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Rigidity results in certain manifolds with density

By HENRIQUE F. DE LIMA (Paraiba), ERALDO A. LIMA JR. (Paraiba),
ADRIANO A. MEDEIROS (Parafba) and MARCIO S. SANTOS (Paraiba)

Abstract. We apply some maximum principle in order to obtain rigidity results
concerning two-sided hypersurfaces immersed in a Killing warped product endowed with
a suitable density. A particular study of entire Killing graphs is also made.

1. Introduction

Given a complete n-dimensional Riemannian manifold (M™, g) and a smooth
function ¢ : M — R, the weighted manifold My, associated to M and ¢ is the
triple (M, g, dp = e=¥dM), where dM denotes the standard volume element of M.
A theory of Ricci curvature for weighted manifolds goes back to LICHNEROWICZ
[17]-[18] and it was later developed by BAKRY and EMERY in the seminal work [2].
In this setting, as a crucial ingredient to understand the geometry of a weighted
manifold My, they introduced the so-called Bakrny/meryfRz'cci tensor Ricy as
being the following extension of the standard Ricci tensor Ric of M:

Ricy = Ric + Hess .
A natural line of investigation that appears into this thematic is the problem of

extending results stated in terms of the Ricci curvature to analogous results for
the Bakry-Emery—Ricci tensor.
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It is also interesting to remark that weighted manifolds are closely related to
some classical mathematical concepts, as they can be used as a powerful mathe-
matical tool in order to obtain new results related to them. Specifically, in the case
where Ric,, is constant, we can induce on M a structure of a gradient Ricci soli-
ton. Its mathematical relevance is due to Perelman’s solution of the Poincaré
conjecture, since gradient Ricci solitons correspond to self-similar solutions to
Hamilton’s Ricci flow and often arise as limits of dilations of singularities de-
veloped along the Ricci flow. For an overview of results in this scope, one can
consult [27]. Furthermore, weighted manifolds have also been considered when
studying harmonic heat flows and heat kernels. For instance, GRIGOR'YAN and
SALOFF-COSTE established in [14] a result which relates the heat kernel on a com-
plete, noncompact Riemannian manifold M with the Dirichlet heat kernel on the
exterior of a compact set of M. For further results of geometric investigations
concerning these manifolds, we also refer the reader to the articles of MORGAN [21]
and WEI-WYLIE [30].

On the other hand, Killing vector fields are important objects which have
been widely used in order to understand the geometry of submanifolds and, more
particularly, of hypersurfaces immersed in Riemannian spaces. Into this branch,
Arfas, DAJCZER and RIPOLL [1] extended the classical BERNSTEIN’s theorem [4]
to the context of complete minimal surfaces in Riemannian spaces of nonneg-
ative Ricci curvature carrying a Killing vector field. This was done under the
assumption that the sign of the angle function between a global Gauss mapping
and the Killing vector field remains unchanged along the surface. Afterwards,
DaJczER, HINOJOSA and DE LiRA [8] defined a notion of Killing graphs in a class
of Riemannian manifolds endowed with a Killing vector field, and solved the cor-
responding Dirichlet problem for prescribed mean curvatures under hypothesis
involving domain data and the Ricci curvature of the ambient space. More re-
cently, DAJCZER and DE LIRA [9] showed that an entire Killing graph of constant
mean curvature lying inside a slab must be a totally geodesic slice, under certain
restrictions on the curvature of the ambient space. To prove their Bernstein-type
result, they used as main key ingredient the Omori—Yau maximum principle for
the Laplacian in the sense of P1GoLA, RIGOLI and SETTI given in [25].

Here, our purpose is to apply some maximum principle in order to obtain
rigidity results concerning two-sided hypersurfaces immersed in a Killing warped
product P" x, R endowed with a suitable weighted function v which is nat-
urally derived from the warping function p. This manuscript is organized as
follows: Section 2 is devoted to recall some basic facts concerning two-sided
hypersurfaces immersed in a Killing warped product endowed with a weighted
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function. Afterwards, in Section 3, we establish our first results of rigidity re-
lated to parabolic and, more generally, L!'-Liouville two-sided hypersurfaces im-
mersed in a weighted Killing warped product P* x, R, where the weighted func-
tion is given by 1 = —logp. Finally, considering the weighted function in the
form ¢ = —2log p, in Section 4, we obtain further rigidity results. In particular,
we study the rigidity of entire Killing graphs constructed over the base P™.

