est ZpvG1w-libre,

il en est de même pour Xϕ
2 en tant que ZpvG2w-module.

Démonstration. On part de la suite exacte 1 ÝÑ H1 ÝÑ H2 ÝÑ H ÝÑ 1

qui devient

¨ ¨ ¨ // H1pH,Zpq // X1,H
// X2

// Hab // 1.

Il suffit ensuite de prendre les ϕ-composantes et d’utiliser le fait que ∆ agit

trivialement sur le quotient H et donc aussi sur H1pH,Zpq et sur Hab. �

1.2. Suite spectrale à sept termes. Le point de départ algébrique de notre

étude est, comme dans [20], la suite exacte à sept termes issue de la suite spectrale

de Hochschild–Serre que l’on peut trouver dans [24, Chapitre II, §2, exercice 5].

Proposition 1.8. Soit G un pro-p-groupe de type fini et soit H un sous-

groupe de G, distingué et fermé. On note G le quotient de G par H et on suppose

que le groupe de cohomologie H2pH,Qp{Zpq est trivial. Alors on a la suite exacte

d’homologie :

H3pG,Zpq // H1pG,Habq // H2pG,Zpq

��

H2pG,Zpq // pX abqG // Gab // // Gab

(1)

La nouveauté ici consiste à regarder la suite exacte (1) dans le contexte d’une

action semi-simple de ∆, en supposant que Gp∆q Ă H. Rappelons que l’on note

le quotient G :“ G{H.
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Proposition 1.9. Conservons le contexte de la proposition 1.8 et supposons

H2pG,Qp{Zpq et H2pH,Qp{Zpq triviaux. Alors la suite exacte (1) est également

une suite exacte de Zpr∆s-modules.

Démonstration. Sous l’hypothèse H2pG,Qp{Zpq “ t0u la suite exacte (1)

se scinde en deux suites exactes :

H1pG,Qp{Zpq �
�
// H1pG,Qp{Zpq // H1pH,Qp{ZpqG // // H2pG,Qp{Zpq, (2)

H1pG,H1pH,Qp{Zpqq �
�
// H3pG,Qp{Zpq. (3)

L’action de σ P ∆ commute avec les applications inflation et restriction, donc

avec les deux premiers morphismes de la suite exacte (2). Il nous reste à prouver

que l’action de σ commute aussi avec la transgression (ce qui montrera également

que σ commute avec le morphisme de la suite exacte (3)). La fin de la preuve

est inspirée de [24, Chapitre I, §6, exercice 3]. Soit A un G-module (discret). On

définit le G-module A1 par la suite exacte

0 // A // IndGpAq // A1
// 0 ,

où IndGpAq est le module induit de A. On a alors la suite exacte longue de

cohomologie

0 // AH // IndGpAq
H // AH

1
// H1pH, Aq // H1pH, IndGpAqq “ t0u

que l’on coupe en deux en notant B l’image de IndGpAq
H dans AH

1 :

0 // AH // IndGpAq
H // B // 0 , (4)

0 // B // AH
1

// H1pH, Aq // 0 . (5)

Soit maintenant n ě 1. La suite exacte (4) donne

HnpG, IndGpAq
Hq // HnpG, Bq // Hn`1pG, AHq // Hn`1pG, IndGpAq

Hq ,

où les termes HnpG, IndGpAq
Hq et Hn`1pG, IndGpAq

Hq sont triviaux puisque

IndGpAq
H est un G-module induit. Finalement le δ-morphisme de connexion

δ1 : HnpG, Bq // Hn`1pG, AHq

est un isomorphisme. Sa composée avec le δ-morphisme

δ2 : Hn´1pG, H1pH, Aqq // HnpG, Bq

obtenu à partir de la suite exacte (5) est, d’après [24, Chapitre II, §1, exercice 3],

le morphisme dn´1,1
2 associé à la suite spectrale de Hochschild–Serre. Comme

l’action de σ commute avec les δ-morphismes de connexion, elle commute avec les

morphismes dn´1,1
2 et donc en particulier avec la transgression. �
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1.3. Liberté des ϕ-composantes.

1.3.1. Résultat préparatoire. Soit G un pro-p-groupe de type fini et soit ∆ un

groupe fini d’ordre premier à p. On se donne un ZpvGwr∆s-module Y de type fini

sur lequel les actions de G et ∆ commutent.

Proposition 1.10. Pour tout caractère irréductible ϕ de ∆, on a l’isomor-

phisme de ∆-modules : H1pG,Yϕq » H1pG,Yqϕ.

Démonstration. Commençons par le lemme suivant :

Lemme 1.11. Sous les conditions précédentes, on a l’isomorphisme de

∆-modules : pYGqϕ » pYϕqG. On notera par YϕG ce ∆-module.

Démonstration. Cela repose sur le fait que les actions de G et de ∆ com-

mutent. �

Soit une présentation minimale du ZpvGˆ∆w-module Y :

1 // R // F // Y // 1, (6)

où F » ZpvG ˆ ∆wr. Pour ϕ un caractère irréductible de ∆, on projette la

présentation de Y sur les ϕ-composantes pour obtenir :

1 // Rϕ // Fϕ // Yϕ // 1 , (7)

où ici Fϕ est ZpvGw-libre. La suite exacte (7) donne la suite exacte longue d’ho-

mologie :

1 // H1pG,Yϕq // H0pG,R
ϕq

looooomooooon

pRϕqG

// H0pG,F
ϕq

looooomooooon

pFϕqG

// H0pG,Yϕq
looooomooooon

pYϕqG

// 1. (8)

D’autre part, la G-homologie de (6) et les projections sur les ϕ-composantes

donnent :

1 // H1pG,Yqϕ // H0pG,Rq
ϕ

looooomooooon

pRGqϕ

// H0pG,F q
ϕ

looooomooooon

pFGqϕ

// H0pG,Yqϕ
looooomooooon

pYGqϕ

// 1. (9)

Le résultat se déduit des suites exactes (8) et (9) associées au lemme 1.11. �

Corollaire 1.12. Pour ϕ P Irrp∆,Qpq, le ZpvGw-module Yϕ est libre si et

seulement si les deux conditions suivantes sont satisfaites :

(i) H1pG,Yqϕ est trivial ;

(ii) YϕG est Zp-libre.

Démonstration. Il est bien connu qu’un ZpvGw-module M de type fini est

libre si et seulement si H1pG,Mq est trivial et MG est sans p-torsion. Il suffit

alors simplement d’utiliser la proposition 1.10. �
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1.3.2. Un premier résultat et quelques conséquences. Revenons au contexte de

la section 1.1.2 et donnons une extension du résultat de [20] (voir aussi [24, Cha-

pitre V, §6]) :

Théorème 1.13. Soit G un pro-p-groupe de présentation finie et soit ∆ un

sous-groupe fini d’ordre premier à p du groupe des automorphismes de G. Soit

H un sous-groupe fermé normal de G contenant Gp∆q ; posons X “ H{rH,Hs et

G “ G{H.

Supposons H2pH,Zpq et H2pG,Zpq triviaux et fixons un caractère Qp-
irréductible ϕ de ∆.

(i) Pour ϕ ‰ 1, le ZpvGw-module Xϕ est libre si et seulement si le groupe pGabqϕ
est sans Zp-torsion et, dans ce cas, Xϕ est de ZpvGw-rang dϕ “ rgZp

pGabqϕ.

(ii) Pour ϕ “ 1, supposons de plus G de dimension cohomologique cdpGq au

plus 2. Alors X 1 est ZpvGw-libre dès que le morphisme TorZp
pGabq1 Ñ Gab

est injectif, et, dans ce cas, X 1 est de ZpvGw-rang

d1 “ dpH2pG,Fpq ´ dpG` rgZp
pGabq1.

Remarque 1.14. Lorsque Y » ZpvGwt, l’entier t est unique. On l’appelle le

ZpvGw-rang de Y.

Démonstration. Supposons ϕ ‰ 1. Par hypothèse, le groupe ∆ agit trivia-

lement sur G et ainsi les ϕ-composantes H3pG,Zpqϕ, H2pG,Zpqϕ et pGabqϕ sont

triviales. La suite exacte de la proposition 1.8 implique alors

H1pG,X qϕ “ t0u et Xϕ
G » pG

abqϕ,

et on conclut grâce au corollaire 1.12.

