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Finite groups with two relative subgroup commutativity degrees

By MIHAI-SILVIU LAZOREC (Iaşi) and MARIUS TĂRNĂUCEANU (Iaşi)

Abstract. In this paper, we show that there is an infinite number of finite groups

with two relative subgroup commutativity degrees. Also, we indicate a sufficient condi-

tion such that a finite group has at least three relative subgroup commutativity degrees,

and we prove that D6 is the only finite dihedral group with two relative subgroup

commutativity degrees. Finally, we study the density of the set containing all relative

subgroup commutativity degrees of finite groups.

1. Introduction

The large amount of results (see [2]–[3], [6]–[10], [12], [14]) obtained during

the last decades using the commutativity degree of a finite groupG determined the

introduction and study of some new probabilistic aspects of finite group theory.

In this paper, we will focus on two such concepts, which were introduced in [19]

and [20]. More exactly, we will prove some results related to the relative subgroup

commutativity degree of a subgroup H of G defined by

sd(H,G) =
1

|L(H)||L(G)|
|{(H1, G1) ∈ L(H)× L(G) | H1G1 = G1H1}|,

which is a generalization of the subgroup commutativity degree of G that is given

by

sd(G) =
1

|L(G)|2
|{(H,K) ∈ L(G)2 | HK = KH}|,

where L(G) denotes the subgroup lattice of G.
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We recall that if G =

k×
i=1

Gi, where (Gi)i=1,k is a family of finite groups

having coprime orders, the subgroup lattice of G is decomposable. Hence, every

subgroup H of G can be written as H =

k×
i=1

Hi, where Hi ∈ L(Gi), ∀ i =

1, 2, . . . , k. Moreover, we have

sd(G) =

k∏
i=1

sd(Gi) and sd(H,G) =

k∏
i=1

sd(Hi, Gi).

A relevant property of the function

f : L(G) −→ [0, 1] given by f(H) = sd(H,G),

is that it is constant on each conjugacy class of subgroups of G. It is easy to see

that | Im f | = 1 if and only if G is an Iwasawa group (i.e., a nilpotent modular

group). Having in mind these results, our aim is to study the following class of

groups:

C = {G = finite group | | Im f | = 2}.
We note that a similar problem involving the number of non-zero values taken by

a generalization of the commutativity degree of a finite group is illustrated in [13].

The paper is organized as follows. Section 2 describes all finite groups with

two relative commutativity degrees under the additional assumption that they

have one or two conjugacy classes of non-normal subgroups. A consequence of this

study is the fact that C contains an infinite number of groups. We prove a criterion

that indicates which groups do not belong to C in Section 3. Using this result,

we detect some well-known classes of groups which are not included in C. Also,

we show that S3
∼= D6 is the unique finite dihedral group contained in C. We end

our paper by studying the density of the set {sd(H,G) | G = finite group, H ∈
L(G)} in [0, 1].

Most of our notation is standard and will usually not be repeated here.

Elementary notions and results on groups can be found in [5], [16]. For subgroup

lattice concepts, we refer the reader to [15], [17]–[18].

2. The connection between C and the conjugacy classes of

non-normal subgroups of a finite group

For a finite group G, we denote the number of its conjugacy classes of non-

normal subgroups and its normal subgroup lattice by γ(G) and N(G), respec-

tively. We recall that any normal subgroup of G is permutable, i.e., it permutes
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with all other subgroups of G. It is obvious that sd({1}, G) = 1. Also, in general,

once that γ(G) increases, the probability that G has more than 2 relative sub-

group commutativity degrees also increases. Therefore, it is natural to think that

a group G may belong to C if γ(G) = 1 or γ(G) = 2. This additional hypothesis

will help us in our study, because all finite groups having one or two conjugacy

classes of non-normal subgroups were described in [1] and [11], respectively. More

exactly, the following two theorems were proved.