2. Preliminaries

Let M™*! be an (n + 1)-dimensional Riemannian manifold endowed with
a Killing vector field Y. Suppose that the distribution orthogonal to Y is of
constant rank and integrable. Given an integral leaf P™ of that distribution, let
& : IxP? — M™*! be the flow generated by Y with initial values in M™*!, where
I is a maximal interval of definition. Without loss of generality, in what follows,
we will consider I = R.

In this setting, M"+! can be regarded as the Killing warped product P™ X, R,
that is, the product manifold P x R endowed with the warping metric

(,) =m2((,)p) + (p o me) *mg (dt?), (2.1)

where 7p and 7g denote the canonical projections from P™ x R onto each factor,
(,)p is the induced Riemannian metric on the base P, and the warping function
p € C>®is p=1Y|>0. We observe that the Killing warped product P" x, R is
a weighted manifold with density p.

Throughout this work, we will deal with hypersurfaces X" immersed in
a Killing warped product M"*+! = P" x » R and with two-sided hypersurfaces.
This condition means that there is a globally defined unit normal vector field N.
In this setting, we will consider two particular smooth functions, namely, the
(vertical) height function h = (7r)|s and the angle function © = (N,Y). Let us
denote by V, V and V the gradients with respect to the metrics of P x, R, X"
and P”, respectively.

Denoting by ()T the tangential component of a vector field in X(M"T1)
along ", we have that

1
Vh = EYT. (2.2)

Moreover, it follows that
1
N*=N - —0Y. (2.3)
p



174 H.F. de Lima, E. A. Lima Jr., A. A. Medeiros and M. S. Santos

Hence, from (2.2) and (2.3) it is not difficult to verify that the following relation
holds:

1 *
VI = 5N [y (2.4)

Now, let 1 be a weighted function defined in P" x, R. The v-divergence
operator on X" is defined by

divy (X) = e¥div(e " X),

where X is a tangent vector field on ¥™. From this, we define the drift Laplacian
by
Ayu = divy (Vu) = Au — (Vu, Vi), (2.5)

where u is a smooth function on ¥". We will also refer to this operator as the
-Laplacian of ™.

3. Parabolic and L'-Liouville two-sided hypersurfaces in P X, R

Considering the same set up of the previous section, we observe that the
Killing vector field Y determines in P" X, R a codimension-one foliation by to-
tally geodesic slices P x {t}, ¢ € R. In general, slices are not the only totally
geodesic hypersurfaces in Killing warped products. For instance, if ' is a geo-
desic of the hyperbolic plane H?, the cylinder I x R is totally geodesic in H? x R.
So, a hypersurface being totally geodesic is strictly weaker than being a slice in
general. Motivated by this fact, in this section, we establish some results which
guarantee that (open pieces of) slices are the only totally geodesic hypersurfaces
in P" x, R, under certain curvature constraints on P".

For this, we recall that a Riemannian manifold without boundary 3" is said
to be parabolic when the only superharmonic and bounded from below functions
on X" are the constant ones. Now, we are able to state and prove our first
Bernstein-type result concerning parabolic two-sided hypersurfaces immersed in
a weighted Killing warped product, whose weighted function is given by ¢ =

—log p.

Theorem 3.1. Let M™+1 =P" X, R be a warped product satisfying fR\i/cw >
—k for some constant k, and suppose that p is a superharmonic function. Let
¥." be a parabolic two-sided hypersurface immersed in M™*! with constant mean
curvature and with angle function © having strict sign. We have the following:
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(a) If kK > 0 and, for some constant 0 < a < 1,

«
[VA|* < g AP, (3.1)

k(n—1)

then Y™ is contained in a slice. In addition, if ¥ is complete, then P" is
complete, ¥" is a slice, and M"™*t!' = P" x R is a product space.

(b) If k = 0, then X" is totally geodesic. Moreover, if ﬁia/, is strictly positive,
then ¥" is contained in a slice of M™ . In addition, if ¥" is complete, then
P™ is complete, " is a slice, and M™+1 = P" x R is a product space.