Le cas du caractère trivial se traite de la même façon. Sous l’hypothèse

cdpGq ď 2, le groupe H3pG,Zpq1 est trivial et il en est de même du groupe

H1pG,X q1. La suite exacte de la proposition 1.8 devient :

0 // H2pG,Zpq // X 1
G

// pGabq1 // pGabq1 // 0

dont on déduit que le Zp-module X 1
G est sans torsion si et seulement si le mor-

phisme TorZp
pGabq1 Ñ pGabq1 est injectif (car H2pG,Zpq est sans torsion), et

on peut conclure grâce au corollaire 1.12. Les calculs sur les rangs sont ensuite

immédiats. �

Remarque 1.15. Notre résultat principal peut être vu comme une réciproque

à la proposition 1.7. En effet, pour ϕ ‰ 1, nous montrons que Xϕ est ZpvGw-libre

pour tout quotient G de G∆ si et seulement si Xϕ
0 est Zp-libre où X0 :“ Gab, en

d’autres termes pour le plus petit quotient de G∆.
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Remarque 1.16. Sous les conditions du théorème 1.13 et pour H “ Gp∆q, on

obtient que H2pG∆,Qp{Zpq est trivial : en effet, dans ce cas, X 1 “ t0u.

Donnons à présent quelques situations immédiates (dans le contexte de la

section 1.1.2).

Corollaire 1.17. Soit G un pro-p-groupe de dimension cohomologique

stricte 2 et soit H un sous-groupe fermé et distingué de G contenant Gp∆q. Soit

G0 un sous-groupe ouvert et distingué de G contenant H. Posons G “ G{H et

G0 “ G0{H. Alors pour ϕ P Irr‚p∆,Qpq, le ZpvGw-module Xϕ est libre si et

seulement si il l’est en tant que ZpvG0w-module.

Démonstration. Un sens est immédiat, mais nous allons montrer ce

résultat par équivalence directe. Comme G est de dimension cohomologique

stricte 2, les hypothèses du théorème 1.13 sont satisfaites et ainsi Xϕ est ZpvGw-
libre si et seulement si TorZp

`

Gab
˘ϕ

est trivial. Il en est de même de Xϕ en tant

que ZpvG0w-module. Mais l’hypothèse sur la dimension cohomologique stricte as-

sure également un isomorphisme entre TorZp
Gab et

`

TorZp
Gab0

˘G{G0
induit par le

morphisme de transfert (voir par exemple [24, Chapitre III, Théorème 3.6.4]).

Ainsi, les ϕ-composantes de TorZp
Gab et de TorZp

Gab0 sont simultanément nulles

ou non. Le résultat s’en déduit. �

Corollaire 1.18. Soit G un pro-p-groupe libre à d générateurs. Soit H un

sous-groupe fermé et distingué de G contenant Gp∆q. Alors pour ϕ P Irr‚p∆,Qpq,
on a Xϕ » ZpvGwdϕ , où dϕ “ rgZp

pGabqϕ.

Démonstration. Immédiat. �

À ce niveau, on peut avancer un résultat un peu plus précis lorsque

H “ Gp∆q. Rappelons que si Fd est le pro-p-groupe libre à d générateurs, l’algèbre

ZpvFdw est isomorphe à l’algèbre de Magnus des séries formelles non commutatives

ZpvX1, . . . , Xdw
nc (voir par exemple [16, Chapitre 7, §7.6]).

Corollaire 1.19. Sous les conditions du théorème 1.13, prenons H “ Gp∆q.
Supposons pGabqϕ et pGabq1 sans Zp-torsion, où ϕ P Irr‚p∆,Qpq. Alors

Xϕ »
`

ZpvX1, . . . , Xd1w
nc
˘dϕ

,

où dϕ “ rgZp
pGabqϕ.

Démonstration. Le théorème 1.13 indique ici que Xϕ est libre de rang dϕ.

De plus, la suite exacte 1 ÝÑ Zp ÝÑ Zp ÝÑ Fp ÝÑ 1 apporte la suite exacte de

∆-modules

¨ ¨ ¨ // H2pG,Zpq // H2pG,Fpq // Gabrps.
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Par hypothèse H2pG,Zpq “ t0u et
`

Gabrps
˘1
“ t1u. Ainsi, H2pG,Fpq1 “ t0u et la

proposition 1.4 indique que G∆ est pro-p-libre de rang égal au p-rang de pGabq1,

c’est-à-dire à rgZp
pGabq1. �

Pour le dernier corollaire de cette section, faisons le rappel suivant : un groupe

de Demushkin G est de dimension cohomologique stricte 2 si et seulement si pour

tout sous-groupe ouvert U de G, H2pU ,Qp{Zpq “ 0, ou encore si et seulement si

TorZpUab ‰ t0u. La dernière équivalence provient de la suite exacte

1 // H2pU ,Zpq{p // H2pU ,Fpq // Uabrps // 1

associée au fait que H2pU ,Fpq » Z{pZ (pour la première équivalence voir par

exemple [30, Chapitre I §3 Proposition 19]). Cette suite exacte indique également

que si G est de dimension cohomologique stricte 2, on a l’isomorphisme de

∆-modules :

H2pG,Fpq »∆ Gabrps.

Corollaire 1.20. Soit G un groupe de Demushkin de dimension cohomolo-

gique stricte 2. Soit ω le caractère de ∆ résultant de l’action sur TorZpGab.

(i) Si G∆ est pro-p-libre, alors Xω est non libre en tant que ZpvG∆w-module et,

pour ϕ ‰ ω, Xϕ est ZpvG∆w-libre.

(ii) Si G∆ est de Demushkin, alors pour tout ϕ P Irr‚p∆,Qpq, on a Xϕ “

ZpvG∆w
dϕ , avec dϕ “ rgZp

pGabqϕ.

Démonstration. Comme G est de Demushkin de dimension cohomologique

stricte 2, les conditions sur les multiplicateurs de Schur H2pG,Qp{Zpq “ t0u et

H2pH,Qp{Zpq “ t0u sont satisfaites pour tout sous-groupe fermé H de G. Suivant

la proposition 1.5, G∆ est pro-p-libre si et seulement si H2pG,Fpq1 “ t0u. Dans

ce cas ω ‰ 1 et Xω n’est pas libre. En revanche les autres ϕ-composantes sont

libres. Dans l’autre cas, H2pG,Fpq1 n’est pas trivial, ainsi ω “ 1 et Xϕ est libre

pour tout ϕ P Irr‚p∆,Qpq. �

2. Études de quelques contextes arithmétiques

Si K désigne un corps de nombres ou un corps local et si p désigne un nombre

premier, on note par µp8pKq le groupe des racines de l’unité d’ordre une puissance

de p contenues dans K.
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2.1. La situation locale. Soit une extension locale K{k de Qp, galoisienne

de groupe de Galois ∆, d’ordre premier à p. Notons par K la pro-p-extension

maximale de K et posons G “ GalpK{Kq. Soit Γ “ ∆ ˙ G. Posons H “ Gp∆q,
X “ Hab, G “ G{G∆. Le pro-p-groupe G » Gppq est isomorphe au groupe de

Galois Galpk{kq : c’est un pro-p-groupe à rk : Qps ` 1 ` dpµp8pKq générateurs.

Suivant que k contient les racines p-èmes de l’unité ou non, le pro-p-groupe G

est un groupe de Demushkin (de dimension cohomologique stricte 2) ou un pro-

p-groupe libre.

Corollaire 2.1. Supposons que K ne contient pas les racines p-èmes de

l’unité. Alors pour tout caractère Qp-irréductible ϕ P Irr‚p∆,Qpq, il vient

Xϕ » ZpvGwdϕ , avec dϕ “ rgZp
pGabqϕ “ degpϕqrk : Qps.

Démonstration. Ici G est pro-p-libre, et c’est alors une application

immédiate du corollaire 1.18. �

Supposons maintenant que K contient les racines p-èmes µp de l’unité. Alors G
est un groupe de Demushkin et l’on se retrouve dans la situation du corollaire 1.20.

Soit ω le caractère de ∆ résultant de l’action sur µp.

Corollaire 2.2. Supposons que K contient les racines p-èmes de l’unité.

(i) Pour ϕ ‰ ω et ϕ ‰ 1, il vient Xϕ » ZpvGwdϕ , où dϕ “ degpϕqrk : Qps.
(ii) Quand ω ‰ 1, Xω n’est pas ZpvGw-libre.

(iii) Quand ω “ 1, X 1 “ t0u.