Theorem 2.1. Let G be a finite group. Then γ(G) = 1 if and only if G is

isomorphic to one of the following groups:

(1) Zp o Zqn , where [Zp,Φ(Zqn)] = 1, p, q are primes such that q|p− 1 and n is

a positive integer;

(2) M(pn) = 〈x, y | xpn−1

= yp = 1, xy = x1+p
n−2〉, where p is a prime and n ≥ 3

if p ≥ 3 or n ≥ 4 if p = 2.

Theorem 2.2. Let G be a finite group. Then γ(G) = 2 if and only if G is

isomorphic to one of the following groups:

(1) A4;

(2) 〈x, y | xq = yp
n

= 1, xy = xk〉, where p, q are prime numbers such that

p2|q − 1, n > 1 and kp
2 ≡ 1 (mod q) with k 6= 1;

(3) 〈x, y, z | xr = yp
n

= zq = [x, z] = [y, z] = 1, xy = xk〉, where p, q, r are prime

numbers such that p 6= q, q 6= r, p|r − 1 and kp ≡ 1 (mod r) with k 6= 1; 1

(4) 〈x, y | xq2 = yp
n

= 1, xy = xk〉, where p, q are primes such that p|q − 1 and

kp ≡ 1 (mod q2) with k 6= 1;

(5) M(pn) × Zq, where p, q are primes such that p 6= q and n ≥ 3 if p ≥ 3 or

n ≥ 4 if p = 2;

(6) Z4 o Z4;

(7) Q16;

(8) 〈x, y | x4 = y2
n

= 1, yx = y1+2n−1〉, where n ≥ 3;

(9) D8.

Our aim is to pass through the two lists of groups and find the ones that are

contained in C. Some answers are provided by our next two results.

1Note that the condition q 6= r must be added to the group (3) in [11, Theorem 1], as shows

the example G = S3 × Z3; in this case, we have q = r = 3, but γ(G) = 3.
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Theorem 2.3. Let G be a finite group such that γ(G) = 1. Then G ∈ C if

and only if G ∼= S3.

Proof. We saw that there are only two classes of groups having the prop-

erty γ(G) = 1. The modular p-groups M(pn) are Iwasawa, so | Im f | = 1. Conse-

quently, they are not contained in C. We assume that G ∼= Zp o Zqn , where p, q

are primes such that q|p− 1. There are p subgroups isomorphic to Zqn , and they

form the conjugacy class of non-normal subgroups of G. Two different conjugates

cannot commute, since G does not contain a subgroup of order qn+1. Therefore,

sd(Zqn , G) =
|L(Zqn−1)||L(G)|+ |N(G)|+ 1

|L(Zqn)||L(G)|
=
n(2n+ p+ 1) + 2(n+ 1)

(n+ 1)(2n+ p+ 1)
,

while

sd(G) =
|N(G)||L(G)|+ p(|N(G)|+ 1)

|L(G)|2
=

(2n+ 1)(2n+ p+ 1) + 2p(n+ 1)

(2n+ p+ 1)2
.

Then

G ∈ C ⇐⇒ sd(Zqn , G) = sd(G)⇐⇒ p = 2 +
1

n
or p = 1.

But p, q are primes such that q|p− 1, so (p, q, n) = (3, 2, 1). Consequently, G ∈ C
if and only if G ∼= S3. For any other triplet (p, q, n), we have | Im f | = 3. �

Theorem 2.4. Let G be a finite group with γ(G) = 2. Then G ∈ C if and

only if G ∼= S3 × Zq, where q ≥ 5 is a prime number.

