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Finite groups with two relative subgroup commutativity degrees

By MIHAI-SILVIU LAZOREC (lasi) and MARIUS TARNAUCEANU (Iasi)

Abstract. In this paper, we show that there is an infinite number of finite groups
with two relative subgroup commutativity degrees. Also, we indicate a sufficient condi-
tion such that a finite group has at least three relative subgroup commutativity degrees,
and we prove that Dg is the only finite dihedral group with two relative subgroup
commutativity degrees. Finally, we study the density of the set containing all relative
subgroup commutativity degrees of finite groups.

1. Introduction

The large amount of results (see [2]-[3], [6]-[10], [12], [14]) obtained during
the last decades using the commutativity degree of a finite group G determined the
introduction and study of some new probabilistic aspects of finite group theory.
In this paper, we will focus on two such concepts, which were introduced in [19]
and [20]. More exactly, we will prove some results related to the relative subgroup
commutativity degree of a subgroup H of G defined by

1
Sd(H, G) = 7|{(H1,G1) S L(H) X L(G) | H.Gq, = G1H1}|,
|L(H)[|L(G)|
which is a generalization of the subgroup commutativity degree of G that is given

by
1

LGP
where L(G) denotes the subgroup lattice of G.

sd(@) {(H.K) € L(G)* | HK = KH}],
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k
We recall that if G = XG“ where (G),_ 77 is a family of finite groups

having coprime orders, the bubgroup lattice of G is decomposable. Hence, every
k

subgroup H of G can be written as H = XHi, where H; € L(G;), Vi =
i=1
1,2,..., k. Moreover, we have

k k
G) =[] sd(G:) and sd(H,G)=]]sd(H; G).
= i=1

A relevant property of the function
f:L(G) —[0,1] given by f(H) = sd(H,G),

is that it is constant on each conjugacy class of subgroups of G. It is easy to see
that |Im f| = 1 if and only if G is an Iwasawa group (i.e., a nilpotent modular
group). Having in mind these results, our aim is to study the following class of
groups:
C = {G = finite group | |Im f| = 2}.

We note that a similar problem involving the number of non-zero values taken by
a generalization of the commutativity degree of a finite group is illustrated in [13].

The paper is organized as follows. Section 2 describes all finite groups with
two relative commutativity degrees under the additional assumption that they
have one or two conjugacy classes of non-normal subgroups. A consequence of this
study is the fact that C contains an infinite number of groups. We prove a criterion
that indicates which groups do not belong to C in Section 3. Using this result,
we detect some well-known classes of groups which are not included in C. Also,
we show that S3 = Dg is the unique finite dihedral group contained in C. We end
our paper by studying the density of the set {sd(H,G) | G = finite group, H €
L(G)} in [0, 1].

Most of our notation is standard and will usually not be repeated here.
Elementary notions and results on groups can be found in [5], [16]. For subgroup
lattice concepts, we refer the reader to [15], [17]-[18].

2. The connection between C and the conjugacy classes of
non-normal subgroups of a finite group

For a finite group G, we denote the number of its conjugacy classes of non-
normal subgroups and its normal subgroup lattice by v(G) and N(G), respec-
tively. We recall that any normal subgroup of G is permutable, i.e., it permutes
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with all other subgroups of G. It is obvious that sd({1},G) = 1. Also, in general,
once that v(G) increases, the probability that G has more than 2 relative sub-
group commutativity degrees also increases. Therefore, it is natural to think that
a group G may belong to C if v(G) =1 or v(G) = 2. This additional hypothesis
will help us in our study, because all finite groups having one or two conjugacy
classes of non-normal subgroups were described in [1] and [11], respectively. More
exactly, the following two theorems were proved.