Démonstration. Seuls les caractères 1 et ω sont à discuter. Si ω n’est pas

le caractère trivial, c’est le point (i) du corollaire 1.20 qui s’applique. Si ω “ 1,

cela signifie que G est de Demushkin de dimension cohomologique stricte 2 et

cette fois-ci, c’est le point (ii) qui s’applique. �

2.2. Extensions de corps de nombres.

2.2.1. Rappels. Le contexte que l’on va considérer par la suite est celui des exten-

sions à ramification restreinte. Rappelons les points essentiels pour notre étude.

Soit p un nombre premier.

piq Soit K un corps de nombres et soit S un ensemble fini de places finies de

K contenant les places p-adiques. Notons par KS la pro-p-extension maximale de

K non-ramifiée en dehors de S, et posons GK,S “ GalpKS{Kq. Pour une place v

de S, on note par Uv le p-Sylow du groupe des unités locales en v. Soit ensuite

EK “ ZpbEK le p-adifié du groupe des unités EK de K. L’ensemble S étant fixé,

on note enfin par ι (“ ιS) le plongement diagonal de EK dans
ś

vPS Uv.
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L’étude de GabK,S :“ pGK,Sq
ab peut se faire de façon relative, par exemple à

travers le p-groupe des classes ClpKq de K (via l’application d’Artin). Typique-

ment (voir par exemple [12, Chapitre III]), on a :

Proposition 2.3. Soit p tel que ClpKq est trivial. Alors

GabK,S »

ś

vPS Uv
ιpEKq

.

Cette proposition montre que les nombres premiers qui divisent l’ordre du

groupe des classes jouent un rôle bien particulier pour notre étude. Nous les

appelons nombres premiers exceptionnels. Rappelons que le théorème de Brauer–

Siegel (cf [18, Chapitre XVI, §1]) apporte l’inégalité |ClpKq| ď |DiscK|
C , où DiscK

est le discriminant du corps K et où C est une constante universelle. Rappelons

également qu’il est conjecturé que pour tout ε ą 0 : |ClpKqrps| !ε,rK:Qs |DiscK|
ε.

Voir par exemple Ellenberg–Venkatesh [6] pour une présentation de cette

conjecture.

piiq Soit K{k une extension galoisienne de corps de nombres de groupe de

Galois ∆ d’ordre premier à p. Pour S (“ Skq un ensemble fini de places de k,

nous notons également par S (“ SK “ tw|v, v P Sk, w place de Ku) l’ensemble

des places de K au-dessus de celles de Sk. La proposition 2.3 fait apparâıtre le

∆-module
ś

w|v Uw, et sa structure est bien connue. En effet, soit v une place

de k et soit w|v une place de K au-dessus de w. Par abus, posons Dv “ Dw le

groupe décomposition de w dans K{k. Si v ne divise pas p, le ∆-module
ś

w|v Uw
est isomorphe au module induit Ind∆

Dv
µp8pKwq :“ Zpr∆s bDv µp8pKwq. À noter

que si kv contient une racine primitive p-ème de l’unité, alors Dv agit trivialement

sur µp8pKwq et ainsi
ś

w|v Uw » Zpr∆s bDv Z{NZ, où N “ |µp8pkvq|. Lorsque

v divise p, le logarithme p-adique permet d’obtenir
ś

w|v Uw » Ind∆
Dv
µp8pKwq ‘

pZpr∆sqrkv:Qps.

piiiq La conjecture de Leopoldt pour le corps de nombres K et le nombre

premier p stipule que l’application de semi-localisation induit un Zp-morphisme

injectif de EK dans le produit
ś

v|p Uv. (Voir [12, Chapitre III, §3] ou [24, Chapitre

X, §3] pour plus de précisions.) Rappelons que la conjecture de Leopoldt équivaut

à la trivialité du multiplicateur de Schur H2pGK,S ,Zpq du pro-p-groupe GK,S dès

que S contient l’ensemble Sp (voir [25], et [29] pour p “ 2). Comme le pro-p-

groupe GK,S est de dimension cohomologique au plus 2 (pour p “ 2, voir [29]),

la conjecture de Leopoldt le long de KS{K équivaut au fait que le pro-p-groupe

GK,S est de dimension cohomologique stricte au plus 2, pour tout ensemble fini

S contenant Sp.
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On suppose pour toute la suite que la conjecture de Leopoldt est vérifiée pour

toutes les extensions finies de K. Ainsi pour tout sous-groupe fermé H de GK,S

le groupe H2pH,Zpq est trivial : les hypothèses du théorème 1.13 seront vérifiées

dans les contextes globaux à venir.

Terminons ce point en rappelant un théorème de déploiement de la ramifica-

tion ([12, Chapitre III, §4, Théorème 4.1.5]) :

Théorème 2.4. Supposons la conjecture de Leopoldt vérifiée pour le corps

de nombres K et le premier p. Alors il vient la suite exacte

1 //
ś

vPSzSp
Uv // TorZpG

ab
K,S

// TorZpG
ab
Sp

// 1.

pivq On se place donc sous la conjecture de Leopoldt. À l’exception d’un

nombre fini de nombres premiers p d’après la proposition 2.3, nous verrons que

l’object central de notre étude est la torsion du quotient
ś

vPSp
Uv{ιpEKq. Lorsqu’il

est trivial, le corps K est dit p-rationnel. Si de plus |µp8pkvq| “ 1 pour tout v|p,

alors notre étude est ramenée à celle du module de torsion

TorZp

¨

˝logp
ź

vPSp

Uv{ logp ιpEKq

˛

‚,

appelé régulateur (p-adique) normalisé de K ([10, Définition 5.1]).

2.2.2. Quelques situations immédiates. Soit K{k une extension galoisienne de

corps de nombres de groupe de Galois ∆ d’ordre premier à p. Soit S un ensemble

fini de places finies de k. On va appliquer les résultats de la section 1 au groupe

GalpKS{kq “: Γ “ ∆˙ G, où l’on a posé G :“ GalpKS{Kq.

On notera v une place de Sk et w|v une place de SK au-dessus de v. Pour

qu’une place w P S puisse jouer un rôle, nous nous assurons que :

´ ou bien w est une place p-adique ;

´ ou bien, si w - p, le corps local Kw contient une racine primitive d’ordre p.

Remarquons que pour v|w, avec v - p, on peut avoir |µp8pkvq| “ 1.

Soit G :“ G∆ le plus grand quotient de G sur lequel ∆ agit trivialement.

On a alors :

Lemme 2.5. Le groupe de Galois G est isomorphe au groupe de Galois

GalpkS{kq.
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Démonstration. En effet, on sait d’après la proposition 1.4 que G est iso-

morphe à Γppq, le plus grand pro-p-quotient de Γ. Par conséquent le résultat se

déduit facilement en se rappelant que kS{k est la pro-p-extension maximale de k

non ramifiée en dehors de S. �

En d’autres termes, le sous-corps fixé par Gp∆q correspond, par la théorie de

Galois, au compositum KkS{K.

Si l’on suppose de plus que S contient Sp, la conjecture de Leopoldt nous

assure la trivialité des multiplicateurs de Schur H2pH,Zpq pour tout sous-groupe

fermé H de GS . Le théorème A se déduit alors du théorème 1.13 : pour ϕ ‰ 1,

l’étude de la liberté du module Xϕ équivaut à l’étude de la torsion de pGabK,Sq
ϕ.

Dans ce contexte, la proposition 2.3 nous permet d’obtenir :

Corollaire 2.6. Soit p tel que p - |ClpKq| et soit ϕ P Irr‚p∆,Qpq. Alors le

module Xϕ est ZpvGw-libre si et seulement si

(i)
`
ś

wPSzSp
Uw

˘ϕ
“ t1u, et

(ii) TorZp

`
ś

wPSp
Uw

˘ϕ

ιpEϕKq
“ t1u, où ι est le plongement diagonal sous-jacent.

Démonstration. C’est une simple application du théorème A (ou alter-

nativement du théorème 1.13) associée à la proposition 2.3 et au théorème de

déploiement 2.4. �

Prenons p générique, c’est-à-dire tel que :

´ le p-Sylow du groupe des classes ClpKq de K est trivial (le premier p n’est

pas exceptionnel), et

´ pour toute place w|p, Kˆw ne contient pas de racine primitive p-ème de l’unité.

On a alors :

Corollaire 2.7. Soit p générique et soit un caractère Qp-irréductible

ϕ P Irr‚p∆,Qpq de ∆ tels que les deux ϕ-composantes suivantes soient triviales :

(i) EϕK et,

(ii)
`
ś

wPSzSp
Uw

˘ϕ
.