Proof. We are moving our attention to the list of groups provided by

Theorem 2.2. First, we will inspect the nilpotent groups that have two non-normal

conjugacy classes of subgroups. It is easy to see that if G ∼= Q16 or G ∼= D8, we

obtain that | Im f | = 3. Also, if G ∼= Z4 o Z4, we get | Im f | = 4. Going further,

for a triplet (p, q, n) chosen as it is indicated in Theorem 2.2, since M(pn) and

Zq are Iwasawa groups having coprime orders, the group G ∼= M(pn)×Zq is also

Iwasawa, so | Im f | = 1. If G is a group of type (8), then it is a non-hamiltonian

2-group that contains an abelian normal subgroup N ∼= Z2n . According to [17,

Theorem 9], since G
N is cyclic and there exist x ∈ G and an integer m = n−1 ≥ 2

such that G = 〈N, x〉 and gx = g1+2m , ∀ g ∈ N , we deduce that G is modular.

Consequently, G is an Iwasawa group and we have | Im f | = 1.

The groups that are not covered yet are non-nilpotent. It is easy to see

that | Im f | = 5 for G ∼= A4. If G is a group of type (2), then G ∼= Zq o Zpn ,

where p, q are primes such that p2|q − 1 and n > 1. There are q subgroups

isomorphic to Zpn and q subgroups isomorphic to Zpn−1 , and they form the two
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non-normal conjugacy classes of subgroups of G. We denote them by C1 and C2,

respectively. Since Zpn is a cyclic p-group, it contains one subgroup isomorphic

to Zpn−1 . Therefore, two different conjugates contained in C2 cannot commute.

Also, the same thing can be said about two different conjugates taken from C1.

Then, we have

sd(Zpn−1 , G) =
|L(Zpn−2)||L(G)|+|N(G)|+2

|L(Zpn−1)||L(G)|
=

(n−1)(n+q)+n+1

n(n+q)
,

sd(Zpn , G) =
|L(Zpn−2)||L(G)|+2(|N(G)|+2)

|L(Zpn)||L(G)|
=

(n−1)(n+q) + 2(n+1)

(n+1)(n+q)
,

sd(Zq o Zpn−1 , G) =
(2n−1)|L(G)|+q(|N(G)|+2)

|L(Zq o Zpn−1)||L(G)|
=

(2n−1)(n+q)+q(n+1)

(2n+q−1)(n+q)
,

sd(G) =
|N(G)||L(G)|+2q(|N(G)|+2)

|L(G)|2
=
n(n+q)+q(n+1)

(n+q)2
.

Now, to find | Im f |, we must study when two of the above (relative) subgroup

commutativity degrees are equal, under the assumptions that p, q are primes

such that p2|q − 1 and n > 1. After making some computation, we deduce

that | Im f | = 4 if and only if (p, q, n) = (2, 5, 4), and | Im f | = 5 if and only if

(p, q, n) 6= (2, 5, 4).

A group G of type (4) is isomorphic to Zq2 o Zpn , where p, q are primes

such that p|q − 1 and n is a positive integer. There are q subgroups isomorphic

to Zq o Zpn which form a non-normal conjugacy class of subgroups. Each of

them has q subgroups isomorphic to Zpn , so the second non-normal conjugacy

class contains q2 subgroups. The reader can check if two non-normal subgroups

commute using similar techniques with the ones applied previously. We obtain

the following results:

sd(Zpn , G) =
|L(Zpn−1)||L(G)|+|N(G)|+2

|L(Zpn)||L(G)|
=
n(3n+q2+q+1)+3(n+1)

(n+ 1)(3n+ q2 + q + 1)
,

sd(Zq o Zpn , G) =
|L(Zpn−1q)||L(G)|+ q(|N(G)|+ 2) + |N(G)|+ q + 1

|L(Zq o Zpn)||L(G)|

=
2n(3n+ q2 + q + 1) + 3q(n+ 1) + 3n+ q + 2

(2n+ q + 1)(3n+ q2 + q + 1)
,

sd(G) =
|N(G)||L(G)|+ q2(|N(G)|+ 2) + q(|N(G)|+ q + 1)

|L(G)|2

=
(3n+ 1)(3n+ q2 + q + 1) + 3q2(n+ 1) + q(3n+ q + 2)

(3n+ q2 + q + 1)2
.