PROOF. Firstly, we prove item (a). For this, we note that from [3, Proposi-
tion 2.12] we have that

ABO = —O(Ric(N, N) + |A]?). (3.2)
Moreover, from [23, Corollary 7.43] we get that
Ric(N,N) = Ric(N*,N*) — ;Hessp(N ,N*)—© R (3.3)

Then, (3.2) and (3.3) show that

— 11— A
AO = — <Ric(N*,N*) - ;Hessp(N*,N*) - @2/)—5 + |A|2> e. (3.4)
On the other hand, since 1) = —log p, a straightforward calculation gives

Ric(N*, N*) — 1PIEES/)(J\f*, N*) = Ricy (N*, N*).
p

Then B
Ap

AO = — <§’1€¢(N*,N*) - @2F

+ |A|2> 0. (3.5)
We also note that, since we are assuming that © has strict sign, for an ap-
propriated choice of N, we can suppose © > 0 on X™. Since p is assumed to be

superharmonic and taking into account our constraint on Ricy, from equations
(3.5) and (2.4) we get

AO < (k(n—1)p*|Vh|* — |A]?) ©. (3.6)
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Using hypothesis (3.1), we obtain that
AB < (a —1)|A]%6. (3.7)

Hence, from (3.7) we have that © is a positive superharmonic function on X",
and since we are assuming that X" is parabolic, © must be constant on X". So,
returning to (3.7), we see that %™ is totally geodesic. Therefore, hypothesis (3.1)
assures that h is constant on ¥”, that is, ¥™ is contained in a slice of M™*!.
Moreover, if ¥™ is complete, we have that P™ is also complete, X" is a slice of
M"™*1 and since in this case © = p, we have that p must be constant on P".

Now, we prove item (b). Since p is superharmonic and ﬁizw > 0, from equa-
tion (3.5) we obtain that (for an appropriated choice of N) © is a positive function
on X" such that

A® < —(Ricy(N*, N*) + A6 < 0. (3.8)

Thus, the parabolicity of ¥ assures that © is constant on it. So, returning to
(3.8) we have that |A| = 0, that is, " is totally geodesic. Moreover, we also
obtain that R\igw (N*,N*) = 0 on X". But, assuming that f{\igd, > 0, we conclude
that N* vanishes identically on 3", which means that X" is contained in a slice of
M™+1, In addition, if ¥" is complete, as in the last part of the proof of item (a),
we have that P" is complete, ¥" is a slice of M"™*1, and p is constant. (I

According to the terminology due to BESSA, P1GOLA and SETTI [5], a smooth
Riemannian manifold (X", g) is said to satisfy the L!-Liouville property (shortly,
¥" is Li-Liouville), if every nonnegative superharmonic function u € L*(3) must
be constant. In this setting, we close this section with the following rigidity result.

Theorem 3.2. Let M™t! = P» x, R be a Killing warped product with
ﬁiajj > —k for some constant x and warping function p superharmonic. Let X"
be a L'-Liouville two-sided hypersurface immersed in M"™*' with constant mean
curvature such that its angle function © has strict sign and © € L'(X). We have
the following:

(a) If K = 0, then X" is totally geodesic. Furthermore, if |Vh| < «a|A|? for
some positive constants « and 3, X" Iis complete, then X" is a slice and
M"™t =P" x R is a product space, with P" being compact.

(b) If k > 0 and, for some constant 0 < a < 1,

Vh]? < AP, (3.9)

k(n —1)p?

then X" is contained in a slice of M™*'. In addition, if ¥" is complete, then

Y" is a slice and M™' = P™ x R is a product space.
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(c) If kK < 0, then X" is contained in a slice of M™*1. In addition, if ¥" is
complete, then X" is a slice and M™! = P™ x R is a product space, with P"
being compact.

PROOF. Let us assume the set up of item (a). We have that
A© < —(Ricy(N*, N*) + |A])© < 0. (3.10)

Since X" is L!-Liouville and (after an appropriated choice of N) © > 0, we have
that © must be constant. Therefore, using this in (3.10), we obtain

0= A® < —(Ricy(N*, N*) + |A]*)© < 0.