Alors le module Xϕ est ZpvGw-libre.

Démonstration. C’est une conséquence directe du corollaire 2.6. �

Le cas d’une extension à multiplication complexe est particulièrement facile

à décrire.
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Corollaire 2.8. Soit K{k une extension quadratique à multiplication com-

plexe et soit p ą 2 générique.

(i) Si une place v P SzSp se décompose dans K{k ou si elle est telle que

µp8pkvq “ t1u, alors X´ n’est pas ZpvGw-libre.

(ii) Supposons le contraire, i.e. que pour toute place v P SzSp, on a µp8pkvq ‰ t1u

et que v est soit inerte, soit ramifiée dans K{k. Alors X´ est ZpvGw-libre de

rang |Sk|.

Démonstration. D’après le théorème 1.13, la liberté du ZpvGw-module X´
équivaut à la trivialité de TorZppG

ab
S q
´. On utilise ensuite l’isomorphisme de la

proposition 2.3 puis le fait que E´K “ µp8pKq´ (voir par exemple [31, Chapitre 4,

Théorème 4.12]) et donc que E´K “ t1u car p générique, pour arriver à

TorZppG
ab
S q
´»TorZp

˜

ś

wPS Uw
ιpEKq

¸´

»TorZp

˜

ź

wPS

Uw

¸´

»TorZp

˜

ź

wPSzSp

Uw

¸´

,

et le résultat est alors immédiat. �

Wingberg dans [33] étudie les situations où les groupes GK,S sont de De-

mushkin, notamment dans le cas à multiplication complexe.

Théorème 2.9 (Wingberg, [33]). Soit K{k une extension à multiplication

complexe. Supposons qu’il existe une place w P S telle que µppKwq ‰ t1u. Soit

v|w. Alors GK,S est un groupe de Demushkin si et seulement si les conditions

suivantes sont vérifiées :

(i) Sk “ Sp “ tvu et |SK| “ 1` δK, où δK “ 1 si µppKq ‰ t1u, 0 sinon ;

(ii) Gk,S est un groupe de Demushkin et µppkvq ‰ t1u ;

(iii) GS,abK “ t1u.

On en déduit alors le corollaire suivant :

Corollaire 2.10. Sous les conditions de cette section, supposons que GK,S

est un groupe de Demushkin. Alors le ZpvGw-module X´ est libre.

Démonstration. D’après le théorème 2.9, le groupe Gk,S est de Demush-

kin, c’est alors une simple application du corollaire 1.20. �

3. Etudes numériques

On se propose de faire quelques simulations numériques dans différentes fa-

milles d’extensions galoisiennes K{Q : cubiques cycliques, cycliques réelles de
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degré 4 et diédrales de degré 6. Pour une raison de semi-simplicité on a tou-

jours p - rK : Qs. On suppose la conjecture de Leopoldt vraie dans les extensions

en jeu.

Notre étude est centrée sur les nombres premiers p non exceptionnels, c’est-

à-dire ceux qui ne divisent pas |ClpKq|, et l’objet arithmétique à calculer est la

ϕ-partie de la Zp-torsion du quotient
ś

v|p Uv{ιpEKq, i.e. (à l’exception de p “ 2)

la ϕ-partie du régulateur normalisé.

Remarque 3.1. On notera que pour p “ 3 et p “ 5, les complétés Kw étudiés,

w|p, ne contiennent pas les racines p-èmes l’unité.

3.1. Le contexte. On va appliquer le corollaire 2.6, redonnons le contexte. Soit

p un nombre premier et soit K{Q une extension galoisienne de groupe de Galois ∆

d’ordre premier à p. On se fixe un caractère Qp-irréductible non-trivial ϕ de ∆.

On se donne un ensemble fini S de nombres premiers de Z contenant le nombre

premier p : ainsi Sp Ă S. On pose G “ GK,S . On rappelle alors que G∆ » GQ,S
et qu’ici GQ,S » Zp si et seulement si pour tout premier ` P SzSp, il vient

` ı 1 pmod pq. Remarquons que le groupe GQ,S n’est pas p-adique analytique

pour S assez grand. On prend H “ Gp∆q “ GalpKQS{Kq, puis X “ Hab. Enfin,

on suppose que les premiers ` P SzSp n’apportent pas d’obstruction à la liberté

de Xϕ, i.e que
`
ś

w|`PSzSp
Uw

˘ϕ
“ t1u.

Supposons de plus p non exceptionnel. Par le choix des `, il vient que Xϕ est

ZpvGQ,Sw-libre si et seulement si

TorZp
pGabS,Kq

ϕ » TorZp

˜
`
ś

w|p Uw
˘ϕ

ιpEϕKq

¸

“ t1u.

Si la ϕ-composante EϕK “ xx1, . . . , xdy de EK est de Zp-rang d ą 0, alors

TorZp

`
ś

wPSp
Uw

˘ϕ

ιpEϕKq
‰ t1u

si et seulement si il existe a1, . . . , ad P t0, . . . , p´ 1u, non tous nuls, tels que

@w P Sp, ιwpx
a1
1 , . . . , xadd q P U

p
w,

où ιw est le plongement de K dans Uw. Si l’on suppose par exemple a1 ‰ 0,

par la relation de Bézout entre a1 et p, on se ramène à tester la condition

ιwpx1x
a2
2 , . . . , xadd q P Upw, pour tout w P Sp, quand les puissances ai varient dans

v0, p´ 1w.
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Remarque 3.2. Remarquons qu’il nous faut des générateurs de EK, ce qui est

moins “fin” que des générateurs de EK.

Plaçons-nous dans le cadre suivant : supposons que EϕK “ xεyZp
est engendré

par une unité ε de K. Alors, pour p générique, Xϕ est non-libre si et seulement

si ιwpεq P Upw pour toute place w P Sp. Cette dernière condition est alors facile à

tester : c’est une simple condition de congruence dans K impliquant une certaine

relation entre les unités xi. Précisons à ce niveau que tout ceci s’adapte parfaite-

ment au cas où le caractère Qp-irréductible ϕ s’écrit ϕ “
ř

ψ|ϕ ψ, où les ψ sont

des caractères Cp-irréductible de degré 1 ; in fine, cela revient aussi à tester si une

certaine unité est une puissance p-ème localement en toutes les places w|p.

Pour les trois situations à venir, nous avons fait le choix suivant : partir d’un

polynôme P dont les racines forment une base des unités du corps K. Dans ce cas,

et quand EϕK “ xεy (ou éventuellement quand EψK est monogène), la condition à

tester se réduit à une simple condition de congruence dans Z (à l’exception d’un

ensemble de premiers p bien localisés).

En effet, tout d’abord, pour p ą 2 montrer que ε est une puissance p-ème

localement en w P Sp équivaut à montrer que

wpεap ´ 1q ě e` 1, (10)

où ap “ pf ´ 1, e et f étant respectivement les indices de ramification et d’inertie

de p dans K{Q (dans notre étude on a toujours p ą e`1) et où w est la valuation

associée à la place w. Ainsi lorsque p ą 2 est non ramifié, montrer que ε est une

puissance p-ème localement en toutes les places w P Sp équivaut à montrer que

εap ´ 1 ” 0 pmod p2q. (11)

Ensuite, dans les situations cycliques, ε “ upxq est une fonction polynomiale

en une racine x de P à coefficients dans Q. La congruence (11) dans OK peut

alors être vue dans Z de la façon suivante. En s’assurant que p - DiscpP q, on peut

écrire

εap ´ 1 “ Qpxq ` p2y,

où Q “ λ0 ` λ1X ¨ ¨ ¨ ` λn´1X
n´1 P ZrXs, n “ rK : Qs, et où y P OK. Il est

alors immédiat que (11) équivaut à vérifier que Q est trivial dans le quotient

ZrXs{pP, p2q

Enfin, dans la famille d’extensions diédrales, par un résultat de Maus [22],

on aura OK “ Zrx1, x2s avec P pxiq “ 0. Là aussi, à l’exception de premiers p bien

localisés, on peut écrire

εap ´ 1 “ Qpx1,
a

DiscpP qq ` p2y,
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où Q “
ř

0ďiď2,0ďjď1 λi,jX
iY j P ZrX,Y s, et où y P OK. Alors la congruence (11)

équivaut à la trivialité de Q dans le quotient ZrX,Y s{pP pXq, Y 2 ´DiscpP q, p2q.