162 Mihai-Silviu Lazorec and Marius Tărnăuceanu

The properties of the triplet (p, q, n) lead to stating that the above 3 (relative) sub-

group commutativity degrees are different. Consequently, | Im f | = 4 for a group

of type (4).

Finally, if G is a group of type (3), then G ∼= (Zr o Zpn) × Zq, where p, q, r

are prime numbers such that p 6= q, q 6= r, p|r − 1, and n is a positive integer.

We remark that the group Zr o Zpn is exactly the non-nilpotent group having

one conjugacy class of non-normal subgroups described in Theorem 2.1. Also,

it is obvious that (rp, q) = 1. Consequently, the first conjugacy class of non-

normal subgroups contains r subgroups isomorphic to Zpn , while the second class

is formed by r subgroups isomorphic to Zpn × Zq. Moreover, we have

sd(Zpn , G) = sd(Zpn ,Zr o Zpn)sd({1},Zq) =
n(2n+ r + 1) + 2(n+ 1)

(n+ 1)(2n+ r + 1)
,

sd(Zpn × Zq, G) = sd(Zpn ,Zr o Zpn)sd(Zq) =
n(2n+ r + 1) + 2(n+ 1)

(n+ 1)(2n+ r + 1)
,

sd(Zr o Zpn , G) = sd(Zr o Zpn)sd({1},Zq) =
(2n+ 1)(2n+ r + 1) + 2r(n+ 1)

(2n+ r + 1)2
,

sd(G) = sd(Zr o Zpn)sd(Zq) =
(2n+ 1)(2n+ r + 1) + 2r(n+ 1)

(2n+ r + 1)2
.

Then

G ∈ C ⇐⇒ sd(G) = sd(Zpn , G)⇐⇒ r = 2 +
1

n
or r = 1.

Following the properties of p, q, r and n, we have G ∈ C if and only if G ∼= S3×Zq,
where q is a prime number such that q ≥ 5. We finish our proof by stating that

for a group of type (3), we get | Im f | = 3 for all other possible choices of the

quadruplet (p, q, r, n). �

Looking to our last proof, we deduce that even if γ(G) = n, where n ≥ 3 is

an integer, we always find a group G that belongs to C. An example would be

G ∼= S3 × Z5n−1 . Also, our previous proof indicates that we can generalize our

last result by replacing Zq, where q ≥ 5 is a prime number, with any Iwasawa

group G such that 6 and |G| are relatively prime.

Corollary 2.5. Let G be a finite Iwasawa group such that (6, |G|) = 1. Then

S3 ×G is contained in C.

Proof. The subgroup lattice of S3 × G is decomposable since (6, |G|) = 1.

Hence, any subgroup of S3 × G is of type H1 × H2, where H1 and H2 are sub-

groups of S3 and G, respectively. Since G is an Iwasawa group and the only

conjugacy class of non-normal subgroups of S3 contains 3 subgroups isomorphic
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to Z2, the subgroups of S3 × G that are not permutable are of type Z2 × H,

where H ∈ L(G). Consequently, in this case, the function f takes only 2 values:

1 and 5
6 . Therefore, | Im f | = 2, so S3 ×G ∈ C. �

We end this section by pointing out that we did not fully describe the set C,
and another remark is that we did not find any nilpotent group that belongs to

this set. Hence, it is natural to indicate the following two open problems:

Problem 2.6. Show that

C = {S3 ×G | G = finite Iwasawa group such that(6, |G|) = 1}.

Problem 2.7. Does C contain nilpotent groups?

3. How can we find finite groups that do not belong to C?

In the previous section, we used the number of conjugacy classes of non-

normal subgroups of a finite group G to establish that C contains an infinite

number of groups. Our next aim is to find a condition which guarantees that

a finite group G is not a part of C. For a subgroup H of G, we will consider the

following set

C(H) = {K ∈ L(G) | HK = KH}.