Theorem 2.1. Let G be a finite group. Then v(G) = 1 if and only if G is
isomorphic to one of the following groups:

(1) Zyp X Zyn, where [Z,, ®(Zy)] = 1, p, q are primes such that g|p — 1 and n is
a positive integer;

(2) M(p") = (z,y |a?" " =yP = 1,29 = 217" "), where p is a prime and n > 3
ifp>3orn>4ifp=2.
Theorem 2.2. Let G be a finite group. Then v(G) = 2 if and only if G is

isomorphic to one of the following groups:

(1) Ag

(2) (x,y | 27 = y*" = 1,2Y = zF), where p, q are prime numbers such that
p?lg—1,n > 1 and P =1 (mod q) with k # 1;

(3) (x,y,z | 2" =yP" =29 =[z,2] = [y, 2] = 1,29 = 2F), where p, q, 7 are prime
numbers such that p # q, ¢ # r, p|r — 1 and k? = 1 (mod 1) with k # 1;1

(4) (z,y | 27 = y?" = 1,2¥ = z%), where p, q are primes such that p|q — 1 and
kP =1 (mod q?) with k # 1;

(5) M(p™) x Zg, where p, q are primes such that p # q and n > 3 if p > 3 or
n>4ifp=2;

(6) Zyg X Zy;

(7) Qie;

(8) (x,y |2t =y =1,y" =y'*2""), where n > 3;
(9) Ds.

Our aim is to pass through the two lists of groups and find the ones that are
contained in C. Some answers are provided by our next two results.

INote that the condition g # r must be added to the group (3) in [11, Theorem 1], as shows
the example G = S3 X Zs3; in this case, we have ¢ = r = 3, but v(G) = 3.
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Theorem 2.3. Let G be a finite group such that v(G) = 1. Then G € C if
and only if G = Sj.

PROOF. We saw that there are only two classes of groups having the prop-
erty 7(G) = 1. The modular p-groups M (p") are Iwasawa, so |Im f| = 1. Conse-
quently, they are not contained in C. We assume that G = Z,, x Zgn, where p, ¢
are primes such that g|p — 1. There are p subgroups isomorphic to Z,», and they
form the conjugacy class of non-normal subgroups of G. Two different conjugates
cannot commute, since G does not contain a subgroup of order ¢"*!. Therefore,

|L(Zgn—)[|L(G)| + IN(G)[+1  n(2n+p+1)+2(n+1)

sd(Zgn,G) =

|L(Zgn)||L(G)] - (At D@n+p+1)
while
(@) = WOILE)| +P(N@) +1) _ (@n+ )20 tp+ 1) +2p(n+1),
IL(G)? (2n+p+1)
Then

1
G€C<:>Sd(an,G)ZSd(G)<:>p=2+HOI‘p=1.

But p, ¢ are primes such that g|p — 1, so (p,¢,n) = (3,2,1). Consequently, G € C
if and only if G = S3. For any other triplet (p, ¢, n), we have |Im f| = 3. O

Theorem 2.4. Let G be a finite group with v(G) = 2. Then G € C if and
only if G = S5 x Z4, where ¢ > 5 is a prime number.

PrROOF. We are moving our attention to the list of groups provided by
Theorem 2.2. First, we will inspect the nilpotent groups that have two non-normal
conjugacy classes of subgroups. It is easy to see that if G = Q14 or G = Dg, we
obtain that |Im f| = 3. Also, if G & Zy % Zy4, we get |Im f| = 4. Going further,
for a triplet (p,q,n) chosen as it is indicated in Theorem 2.2, since M (p") and
Z4 are Iwasawa groups having coprime orders, the group G = M (p™) x Z, is also
Iwasawa, so |Im f| = 1. If G is a group of type (8), then it is a non-hamiltonian
2-group that contains an abelian normal subgroup N 2 Zy.. According to [17,
Theorem 9], since % is cyclic and there exist € G and an integer m =n—1 2> 2
such that G = (N, z) and ¢* = ¢g't2", V g € N, we deduce that G is modular.
Consequently, G is an Iwasawa group and we have |Im f| = 1.