3.2. Extensions cubiques cycliques. Soit p ‰ 3 et soit un polynôme P de

degré 3 irréductible sur Q définissant un corps cubique cyclique que l’on note K.

On fait le choix pour la suite d’ordonner les racines de P par ordre croissant :

ε1 ă ε2 ă ε3, et de prendre pour générateur du groupe ∆ “ GalpK{Qq le mor-

phisme σ défini par σpε1q “ ε2 et σpε2q “ ε3. Le groupe ∆ a trois caractères

Cp-irréductibles 1, ϕ et ϕ2.

Supposons que les racines de P engendrent EK{x˘1y.

3.2.1. Quand 3 divise p ´ 1. Les caractères ϕ et ϕ2 sont définis sur Qp. Soit

ζ P Qp une racine primitive cubique de l’unité. Fixons ϕ tel que ϕpσq “ ζ et

posons

uϕ “ ε1ε
´ζ
2 et uϕ2 “ ε1ε

´ζ2

2 .

Alors σpuϕq “ uζϕ, σpuϕ2q “ uζ
2

ϕ2 et, ainsi, EϕK “ xuϕy et Eϕ
2

K “ xuϕ2y.

Nos résultats montrent que pour p générique (et p non ramifié), la ϕ-compo-

sante Xϕ est libre, en fait triviale ici, si et seulement si

`

ε1ε
´a
2

˘ap
´ 1 ı 0 pmod p2q,

où a P t1, . . . , p ´ 1u est tel que ζ ” a pmod pq. Comme nous l’avons vu, cette

congruence se teste facilement. En effet, à l’exception de quelques nombres pre-

miers p (en fait ceux divisant DiscpP q), l’élément pε1ε
´a
2

˘ap
´ 1 peut être vu,

modulo p2OK, comme un polynôme Q de ZrXs, et la condition “
`

ε1ε
´a
2

˘ap
´ 1 ı

0 pmod p2q” équivaut à ”Q ı 0 pmodpP, p2qq”.

C’est cette dernière condition que l’on va tester de façon intensive. On note

R le couple rε1, ε2s. Pour un premier p donné, il suffit alors de considérer un

relèvement a d’une racine primitive cubique mod p puis de calculer les

congruences. Le programme (avec PARI/GP) est donc plutôt simple. On note

toujours f l’indice d’inertie de p dans K{Q.

torsion(P,R,p,f,a)=

{my(Rmodp2,T);

T=vector(2);

E1=Mod(Mod(R[1],P),p^2);

E2inv=Mod(Mod(R[2]^(-1),P),p^2);

T[1]=lift((E1*E2inv^a)^(p^f-1)-1)==Mod(0,p^2);

T[2]=lift((E1*E2inv^(a^2))^(p^f-1)-1)==Mod(0,p^2)

T;}
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Ce code renvoie un couple rT1, T2s, où chacune des composante est 1 ou 0 suivant

si Q ” 0 pmodpP, p2qq ou non. On peut ensuite faire varier les premiers p.

Balady dans [1] donne plusieurs familles de polynômes, généralisant celle

de Kishi [17], qui fournissent une base d’unités de K. Ils sont construits de la

manière suivante : soient f et g deux polynômes à coefficients entiers et soient

λ “
`

f3` g3` 1
˘

{fg puis a “ 3
`

f2` g2´ fg
˘

´λ
`

f ` g
˘

. Considérons la famille

de polynômes Pn “ X3 ` apnqX2 ` λpnqX ´ 1, n P Z. Alors sous les hypothèses :

pαq λ est un polynôme à coefficients entiers,

pβq n ‰ ´1,

pγq 3apnq ` λpnq2 est sans facteurs carrés,

les polynômes Pn déterminent des corps cubiques cycliques Kn (noté également

K) dont les racines engendrent EK{x˘1y.

Introduisons quelques notations pour présenter nos calculs. Lorsque P est

donné, notons respectivement Ddisc et DCl l’ensemble des diviseurs de DiscpP q

et du nombre de classes du corps K (le corps cubique de polynôme P ). Soit

ensuite P (“ PK) l’ensemble des nombres premiers p vérifiant : piq p ” 1pmod 3q,

piiq p R DCl YDdisc. Posons alors

FnlpXq :“ tp P P, p ď X, Xϕ ou Xϕ2

non libreu.

À p fixé, le caractère irréductible ϕ est déterminé par la donnée d’un élément a

de t0, . . . , p ´ 1u, et pour p P FnlpXq, on renseigne en indice l’entier a associé à

la composante non-libre (non-triviale ici).

‚ Prenons la famille de polynômes Pn donnée par Balady à partir de

fpnq “ ´n2 et gpnq “ n3 ´ 1. Pour 1 ď n ď 100, on trouve 51 polynômes

vérifiant les conditions pαq, pβq et pγq. Le tableau en annexe A.2.1 donne les

résultats obtenus pour X “ 23ˆ 107 (et ces 51 corps cubiques). Notons que l’on

n’a aucun exemple où les deux composantes ne sont pas triviales (simultanément).

Remarque 3.3. Afin de réduire au maximum les temps de calcul, la liste des

relèvements des racines cubique modulo p pour tous les premiers inférieurs à une

certaine borne (X “ 23 ˆ 107 pour nous) est calculée à part. Lorsque, à n fixé,

nous faisons varier p de 1 à 106, ce principe nous permet de diviser le temps de

calcul par plus de 60.

Dans ces calculs, à n fixé, deux ensembles de premiers sont exclus : Ddisc
et l’ensemble des premiers exceptionnels DCl. Il est néanmoins possible de faire

le calcul différemment et de conclure pour ces nombres premiers grâce aux algo-

rithmes de Gras [9] et Pitoun–Varescon [27] qui utilisent les calculs du corps
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de classes de PARI/GP. En effet, notre hypothèse sur l’ensemble S fait que tout

se passe au niveau des complétés p-adiques et ainsi, finalement, tester la liberté

des composantes de X équivaut à tester la p-rationalité du corps K (ce que testent

ces algorithmes) : le défaut de non rationalité de K est localisé en ϕ ou/et ϕ2 (car

Q est p-rationnel).

paq Pour les premiers p P DdisczDCl, le résultat est immédiat : dans l’ inter-

valle étudié (n ď 100 vérifiant pαq, pβq et pγq), les corps sont p-rationnels.

pbq Pour les premiers p P DCl, aucun des 51 corps n’est p-rationnel. Concen-

trons-nous sur la trivialité du régulateur normalisé :

´ Quand p n’est pas ramifié dans K{Q, le régulateur normalisé est non-trivial

uniquement lorsque : pn, paq P tp11, 74q, p16, 74q, p17, 742q, p49, 74q, p67, 74qu.

À noter que dpTorZp
GabK,Sp

“ 1 pour p11, 7q et p67, 7q, et que dpTorZp
GabK,Sp

“

2 pour les couples p16, 7q, p17, 7q et p49, 7q.

´ Quand p est ramifié : le régulateur normalisé est trivial dans tous les cas.

Remarque 3.4. Comme on l’a expliqué plus tôt, les algorithmes de Pitoun–

Varescon et de Gras déterminent le module de torsion TorZp
GabSp

, testant ainsi si un

corps donné est, ou non, p-rationnel pour un premier p fixé. Nous avons choisi pour

nos calculs d’utiliser d’abord notre code, puis de traiter les cas particuliers avec

l’algorithme de Pitoun–Varescon. Nous calculons donc avec PARI/GP le nombre

de classes de K puis faisons varier p où les calculs se résument à des congruences

dans Z alors que l’algorithme de Pitoun–Varescon nécessite le calcul d’un corps de

classes de rayon pour chaque premier p. À titre de comparaison, voici les temps

mis par les deux programmes pour le polynôme P “ X3 ` 309X2 ´ 10X ´ 1

(polynôme de Balady, n “ 2) lorsque l’on fait varier le premier p de 1 à 106 : avec

l’algorithme de Pitoun–Varescon on obtient la liste des corps non p-rationnels

en plus d’une heure, alors que notre algorithme renvoie la liste des composantes

non-libres en 4.808ms (en calculant les racines cubiques au préalable). Pour être

complet, notons que sur cet exemple l’algorithme de Gras est plus rapide que celui

de Pitoun–Varescon (un peu moins d’une heure).
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‚ Prenons maintenant la famille de Lecacheux [19], que l’on retrouve à