Proposition 3.1. Let G be a finite group. If sd(G) < 1
2 + |N(G)|+1

2|L(G)| , then

| Im f | > 2.

Proof. Assume that | Im f | ≤ 2. Then | Im f | = 2, since | Im f | = 1 would

imply that G is Iwasawa and this is contradicting our hypothesis. Let H be

a minimal subgroup of G such that sd(H,G) 6= 1. Then sd(H,G) = sd(G)

as a consequence of the fact that | Im f | = 2. On the other hand, we have

sd(K,G) = 1, for any proper subgroup K of H. Hence,

sd(G) = sd(H,G) =
1

|L(H)||L(G)|
∑

K∈L(H)

|C(K)|

=
1

|L(H)||L(G)|
[(|L(H)| − 1)|L(G)|+ |C(H)|]

≥ 1

|L(H)||L(G)|
[(|L(H)| − 1)|L(G)|+ |N(G)|+ 1]

= 1− |L(G)| − |N(G)| − 1

|L(H)||L(G)|
≥ 1− |L(G)| − |N(G)| − 1

2|L(G)|
=

1

2
+
|N(G)|+ 1

2|L(G)|
,

which again contradicts our hypothesis. This argument completes our proof. �
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We remark that the upper bound 1
2 + |N(G)|+1

2|L(G)| is the best possible one,

since if G ∼= S3, we have sd(G) = 1
2 + |N(G)|+1

2|L(G)| , but | Im f | = 2 as we already

saw. Also, our previous result mainly states that a group G may be contained

in C if its subgroup commutativity degree is “large”. Consequently, we expect

that a class of groups is not included in C if its subgroup commutativity degree

vanishes asymptotically. Some examples of well-known classes of groups having

this property were indicated in [19]. They are

• the dihedral groups

D2n = 〈x, y | x2
n−1

= y2 = 1, yxy−1 = x2
n−1−1〉, n ≥ 3,

• the generalized quaternion groups

Q2n = 〈x, y | x2
n−1

= y4 = 1, yxy−1 = x2
n−1−1〉, n ≥ 3,

• the quasi-dihedral groups

S2n = 〈x, y | x2
n−1

= y2 = 1, y−1xy = x2
n−2−1〉, n ≥ 4.

Corollary 3.2. The sets {D2n}n≥3, {Q2n}n≥3 and {S2n}n≥4 are not in-

cluded in C.

Proof. It is easy to see that

| Im f | =


1, if G ∼= Q8,

3, if G ∼= D8, G ∼= Q16, G ∼= S16,

4, if G ∼= D16, G ∼= Q32.

Remark that, since | Im f | 6= 2, none of the above-listed 6 groups are contained

in C. We will check if the inequality

sd(G) <
1

2
+
|N(G)|+ 1

2|L(G)|
(1)

holds for a finite group G isomorphic to a group contained in any of the sets

{D2n}n≥5, {Q2n}n≥6 and {S2n}n≥5. The following explicit formulas were indi-

cated in [19] and [21]:

sd(D2n) =
(n− 2)2n+2 + n2n+1 + (n− 1)2 + 8

(n− 1 + 2n)2
,
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sd(Q2n) =
(n− 3)2n+1 + n2n + (n− 1)2 + 8

(n− 1 + 2n−1)2
,

sd(S2n) =
(n− 3)2n+1 + n2n + (3n− 2)2n−1 + (n− 1)2 + 8

(n− 1 + 3 · 2n−2)2
,

|N(D2n)| = |N(Q2n)| = |N(S2n)| = n+ 3.

Using Wolfram|Alpha [22], we deduce that inequality (1) is satisfied for a finite

group G isomorphic to a group that is an element of any of the above 3 infinite

families. Hence, for such a group we have | Im f | > 2 as Proposition 3.1 indicates.

Consequently, G does not belong to C. �

Theorem 3.3. S3
∼= D6 is the unique finite dihedral group contained in C.