The groups that are not covered yet are non-nilpotent. It is easy to see
that |Im f| = 5 for G = Ay. If G is a group of type (2), then G = Zy X Zpn,
where p, ¢ are primes such that p?|¢ — 1 and n > 1. There are q subgroups
isomorphic to Zy» and g subgroups isomorphic to Z,n-1, and they form the two
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non-normal conjugacy classes of subgroups of G. We denote them by Cy and Cs,
respectively. Since Z,» is a cyclic p-group, it contains one subgroup isomorphic
to Zyn—1. Therefore, two different conjugates contained in Co cannot commute.
Also, the same thing can be said about two different conjugates taken from C;.
Then, we have

|L(Zpn2)IL(G)+IN(G)[+2 _ (n=1)(n+q)+n+1

Al C) = =z OE@]  alnrg)
s L@ |IL@)H2AING)+2)  (n—1)(nq) + 2(n+1)
A2y, G) = LZy)IE(C)] = iDte
@ D@+ N@+D) @Dt talntl)
S 3 By O) = T T L@ @ntg—D)(ntg)
@) = NOULO2(NG)+2) _ nlnta)+atnt)
L) n+0)?

Now, to find |Im f|, we must study when two of the above (relative) subgroup
commutativity degrees are equal, under the assumptions that p, ¢ are primes
such that p?|g — 1 and n > 1. After making some computation, we deduce
that |Im f| = 4 if and only if (p,q,n) = (2,5,4), and |Im f| = 5 if and only if
(p,q,n) # (2,5,4).

A group G of type (4) is isomorphic to Z,2 X Zyn, where p,q are primes
such that p|lg — 1 and n is a positive integer. There are g subgroups isomorphic
to Zg X Zpn which form a non-normal conjugacy class of subgroups. Each of
them has ¢ subgroups isomorphic to Z,», so the second non-normal conjugacy
class contains ¢? subgroups. The reader can check if two non-normal subgroups
commute using similar techniques with the ones applied previously. We obtain
the following results:
|L(Zyn—)||L(G)|+IN(G)|+2  n(3n+q*+q+1)+3(n+1)

|L(Zpn ) || L(G)] (Bt +g+l)]
| L(Zyr—1g)[|L(G)| 4+ q(IN(G)| +2) + [N(G)| + ¢ + 1
|L(Zg » Zypn) || L(G))|
C2(Bn4+¢*+q+1)+3q(n+1)+3n+q+2
2n+q+1)Bn+q¢+q+1)
N(GNLG) +(N(G)[+2) +a(N(G)| +q+1)
IL(G)[?

CBn+D)Bn+?+q+1)+3¢n+1)+q¢Bn+q+2)
(Bn+¢*+q+1)? )

Sd(an s G) =

Sd(Zq X anr7G) =

)

sd(G) = |
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The properties of the triplet (p, ¢, n) lead to stating that the above 3 (relative) sub-
group commutativity degrees are different. Consequently, |Im f| = 4 for a group
of type (4).

Finally, if G is a group of type (3), then G = (Z, X Z,n) X Z,, where p,q,T
are prime numbers such that p # g, ¢ # 7, p|r — 1, and n is a positive integer.
We remark that the group Z, % Z,» is exactly the non-nilpotent group having
one conjugacy class of non-normal subgroups described in Theorem 2.1. Also,
it is obvious that (rp,q) = 1. Consequently, the first conjugacy class of non-
normal subgroups contains r subgroups isomorphic to Z,~, while the second class
is formed by 7 subgroups isomorphic to Z,» x Z,. Moreover, we have

n2n+r—+1)+2(n+1)
n+1)2n+r+1)
sd(Zyn X Ly, G) = 8L, Ly 30 Ly )sd(Zy) = ”ﬁ’;ig;g:ffs Y.
Cn+1)2n+r+1)+2r(n+1)
2n+r+1)2
@Cn+1)2n+r+1)+2r(n+1)
2n+r+1)2 ’

Sd(an, G) = Sd(an,ZT D! an)sd({l},Zq) =

)