partir des polynômes de Balady pour fpnq “ ´1 et gpnq “ ´n. Pour 1 ď n ď 100,

on trouve 25 polynômes vérifiant les conditions voulues. Les tableaux en annexe

A.2.2 donnent les résultats obtenus pour X “ 23 ˆ 107 (et 1 ď n ď 100). Là

encore, on traite à part en utilisant l’algorithme de Pitoun–Varescon les premiers

de Ddisc et de DCl.
paq Dans les intervalles étudiés, pour chaque premier p P DdisczDCl, le corps

est p-rationnel, à l’exception des trois situations suivantes : n “ 50, n “ 62 et

n “ 76 pour le nombre premier p “ 7. On peut alors faire le calcul directement

dans le corps de nombres pour déterminer quelle ϕ-composante est non-libre. On

voit que pour n “ 62 et n “ 76, la composante Xϕ est non-libre pour ϕ donné

par la racine cubique 4 mod 7 (l’autre composante est libre). Détaillons le cas

n “ 50. Ici u
ap
ϕ “ pε1ε

´4
2 q6 et u

ap
ϕ2 “ pε1ε

´16
2 q6 et un calcul avec PARI/GP donne

ε2 “ ´2451ε2
1{49`6009802ε1`6007352{49. Enfin, on détermine vpi

pu6
ϕj´1q avec

la fonction idealval et on voit qu’aucune des composantes Xϕj

n’est libre (non

triviale ici). Sur tous les exemples étudiés jusqu’à présent, c’est le seul cas où les

deux composantes non triviales sont simultanément non-libres.

pbq Pour p P DCl, aucun corps n’est p-rationnel dans les intervalles étudiés.

En revanche, les seules situations où le régulateur normalisé est non-trivial sont

les suivantes : pn, paq P tp34, 74q, p68, 1332q, p98, 74qu.

3.2.2. Quand 3 ne divise pas p ´ 1. Cette condition est plus contraignante que

la précédente puisqu’elle force la p-torsion de GabK,Sp
à être de p-rang pair.

Prenons p ą 3. Un raisonnement identique à celui effectué dans le cas

précédent montre que la trivialité de la composante Xϕ`ϕ2

équivaut à la condition
`

ε2
1ε2

˘ap
´ 1 ı 0 pmod p2q.

‚ Pour fpnq “ ´n2, gpnq “ n3 ´ 1, p ă 109 et n ď 100 vérifiant pαq, pβq et

pγq, le seul cas non-trivial trouvé est :

´ n “ 62, p “ 23 (f “ 1).

‚ Pour fpnq “ ´1, gpnq “ ´n, p ă 109 et n ď 100 vérifiant pαq, pβq et pγq,

les seuls cas non-triviaux trouvés sont :

´ n “ 38, p “ 5 (f “ 2) ;

´ n “ 88, p “ 5 (f “ 2).

Ici encore l’algorithme de Pitoun–Varescon permet d’étudier la liberté des

ϕ-composantes pour chaque valeur de p P Ddisc Y DCl. Dans le premier cas

(f “ ´n2, g “ n3 ´ 1) tous les corps sont p-rationnels (pour p ą 3), donc

toutes les composantes restantes sont en fait libres. Dans le second cas (f “ ´1,
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g “ ´n), on trouve seulement deux autres situations où le corps n’est pas p-

rationnel pour lesquels un calcul dans le corps de nombres permet de conclure :

pour pn, pq P tp26, 5q, p76, 5qu, la pϕ ` ϕ2q-composante de X n’est pas triviale

(pour ces deux cas, p P DdisczDCl).

Enfin, traitons rapidement le cas p “ 2. Dans les familles étudiées (2 est

inerte), on peut vérifier que l’obstruction à la non-trivialité de Xϕ`ϕ2

provient à

chaque fois du groupe des classes.

Exemple 3.5. Soit l’extension cubique cyclique K{Q de polynôme P “ X3 `

12286733X2´ 9970X ´ 1 (polynôme de Balady, n “ 10). Alors pour p ă 3ˆ 107,

le régulateur normalisé de K est trivial à l’exception des nombres premiers 3, 43

et 14783491. Pour p “ 43, c’est la ϕ-composante associée à la racine cubique

ζ ” 62pmod 43q qui est non-triviale. Pour p “ 14783491, c’est la ϕ-composante

associée à la racine cubique ζ ” 4865581 pmod pq. A noter que p “ 3 est à part

pour notre étude à cause de l’hypothèse de semi-simplicité.

3.3. Extensions cycliques totalement réelles de degré 4. On se donne p

un nombre premier impair. Soit ζ P Cp une racine primitive quatrième de l’unité.

Soit P un polynôme irréductible de degré 4 et K son corps de décomposition,

qu’on suppose quartique cyclique et totalement réel. On note ∆ le groupe de

Galois de l’extension K{Q et on fixe σ un générateur de ∆. On ordonne alors les

racines εi de P de sorte que σ soit donné par le cycle pε1, ε2, ε3, ε4q . Le groupe

∆ a quatre caractères Qppζq-irréductibles de degré 1 : 1, ϕ, ϕ2 et ϕ3, où ϕ est

défini par ϕpσq “ ζ.

Supposons alors que les racines de P engendrent le groupe EK .

Lorsque p ” 1 pmod 4q, les caractères ϕi sont en fait Qp-irréductibles.

On vérifie qu’en posant

uϕ “ ε1ε
1´ζ
2 ε´ζ3 , uϕ2 “ ε1ε3 et uϕ3 “ ε1ε

1`ζ
2 εζ3,

il vient EϕK “ xuϕy, E
ϕ2

K “ xuϕ2y et Eϕ
2

K “ xuϕ3y. Pour p non-ramifié dans l’exten-

sion K{Q, la non-liberté (ou non-trivialité ici) du module Xϕi

équivaut donc à

étudier la congruence : u
ap
ϕi ” 1 pmod p2q, où ap “ pf ´1, avec f le degré résiduel

de p dans l’extension K{Q.

Si maintenant p ” 3 pmod 4q, le groupe ∆ n’a que deux caractères Qp-
irréductibles non triviaux qui sont ϕ2 et ϕ ` ϕ3 et la non-liberté du module

Xϕ`ϕ3

équivaut dans ce cas à la congruence ε2
1ε

2
2ε3 ” 1 pmod p2q (ici p ą 5).

Dans [2], Balady et Washington exhibent une famille de polynômes

Ps “ X4 ` 4ps3 ´ s2 ` 2s´ 1qX3 ` 6p´s2 ´ 1qX2 ` 4X ` 1,
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s P Z˚, dont le corps de décomposition Ks est un corps totalement réel cyclique

de degré 4 et dont les racines engendrent soit les unités de Ks soit un sous-groupe

d’indice 5 dès que : pα1q 3s2 ´ 4s` 4 est un carré, et pβ1q s2 ` 2 est sans facteurs

carrés.

Cependant, les conditions sur le paramètre s sont très restrictives : pour

|s| ă 106, il n’y a que les entiers ´34272, ´2460, ´12, 48, 660, 127908 qui vérifient

pα1q et pβ1q à la fois.

Lors de la construction de la famille pPsqs, Balady et Washington choisissent

pour générateur σ de ∆ la matrice d’ordre 4 de PGL2pZq
¨

˝

f ´1
f2 ` g2

2
´g

˛

‚,

où f “
2`

?
3s2 ´ 4s` 4

2
et g “

2´
?

3s2 ´ 4s` 4

2
. Son action sur les racines

de Ps donne alors immédiatement

ε2 “
fε1 ´ 1

f2 ` g2

2
ε1 ´ g

, ε3 “
pf ` gqε1 ´ 2

pf2 ` g2qε1 ´ g ´ f
et ε4 “

gε1 ´ 1

f2 ` g2

2
ε1 ´ f

,

et le générateur σ du groupe ∆ est bien défini par le cycle pε1, ε2, ε3, ε4q.

On voit encore une fois que l’hypothèse de congruence peut se tester direc-

tement dans ZrXs{pPsq de façon très simple.

Les formules données plus haut pour exprimer les racines ε2 et ε3 du po-

lynôme P ont des dénominateurs et les diviseurs premiers de ces dénominateurs

doivent être traités à part. On note par D l’ensemble de ces premiers. Posons

FnlpXq :“ tp premier, p R DYDclYDdisc, 5 ă p ď X, Di P t1, 2, 3u, Xϕi

‰ t0uu.