Proof. Assume that the dihedral group

D2n = 〈x, y | xn = y2 = 1, yxy = x−1〉

belongs to C. Then sd(H,D2n) = sd(K,D2n), for every two non-Iwasawa sub-

groups H and K of D2n. The subgroup structure of D2n is well-known: given

a divisor r or n, D2n possesses a subgroup isomorphic to Zr, namely Hr
0 = 〈xnr 〉,

and n
r subgroups isomorphic to D2r, namely Hr

i = 〈xnr , xi−1y〉, i = 1, 2, ..., nr .

Then |L(D2n)| = τ(n) + σ(n), where τ(n) and σ(n) are the number and the sum

of all divisors of n, respectively. Also, by [19], we have |C(Hr
i )| = τ(n) + xri ,

where xri is the number of solutions of

n

[r, s]
| 2(i− j) with s |n and j = 1, 2, ...,

n

s
. (2)

Since n cannot be of type 2m (see Corollary 3.2), we distinguish the following two

cases.

Case 1. n is odd, say n = pα1
1 pα2

2 · · · p
αk
k , with each pi an odd prime.

By taking H = H1
1 and K = Hpi

1 , one obtains

|C(H)| = 2τ(n) and |C(K)| = 2τ(n) + (pi − 1)τ

(
n

pαii

)
,

implying that

sd(H,D2n) =
3τ(n) + σ(n)

2(τ(n) + σ(n))

and

sd(K,D2n) =
(2pi + 4)τ(n) + 2σ(n) + (pi − 1)τ

(
n
p
αi
i

)
(pi + 3)(τ(n) + σ(n))

.
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These equalities lead to

σ(n)− τ(n) = 2τ

(
n

pαii

)
. (3)

Since i is arbitrary, we infer that α1 = α2 = · · · = αk = α, and (3) becomes

k∏
i=1

pα+1
i − 1

pi − 1
= (α+ 1)k−1(α+ 3).

It is easy to see that

pα+1
i − 1

pi − 1
≥ (α+ 1)2, ∀ i = 1, 2, . . . , k,

which implies that

(α+ 1)k−1(α+ 3) ≥ (α+ 1)2k, i.e., (α+ 3) ≥ (α+ 1)k+1.

From this inequality it follows that k = α = 1 and p1 = 3. Thus n = 3, as desired.

Case 2. n = 2mn′, where m ≥ 1 and n′ = pα1
1 pα2

2 · · · p
αk
k is odd.

Similarly, by taking H = H1
1 and K = Hpi

1 , one obtains

|C(H)|=τ(n) + (2m+ 1)τ(n′)

and

|C(K)| = τ(n) + (2m+ 1)

[
τ(n′) + (pi − 1)τ

(
n′

pαii

)]
,

implying that

sd(H,D2n) =
2τ(n) + σ(n) + (2m+ 1)τ(n′)

2(τ(n) + σ(n))

and

sd(K,D2n)=
(pi+3)τ(n)+2σ(n)+(2m+1)(pi+1)τ(n′)+(2m+1)(pi−1)τ

(
n′

p
αi
i

)
(pi+3)(τ(n)+ vσ(n))

,

respectively. Then

σ(n)− (2m+ 1)τ(n′) = 2(2m+ 1)τ

(
n′

pαii

)
, (4)
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and again we have α1 = α2 = · · · = αk = α. Thus (4) becomes

(2m+1 − 1)σ(n′) = (2m+ 1)(α+ 1)k−1(α+ 3). (5)

But we have 2m+1 − 1 ≥ 2m+ 1 with equality if and only if m = 1, and σ(n′) ≥
(α+ 1)k−1(α+ 3) with equality if and only if k = α = 1 and p1 = 3. So, (5) leads

to n = 6. In this case, we observe that

sd(H,D12) = sd(K,D12) =
13

16
6= 101

128
= sd(D12, D12) = sd(D12)

(i.e., the function f has at least three distinct values 1, 13
16 , and 101

128 ), a contradic-

tion.