Sd(ZT X ZPH,G) = Sd(Zr X an)sd({l}, Zq) =

)

sd(G) = sd(Zy % Lpn )sd(Zq) =

Then 1
G el < sd(G) =sd(Zpyn,G) <=r=2+—orr=1
n

Following the properties of p, ¢, » and n, we have G € C if and only if G = S5 xZ,,
where ¢ is a prime number such that ¢ > 5. We finish our proof by stating that
for a group of type (3), we get |Im f| = 3 for all other possible choices of the
quadruplet (p,q,r,n). O

Looking to our last proof, we deduce that even if v(G) = n, where n > 3 is
an integer, we always find a group G that belongs to C. An example would be
G = S3 X Zsn-1. Also, our previous proof indicates that we can generalize our
last result by replacing Z,, where ¢ > 5 is a prime number, with any Iwasawa
group G such that 6 and |G| are relatively prime.

Corollary 2.5. Let G be a finite Iwasawa group such that (6, |G|) = 1. Then
S3 x G is contained in C.

PRrROOF. The subgroup lattice of S3 x G is decomposable since (6, |G|) = 1.
Hence, any subgroup of S5 x G is of type H; x Hs, where H; and H, are sub-
groups of S3 and G, respectively. Since G is an Iwasawa group and the only
conjugacy class of non-normal subgroups of S3 contains 3 subgroups isomorphic
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to Zs, the subgroups of S3 x G that are not permutable are of type Zo x H,
where H € L(G). Consequently, in this case, the function f takes only 2 values:
1 and %. Therefore, |Im f| =2, s0 S3 x G € C. O

We end this section by pointing out that we did not fully describe the set C,
and another remark is that we did not find any nilpotent group that belongs to
this set. Hence, it is natural to indicate the following two open problems:

Problem 2.6. Show that
C ={S5 x G | G = finite Iwasawa group such that(6, |G|) = 1}.

Problem 2.7. Does C contain nilpotent groups?

3. How can we find finite groups that do not belong to C?

In the previous section, we used the number of conjugacy classes of non-
normal subgroups of a finite group G to establish that C contains an infinite
number of groups. Our next aim is to find a condition which guarantees that
a finite group G is not a part of C. For a subgroup H of G, we will consider the
following set

CH)={KeLG)| HK = KH}.

Proposition 3.1. Let G be a finite group. If sd(G) < %—i— U;I(LGE)C‘J;_\I’ then
[Tm f| > 2.

PROOF. Assume that |Im f| < 2. Then |Im f| = 2, since |Im f| = 1 would
imply that G is Iwasawa and this is contradicting our hypothesis. Let H be
a minimal subgroup of G such that sd(H,G) # 1. Then sd(H,G) = sd(QG)
as a consequence of the fact that |Im f| = 2. On the other hand, we have
sd(K, @) =1, for any proper subgroup K of H. Hence,

1
sd(G) = sd(H, G) = T e KEZLEH) |C(K)|
1
= W[(IL(H)\ = DIL(G)| + |C(H)]]
1
> W[(M(ﬂ)\ = DIL(G)| + IN(G)| +1]
LGOI =ING) -1 LG - ING)[ -1 1 [N(G)| +1
ILH)|ILG)  — 2|L(G)| 2 2IL(G)|

which again contradicts our hypothesis. This argument completes our proof. [J
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We remark that the upper bound % + % is the best possible one,

since if G = S3, we have sd(G) = 3 + %, but |Im f| = 2 as we already
saw. Also, our previous result mainly states that a group G may be contained
in C if its subgroup commutativity degree is “large”. Consequently, we expect
that a class of groups is not included in C if its subgroup commutativity degree
vanishes asymptotically. Some examples of well-known classes of groups having
this property were indicated in [19]. They are

e the dihedral groups

Dy =(wy |2 =y =lyay ' =2 1), n>3
e the generalized quaternion groups

Qu = (m,y | 2* =y =Lyazy ' =2 ), n>3,

¢ the quasi-dihedral groups

Son = (z,y | ¥ =2 =1y ey =2 1)

3

Corollary 3.2. The sets {Dan }n>3, {Q2n}n>3 and {San},>4 are not in-
cluded in C.