Le programme PARI/GP utilisé pour déterminer si les ϕ-composantes sont,

ou non, libres (i.e. triviales ici) est construit sur le même modèle que celui de

la section 3.2. Les résultats obtenus en faisant varier p de 1 à X “ 15 ˆ 107

sous la condition p ” 1 pmod 4q sont présentés dans le tableau en annexe A.1.

Le caractère ϕ est donné par la congruence de ζ modulo p, que l’on note a, et

comme pour le cas cubique, pour chaque premier p P FnlpXq, on précise en indice

ak, la composante Xϕk

non-triviale ; à noter que quand k “ 2, cela signifie que

l’obstruction provient du sous-corps quadratique réel.

Lorsque l’on fait varier p sous la condition p ” 3 pmod 4q dans le même inter-

valle, on ne trouve que cinq situations non-libres : p´34272, 37511q, p´2460, 491q,
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p660, 25652023q, p127908, 3q, p1781520, 7q. Dans chacun de ces cas, l’obstruction

provient du sous-corps quadratique réel (via le caractère ϕ2).

Enfin, regardons via l’algorithme de Pitoun–Varescon (ou alternativement de

Gras) les premiers mis de côté.

paq Les corps sont tous p-rationnels pour p P D YDdisc.
(b) Pour p P DClzD Y Ddisc : aucune situation n’est p-rationnelle, mais seuls

les cas pn, paq P tp´92604732, 532q, p´92604732, 3761q, p1781520, 531qu ont un

régulateur normalisé non-trivial.

3.4. Extensions diédrales. Soit la famille Pn “ X3 ` nX ` 1, n P N. Notons

dn “ ´4n3 ´ 27 ă 0 le discriminant du polynôme Pn que l’on suppose sans

facteurs carrés ; par [7], on sait que les entiers n vérifiant cette condition sont

de densité positive. Soit le corps quadratique imaginaire Fn “ Qp
?
dnq et soit

ε une racine réelle de Pn. On note Kn le corps Qp
?
dn, εq. Cette fois-ci le corps

de décomposition K “ Kn de Pn est de groupe de Galois ∆ isomorphe à S3.

Soit p ě 5. Le groupe ∆ a deux représentations Qp-irréductibles de degré 1

(la représentation triviale 1 et une représentation ψ), et une représentation Qp-
irréductible ϕ de degré 2.

Le groupe des unités EK a pour caractère ϕ et, pour p générique, le Zpr∆s-
module

ś

wPSp
Uw a pour caractère 1` ψ ` 2ϕ.

Choisissons ensuite les premiers ` ‰ p de S tous congrus à 1 modulo p et

tels que Pn est irréductible modulo `. Pour ` P SzSp, l’action de ∆ sur
ś

w|` Uw
a pour caractère 1` ψ. Par conséquent la composante pGabS,Kq

ψ est Zp-libre si et

seulement si S “ Sp et dans ce cas, Xψ “ t0u. La situation intéressante se trouve

donc dans l’étude de Xϕ. Pour ` P SzSp, p
ś

w|` Uwqϕ “ t1u, on est donc dans le

cadre du corollaire 2.6. En particulier si le module Xϕ est ZpvGQ,Sw-libre, alors

il est libre de rang 2.

Notons ε2 une seconde racine de Pn. Dans [21], l’auteur utilise les estimations

données par Cusick dans [4] pour minorer le régulateur du corps Qpεq, ce qui

permet de montrer que ε est une unité fondamentale de Qpεq. Un raisonnement sur

les normes permet ensuite de montrer que tε, ε2u forme une Zp-base des unités

de Kn. Ainsi, suivant les calculs de la situation cubique cyclique, il nous faut

simplement tester la condition (pour p non ramifié)
`

εε2
2

˘ap
” 1 pmod p2q,

où comme précédemment, ap “ pf ´1, f étant le degrés résiduel de p dans Kn{Q.

La forme particulière du polynôme considéré nous donne des relations très

simples entre les racines de P (ε2 “

?
dn

2p20n2 ´ dnq
p12nε2 ´ 9ε ` 16n2q ´

ε

2
, par
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exemple). Le programme permettant de tester la condition de congruence dans

OK est alors facile à mettre en oeuvre : ici, ε2 s’écrit sous la forme d’un polynôme

upε,
?
dnq, et comme expliqué dans la section 3.1, la congruence se lit dans le

quotient ZrX,Y s{pP pXq, Y 2 ´ dn, p
2q.

Le polynôme Pn est irréductible et de discriminant sans facteur carré pour 61

valeurs de n comprises entre 2 et 100. En faisant varier p de 5 à 109 dans chacune

de ces situations, les seuls cas où la ϕ-composante de X n’est pas libre sont :

´ n “ 25, p “ 5 (f “ 2) ;

´ n “ 49, p “ 7 (f “ 1) ;

´ n “ 50, p “ 5 (f “ 2) ;

´ n “ 98, p “ 7 (f “ 1).

Voir [28] pour le programme détaillé.

Ici encore nous avons écarté des ensembles de nombres premiers : DCl,
D :“ tp | 20n2 ´ dnu et Dram, où Dram désigne l’ensemble des nombres pre-

miers ramifiés dans K{Q.

paq Pour p P D, on trouve, pour n variant de 2 à 100 (tel que dn soit sans

facteurs carrés) et p inférieur à 108, deux corps non-7-rationnel : pour n “ 52 et

n “ 80. Dans ces deux cas, on vérifie que Fn n’est pas 7-rationnel. D’un autre

côté, un calcul montre que dpTorZp
GabK,S7

“ 1, et ainsi,
`

TorZp
GabK,S7

˘ϕ
“ t1u.

pbq Pour les premiers p de DClzD, on trouve seulement cinq situations non

p-rationnelles : pn, pq P tp19, 7q, p31, 5q, p32, 7q, p97, 5q, p100, 5qu. Ici, seul le couple

p100, 5q a un régulateur normalisé non trivial (en la composante ϕ).

pcq Le corps de nombres K est p-rationnel pour tous les premiers p ramifiés

dans K{Q.

Remarque 3.6. La très faible proportion de couples pn, pq pour lesquels on

détecte une composante non-libre subsiste pour d’autre valeurs de n : lorsque l’on

fait varier à la fois l’entier n et le premier p de 1 à 105, on balaye 62486 corps,

et on teste plus de 56 ˆ 108 composantes non-triviales associées à ces corps de

nombres pour finalement ne trouver que 4041 couples pn, pq pour lesquels une

des composantes est non-libre, ce qui revient à moins de 7.2 ˆ 10´5% des cas

seulement ! Notons enfin que pour 313 ă p ă 105, les composantes étudiées (i.e.

non-triviales) sont toutes libres.
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Annexe A. Résultats numériques

A.1. Cas cyclique de degré 4. Voir la section 3.3.

s D DCl Ddisc Fnlp15 ˆ 107q

´92604732
t2, 59, 521,

2609u

t2, 3, 5, 13,
37, 53, 251,
18464557u

t2, 59, 521, 1889,
2609, 2857,
23561, 33721u

t1193
1862

, 3529
8081

, 3663533
2201893

, u

´34272 t2, 67, 443u
t2, 3, 5, 131,

1597u
t2, 67, 443,
587284993u

t193
811

, 313
253

, 389
1153

, 88969
212281

,

3019229
148463

, 14771837
60950561

u

´2460 t2, 2131u t2, 3, 5, 13u
t2, 113, 2131,

26777u
H

´12 t2, 11u t2u t2, 11, 73u
t17

42
, 19363829

86923133
,

12690513
34610503

, 26900513
54914053

u

48 t2, 41u t2u t2, 41, 1153u
t13

51
, 379849

1800013
, 763597

3091792
,

2152957
2531672

u

660 t2, 571u t2, 5, 13u t2, 353, 571, 617u t349
1362

, 1949
5891

, 9137
12863

u

127908 t2, 110771u
t2, 7, 13, 17,

9337u
t2, 73, 110771,

112057921u
t5

33
, 29

121
, 11172143

, 117889
381182

u

1781520 t2, 1542841u
t2, 5, 11, 47,
677208593u

t2, 1542841,
1586906755201u

t29
122
u
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A.2. Cas cyclique de degré 3.