So, ¥™ must be totally geodesic. Since |Vh| < a|A|?, we conclude that ¥" is,
in fact, contained in a slice of M™+!. Moreover, if ¥" is complete, then X" is
a slice, and since © is constant, we have that 1 is constant on M"™. Moreover, we
also get that vol(¥) < +oo. But, [32, Theorem 7] guarantees that every complete
noncompact Riemannian manifold with nonnegative Ricci curvature has infinite
volume. Hence, we conclude that ™ is compact, and consequently, P must be
also compact.
In order to prove item (b), we observe that (3.9) implies

AO < —(Ricy(N*, N*)+]A]?)0 < (k(n—1)p*|Vh]>—|A]>)® < (a—1)|A]?© < 0.

Hence, at this point we can reason in a similar way to the proof of item (a).

Let us assume the set up of item (c). Following the same ideas of item (b),
we have that " is contained in a slice of M. Moreover, if £" is complete, then
P™ is compact. ([l

Remark 3.3. According to [25, Chapter 3|, a Riemannian manifold X" is
said to be stochastically complete if, for some (and hence, for any) (z,t) € X x
(0, +00), the heat kernel p(z,y,t) of the Laplace—Beltrami operator A satisfies
the conservation property

p(z,y,t)dy = 1. (3.11)
b))

From the probabilistic viewpoint, stochastical completeness is the property of
a stochastic process to have infinite life time. For the Brownian motion on
a manifold, the conservation property (3.11) means that the total probability
of the particle to be found in the state space is constantly equal to one (cf. [10],
[12]-[13], [29]). Moreover, it is a direct consequence of [25, Theorem 3.1] jointly
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with the so-called Omori-Yau maximum principle ([22], [31]) that complete Rie-
mannian manifolds having Ricci curvature bounded from below are stochastically
complete.

Under the light of this previous digression, and taking into account
[5, Corollary 3] which ensures that a stochastically complete manifold is always
L!-Liouville, we see that R (n > 2) and H" constitute examples of L'-Liouville
manifolds which are not parabolic. On the other hand, we also observe that in
[5, Section 2] the authors constructed nontrivial examples of stochastically incom-
plete (and, in particular, non-parabolic) L!-Liouville manifolds.

4. Further rigidity results

In this section, we will consider the weighted function ¢ = —21log p on Killing
warped product P" x, R. In order to prove our Bernstein-type theorems in
weighted warped products, we will need some auxiliary lemmas.

Lemma 4.1. Let X" be a two-sided hypersurface immersed in M"*t! =
P" x, R with mean curvature H, height function h and angle function ©. Then,

Ayh = nHe"O.
Proor. Firstly, note that

p2div (p72YT) =p2 ((Vp 2, Y ) +p2divy ™)
=p 2 ((Vp 2, Y")+p 2div(Y —ON)) =(Vp 2, Vh)+np *HO.

Thus, from the previous equality we get
div (Vh) = (Vlog p~2,Vh) +np 2HO. (4.1)

From equations (2.5) and (4.1) we obtain the desired result. O

In what follows, we consider £ (%) := {u: X" = R: [, lu?(z)e”¥@)dy <
+00}. As a first application of Lemma 4.1, we obtain the following result.

Theorem 4.2. Let X™ be a complete two-sided hypersurface immersed in
P* x, R. Suppose that H and © have simultaneously the same sign. If h is
nonnegative and such that h € EZJ(Z), with ¢ > 1, then X" is a slice. In addition,

if Ric is nonnegative and h is strictly positive, then P" is compact.
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ProoF. Applying Lemma 4.1, from the hypothesis we have that Ayh > 0.
But, it follows from [26, Theorem 1.1] that in a complete weighted manifold there
does not exist any nonconstant nonnegative ¥-subharmonic function u € Efb(E),
with ¢ > 1. Thus, we conclude that h is constant, and therefore ™ is a slice.
In particular, 1 is constant.

Note that if h > 0, we have that the volume of X" is finite. Moreover,
supposing Ric is nonnegative, we can apply once more [32, Theorem 7], already
mentioned in the proof of Theorem 3.2, to conclude that P™ must be compact. [

In [32], YAU established the following version of Stokes’ Theorem on an
n-dimensional complete noncompact Riemannian manifold ¥": if w € Q"~1(3")
is an integrable (n — 1)-differential form on X", then there exists a sequence B;
of domains on X" such that B; C Bj;1, X" = U;>1B; and lim; ‘[Bi dw = 0.
Later on, supposing that X" is oriented by the volume element d¥ and denoting
by w = txdX the contraction of d¥ in the direction of a smooth vector field X on
3™ CAMINHA extended this result of Yau showing that if the divergence of X,
divy X, does not change sign and | X| is Lebesgue integrable on X", then divy X
must be identically zero on X" (see [6, Proposition 2.1]).