PrOOF. It is easy to see that

1, 1ngQ8a
|Imf|: 37 1ngD87 Gngﬁa Gg316,
4, if G = Dis, G = Q3.

Remark that, since | Im f| # 2, none of the above-listed 6 groups are contained
in C. We will check if the inequality

IN(G)|+1

sd(G) < % + W (1)

holds for a finite group G isomorphic to a group contained in any of the sets
{Dan }n>5, {Q2n }n>6 and {San},>5. The following explicit formulas were indi-
cated in [19] and [21]:

-9 2n+2 2n+1 -1 2 8
(D) = AT AT A MDA
(n—1+427)2
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(n—3)2"Tt + 2" + (n—1)2 +8
(n—1+2n1)2 ’
—3)2ntt 2" + (3n — 2)2n~1 —-1)2+38
sd(Spn) = P32 02"+ (Bn 22"+ (n—1)7+8
(n—1+3-202)2

IN(Dan)| = [N(Qa)| = [N(Szn)] = 1 + 3.

sd(Qan) =

Using Wolfram|Alpha [22], we deduce that inequality (1) is satisfied for a finite
group G isomorphic to a group that is an element of any of the above 3 infinite
families. Hence, for such a group we have |Im f| > 2 as Proposition 3.1 indicates.
Consequently, G does not belong to C. ]

Theorem 3.3. S3 = Dg is the unique finite dihedral group contained in C.

PROOF. Assume that the dihedral group
Doy = (z,y|a" =y* =1Lyay=a")

belongs to C. Then sd(H, Da,) = sd(K, Dsy,), for every two non-Iwasawa sub-
groups H and K of Ds,. The subgroup structure of D, is well-known: given
a divisor r or n, Da,, possesses a subgroup isomorphic to Z,., namely Hj = (z*+),
and 7 subgroups isomorphic to Dy, namely H] = (x7 2y, i = 1,2,..., %,
Then |L(Dsy,)| = 7(n) + o(n), where 7(n) and o(n) are the number and the sum
of all divisors of n, respectively. Also, by [19], we have |C(H])| = 7(n) + «f,
where z} is the number of solutions of

|2(i—j) with s|n and j=1,2,..,°2
S

(2)

3

7, 8]

Since n cannot be of type 2™ (see Corollary 3.2), we distinguish the following two
cases.

Case 1. n is odd, say n = p{'p5? ---pp*, with each p; an odd prime.
By taking H = H{ and K = H?, one obtains

C(H) = 27(n)  and  |C(K)| = 2r(n) + (s — )7 ( ”) ,

implying that
Sd(Ha DQn) =

and

(20 + 4)(n) +20(n) + (p; = 7 ()

sd(K, Day) = (pi +3)(7(n) + o(n)) 1




166 Mihai-Silviu Lazorec and Marius Tarnduceanu

These equalities lead to

o(n) —7(n) =27 ( Zl> . (3)
p;
Since i is arbitrary, we infer that a; = as = -+ = a = «, and (3) becomes
k a+1
o1
B T (a+ 1) (e +3).
i Pl
It is easy to see that
a+1
pi —1 2
Y >(a+1)*, Vi=12,...,k,
o1 ( )

which implies that
(a4 1) a+3)> (a+ 1%, ie, (a+3)> (a+ 1)
From this inequality it follows that K = o = 1 and p; = 3. Thus n = 3, as desired.

Case 2. n=2"n', where m > 1 and n/ = p{"p5? - - - p* is odd.