Hence n = 3, completing the proof. �

4. Density result for the relative subgroup commutativity degree

Let α ∈ [0, 1]. We will consider the following two sets:

A = {sd(G) | G = finite group}
and

B = {sd(H,G) | G = finite group, H ∈ L(G)}.

An interesting question that appeared after the subgroup commutativity degree of

a finite group G was introduced was: if there exists a sequence of groups (Gn)n∈N,

such that lim
n→∞

sd(Gn) = α. In other words, is the set A dense in [0, 1]? This

question remains open, but a positive answer is given if we work with the set B.

Theorem 4.1. The set B is dense in [0, 1].

Proof. Let α ∈ [0, 1]. It is obvious that α = 1 is a limit point. If α = 0,

then we choose the sequence (D2n , D2n)n≥3, and we have lim
n→∞

sd(D2n , D2n) =

lim
n→∞

sd(D2n) = 0, as it was proved in [19]. Further, we consider α = a
b ∈ Q∩(0, 1),

where a, b are positive integers with a < b. The proof of Theorem 2.3 provides

the explicit formula that allows us to compute sd(Zqn ,Zp o Zqn), where p, q are

primes such that q|p− 1 and n is a positive integer. We remark that

lim
p→∞

sd(Zqn ,Zp o Zqn) = lim
p→∞

n(2n+ p+ 1) + 2(n+ 1)

(n+ 1)(2n+ p+ 1)
=

n

n+ 1
.
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Further, we consider the sequence (qi)i∈N, where each qi is a prime number of

the form 4k + 3, with k ∈ N. Since (4qi, 1) = 1, there is a sequence of primes

(pi)i∈N of the form 4hqi+1. In this way, for each prime qi, we find a prime pi such

that qi|pi−1. Moreover, the sequences (pi)n∈N, (qi)n∈N are strictly increasing and

pi 6= qj , ∀ i, j ∈ N. Now, let (k1n), (k2n), . . . , (kb−an ) be some strictly increasing and

disjoint subsequences of N. From our previous discussion about prime numbers,

we can choose the sequences (Hn
j , G

n
j )n∈N = (Zqa+j−1

k
j
n

,Zqa+j−1

k
j
n

oZp
k
j
n

)n∈N, where

j = 1, 2, . . . , b− a. Then

lim
n→∞

sd(Hn
j , G

n
j ) =

a+ j − 1

a+ j
, ∀ j = 1, 2, . . . , b− a.

Moreover, we can build the sequence

b−a×
j=1

Hn
j ,

b−a×
j=1

Gnj


n∈N

, and use the fact

that L

b−a×
j=1

Gnj

 is decomposable for each positive integer n, which, again,

is a consequence of the above discussion about prime numbers. Finally, we get

that

lim
n→∞

sd

b−a×
j=1

Hn
j ,

b−a×
j=1

Gnj

 =

b−a∏
j=1

lim
n→∞

sd(Hn
j , G

n
j ) =

b−a∏
j=1

a+ j − 1

a+ j
=
a

b
= α.

This implies that (0, 1) ∩ Q ⊆ B. Since 0 and 1 were other limit points and

B ⊆ [0, 1], we have [0, 1] ∩Q ⊆ B ⊆ [0, 1]. Finally, we deduce that B is dense in

[0, 1], as a consequence of the fact that the closure of [0, 1] ∩Q is [0, 1]. �
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[8] P. Lescot, Degré de commutativité et structure d’un groupe fini (2), Rev. Math. Spéciales
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[17] M. Tărnăuceanu, Groups determined by posets of subgroups, Matrix Rom, Bucureşti,
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IAŞI - 700506

ROMANIA

E-mail: tarnauc@uaic.ro
URL: http://www.math.uaic.ro/~martar

(Received March 12, 2018; revised July 27, 2018)