A.2.1. Famille de polynômes de Balady. Pour les notations, voir la section 3.2.1.

n Ddisc DCl Fnlp23 ˆ 107q

1 t19u H t67
292

, 19384, 337
1282

, 7321
3082

u

2 t11, 13, 79u t3u
t19

72
, 439171, 2887

6982
, 5906085726994113,

1226486235895446u

4 t13, 19, 79, 571u t3, 13u H

7 t17, 23, 2383, 3769u t3, 7, 223u t19992, 277116u

10 t7, 13, 157, 1051, 9973u t3, 7, 991u t43
62

, 147834914865581u

11 t19, 769, 1451, 19429u t2, 3, 7, 97u t63143u

14 t2939, 38377, 47911u t2, 3, 19, 2143u t133, 436, 6076596727581956u

16 t19, 79, 181, 229, 439, 829u t2, 3, 7, 2053u t436, 439339824u

17 t7, 13, 31, 743, 3229, 6421u t2, 3, 7, 37u t157
122

, 937322u

19 t7, 79, 277, 7219, 130267u t2, 3, 7, 1303u H

20
t7, 19, 37, 73, 227,

313, 9817u
t2, 3, 31, 67u t1666783

5175552
u

22 t307, 877, 11131, 234193u t3, 1466473u t7
42

, 31
52

, 139627
119862

u

25 t16249, 390553, 441403u t3, 43, 619, 691u t197, 229
942

, 40953u

26 t7, 18251, 73417, 456901u t3, 367, 10651u t13
32

, 9151330403u

29 t25229, 707197, 785671u t3, 57875563u H

31
t7, 13, 23, 79, 191,

433, 11689u
t3, 7, 66523u H

32
t67, 15649, 33791,

1153219u
t2, 3, 3863473u t7923u

34
t7, 40459, 190891,

1461391u
t2, 3, 3197533u

t3710, 3181
4402

, 236503
54802

,

83666173
6026562

u

35
t11, 19, 61, 211, 26833,

1500523u
t3, 757, 75931u t13

32
, 54499

236082
u

37
t103, 769, 2437, 19753,

52021u
t2, 3, 19, 193, 463u

t738, 33131, 811130, 1052203452608,
293226914854914u

40
t7, 181, 14143, 65599,

394549u
t2, 3, 43, 331u t19

72
, 674977

1170352
u

44
t13, 181, 20707, 87119,

308887u
t2, 3, 1033, 4129u t43

62
, 23411106u

46
t11, 127, 349, 9041,

12829, 37657u
t3, 31, 3563467u

t6729, 97
352

, 11503467, 417649174641,

4198807268994u

49
t13, 19, 31, 127, 2389,

15217, 120049u
t2, 3, 7, 61609u t19801

21842
u

50
t59, 67, 241, 2161, 25933,

99109u
t2, 3, 7, 9130117u t33131u

52
t7, 59, 79, 347, 98101,

7311463u
t2, 3, 13, 229, 71419u H



152 Christian Maire et Marine Rougnant

n Ddisc DCl Fnlp23 ˆ 107q

55
t7, 2749, 3517, 169399,

1307209u
t2, 3, 7, 14667403u t97

352
, 4243

2982
, 26004718194u

56
t13, 43, 277, 823, 2731,

4157, 12613u
t3, 7, 67, 127, 2719u t6243468126935694u

59
t7, 31, 29837, 390877,

12754741u
t2, 3, 31, 127, 1327u

t197, 436, 19699
74172

, 25357
90062

,

42960912113223u

61
t7, 19, 271, 281, 821, 2689,

2078497u
t3, 613, 388057u t3710u

62
t7, 13, 242171, 1193443,

2110879u
t3, 31, 3633403u t223

392
u

64
t127, 138493, 266239,

16777027u
t3, 5011, 129517u t43

62
u

65
t278849, 17850433,

18700243u
t3, 19, 547, 57697u t7

42
, 33131, 369445945444u

67
t13, 61, 383, 571, 797,

25411, 36919u
t3, 7, 1117, 74797u H

70
t13, 1933, 12421, 347899,

1928371u
t2, 3, 4003, 126151u t503287

1125932
u

71
t433, 2683, 9883, 58687,

362951u
t2, 3, 340422079u t74u

74
t59, 6961, 29986357,

31235551u
t2, 3, 109, 457, 133873u t73

82
, 3207019467011u

76
t7, 23, 61, 317, 823,

5791, 34714219u
t2, 3, 127, 11237029u

t197, 794641291733, 3728983
9050602

,

8204443914812302u

77
t19, 23, 3583, 9811, 20107,

1924141u
t3, 1457126959u t7

42
, 14894262171590090u

79
t7, 11, 31, 67, 45389,

581341, 1305391u
t3, 19, 211, 433, 3631u t37

102
, 103

462
u

80
t7, 13, 19, 31, 67, 103,

719, 20479, 165829u
t2, 3, 7, 52667059u

t738, 4668716066, 228901
555292

,

41448541
53565652

u

82
t7, 13, 79, 271, 313, 558091,

3477841u
t3, 13, 1777, 41467u H

85
t19, 31, 107, 277, 5807,

6079, 2846677u
t2, 3, 7, 313, 691, 997u t15355653138606055u

86
t167, 3853, 54700561,

56653879u
t2, 3, 7, 17713, 51043u t73

82
, 61992645u

89
t7, 61, 712889, 1028557,

9272173u
t2, 3, 127, 48593539u t315, 211

142
u

91
t631, 829, 919, 2503, 27397,

112339u
t2, 3, 1483, 52567u t738u

92
t17, 19, 373, 2437, 198463,

71639023u
t2, 3, 61, 193, 542197u t103

462
u

94
t7, 37, 463, 78074617,

90620231u
t3, 8929, 36396301u t6729, 36783, 829125u

95
t13, 79, 79309, 866399,

84077473u
t2, 3, 31, 37, 631, 2113u H

97
t7, 223, 56713, 922081,

91324339u
t2, 3, 763707067u t197, 97

352
, 487232u

100
t23, 43913, 99999703,

103060603u
t3, 57709, 1882459u t116708594550018, 54250591

73652
u
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A.2.2. Famille de polynômes de Lecacheux. Voir section 3.2.1.

n Ddisc DCl Fnlp23 ˆ 107q

14 t13, 157, 199u t3, 13u t43
62

, 397849
1360772

u

16 t3, 5, 7, 37, 211u t3, 43u t62347
42002

u

22 t3, 7, 421, 487u t3, 439u t15132u

26 t5, 7, 97, 601u t2, 3, 7u t52360u

28 t3, 19, 37, 787u t3, 5u t331
312

, 1669248, 64048342506u

34 t3, 7, 11, 19, 61, 151u t3, 7, 19u t315, 43
62
u

38 t31, 37, 43, 1447u t3, 229u t13
32

, 738u

40 t3, 7, 13, 229, 1483u t3, 709u t73
82

, 28051
23742

, 588277199858u

44 t7, 13, 43, 139, 277u t2, 3, 19u t17923613, 8436997
39807822

u

46 t3, 5, 7, 13, 163, 283u t3, 7, 13u t315u

50 t7, 13, 181, 2503u t2, 3, 37u t454392225, 1602529
5104442

u

52 t3, 17, 2551, 2707u t2, 3, 919u t74, 157
122

, 10453
2702

u

56 t5, 11, 43, 73, 2971u t3, 13u t7
42
u

58 t3, 7, 13, 19, 31, 37, 103u t3, 17u t2221543, 725209
1202492

u

62 t7, 61, 523, 3847u t2, 3, 157u t13
32

, 147374341u

64 t3, 7, 3907, 4099u t3, 7, 127u t103
462

, 60124u

68 t7, 67, 661, 4423u t3, 13, 31u t46211763, 159622777
146694922

u

74 t7, 73, 751, 5479u t3, 19, 127u t436, 10781554914774937u

76 t3, 5, 7, 13, 61, 5779u t3, 1381u t400339
1607152

u

80 t19, 79, 337, 6163u t3, 7, 43u t61
132
u

88 t3, 7, 29, 61, 127, 1069u t2, 3, 7, 151u H

92 t7, 13, 8191, 8467u t3, 1669u t36783u

94 t3, 31, 43, 199, 8839u t2, 3, 2851u H

98 t13, 67, 97, 139, 739u t2, 3, 7, 13u t12919
55202

, 24730937071u

100 t3, 7, 11, 31, 313, 1429u t2, 3, 7, 211u t13
32

, 6037
5092

, 145316557
177305022

u
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UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ
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LABORATOIRE DE MATHÉMATIQUES DE BESANÇON
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