Similarly, by taking H = H{ and K = H{", one obtains
|C(H)|=7(n) + (2m + 1)7(n)

and

C()] = 7() + 2+ 1)) + s = 17 ()|

9

implying that

27(n) + o(n) + 2m + 1)7(n’)

sd(H, Day,) = 2(1(n) +o(n))

and

(pi-+3)7(n) +20(n) + (2m+1) (i + )7 (0') + (2m+1) (i~ )7 (37 )

sd(K, Da,)= (pi+3)(1(n)+vo(n)) |

respectively. Then

o) = (2 + V() = 22m + 17 (). ()

i
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and again we have a1 = a3 = --- = @ = a. Thus (4) becomes
2™ —1)o(n') = 2m+ D) (a+ 1) Ya + 3). (5)

But we have 2m+1 — 1 > 2m + 1 with equality if and only if m = 1, and o(n’) >
(a+ 1)1 (a+3) with equality if and only if K = a = 1 and p; = 3. So, (5) leads
to n = 6. In this case, we observe that

101
—— = sd(D12, D12) = sd(D2)

13
Sd(H, D12) = Sd([(7 D12) = E ;ﬁ 198 =

(i.e., the function f has at least three distinct values 1, %, and %), a contradic-

tion.
Hence n = 3, completing the proof. O

4. Density result for the relative subgroup commutativity degree

Let a € [0,1]. We will consider the following two sets:

A = {sd(G) | G = finite group}
and
B = {sd(H,G) | G = finite group, H € L(G)}.

An interesting question that appeared after the subgroup commutativity degree of

a finite group G was introduced was: if there exists a sequence of groups (G, )nen,

such that lim sd(G,) = a. In other words, is the set A dense in [0,1]? This
n—oo

question remains open, but a positive answer is given if we work with the set B.
Theorem 4.1. The set B is dense in [0, 1].

PROOF. Let o € [0,1]. It is obvious that & = 1 is a limit point. If &« = 0,
then we choose the sequence (Dan, Daon),>3, and we have nh_>n;0 sd(Dan, Dan) =
lim sd(Dyn) = 0, as it was proved in [19]. Further, we consider e = ¢ € QN(0, 1),
:zlv_l)lg?"e a, b are positive integers with a < b. The proof of Theorem 2.3 provides
the explicit formula that allows us to compute sd(Zgn,Z, X Zgn), where p, g are
primes such that ¢|p — 1 and n is a positive integer. We remark that

n2n+p+1)+2(n+1) n

lim sd(Zgn, Zp % Zgr) = li RSN
o, s By 1 Br) = o N Gt ) ntd
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Further, we consider the sequence (g;);cn, where each ¢; is a prime number of
the form 4k + 3, with & € N. Since (4¢;,1) = 1, there is a sequence of primes
(pi)ien of the form 4hg; +1. In this way, for each prime ¢;, we find a prime p; such
that g;|p; — 1. Moreover, the sequences (p;)nen, (¢: )nen are strictly increasing and
pi # q;, Vi,j € N. Now, let (kL), (k2),..., (k%) be some strictly increasing and
disjoint subsequences of N. From our previous discussion about prime numbers,
we can choose the sequences (H}', G )nen = (an?»j—17an?»j—l X Zpki; )neN, where

ki ki
ji=12,...,b—a. Then
. a+j—1 .
nl;rr;osd(Hf,G?) = ati Vi=12,....,b—a.

b—a b—a

Moreover, we can build the sequence XH;L, XG;L , and use the fact
j=1 j=1

neN

b—a
that L ><G§7 is decomposable for each positive integer m, which, again,
j=1

is a consequence of the above discussion about prime numbers. Finally, we get
that

b—a b—a b—a b—a 4 1
lim sd | Xy, Xap | =[] im sagp e =[[2L—==%-a
n— 00 j=1 j=1 i n— 00 i a—+y b

This implies that (0,1) N Q C B. Since 0 and 1 were other limit points and
B C [0,1], we have [0,1]NQ C B C [0, 1]. Finally, we deduce that B is dense in
[0,1], as a consequence of the fact that the closure of [0,1] N Q is [0, 1]. O
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