Since divy (X) = e¥div(e~¥ X), it is not difficult to see that from the above-
mentioned [6, Proposition 2.1] we get the following result:

Lemma 4.3. Letu be a smooth function on a complete weighted Riemannian
manifold X" with weighted function v, such that Au does not change sign on X".
If |Vu| € Ly(%), then Ayu vanishes identically on %™

Using Lemma 4.3, we get the following result.

Theorem 4.4. Let ™ be a complete two-sided hypersurface which lies in
a slab of P" x, R. Suppose that H and © do not change sign on ¥". If |Vh| €
L},(X), then X" is a slice of P x, R.

Proor. Taking into account our restrictions on H and ©, we get that Ayh
does not change sign. Then, from Lemma 4.3 we get that Ayh = 0.
On the other hand, note that

Ayh? = 2hAyh + 2|Vh|* > 0.

But, since h is bounded, and using once more that [Vh| € £}, (%), Lemma 4.3
guarantees also that Ayh? = 0.

Hence, we conclude that h is a constant, and therefore X" is a slice
of P* x, R. O
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A smooth function u on a weighted manifold (X", g,du = e~ ¥dX) is said to
be -superharmonic if Ayu < 0 on X". In this setting, X" is called ¢-parabolic
if there is no nonconstant, nonnegative, ¢-superharmonic function on X". From
Theorem 4.4 we obtain the following consequence.

Corollary 4.5. Let X" be a complete two-sided hypersurface which lies in
a slab of P x, R. Suppose that H and © do not change sign on ¥". If X" is
-parabolic, then X" is a slice of P™ x, R.

According to [9], we define the entire Killing graph X" (u) associated to
a smooth function u € C*°(P) as the hypersurface given by

YX"(u) = {®(z,u(x)) :x € P"} CP" x, R.
The metric induced on P” from the Riemannian metric (2.1) via £ (u) is given by

(b= de + p2du. (12)

On the other hand, the function g : P* x R — R given by g(z,t) =t — u(x)
is such that X" (u) = ®(g~*(0)). Thus, for all vector field X tangent to P x, R,
we have

1 1
X(9) = X"() + 55 (X.0)0o) = <pgat _ Du,x> 7

where Du denotes the gradient of a function u with respect to the metric ( , )p
of P, and X* is the orthogonal projection of X onto TTP. Thus,

= 1
Vg = 72615 — Du
p

is a normal vector field on g~1(0), and consequently,

— 1
Ny = ®,(Vg) = EY — &, (Du)

is a normal vector field on X" (u). Since

14 02| Dul2)1/2
|N0| = ( Rl | u|IP’) ;

it follows that

No 1

= 7 (Y — p*®,.(Du))

N =
INol — p(1+ p?|Dul?
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gives an orientation on X" (u) such that its angle function is given by

p

O=WNY) = 0 2Du)7

> 0. (4.3)

As a consequence of Theorem 4.4, we will obtain the following non-parametric
result concerning entire Killing graphs in P x, R.

Theorem 4.6. Let ¥"(u) be an entire Killing graph which lies in a slab of
P™ x, R whose base P" is complete. Suppose that H and © do not change sign
on ¥"(u). If |Du| € L},(P), then u is constant on P".

PROOF. Firstly, we proof that ¥"(u) is complete. Indeed, let X be any
vector field tangent to X" (u). From the Cauchy—Schwarz inequality we get

<X7X>u = <X*7X*>P+p2<DuaX*>]P’ Z <X*7X*>IP’

This implies that
Lu(y) =2 Le(7"),

where L, () stands for the length of a curve v on X"(u) with respect to the
induced metric (4.2), and Lp(y*) denotes the length of the projection y* of
onto P with respect to its metric { , )p. Consequently, since projections onto P"
of divergent curves on X" (u) give divergent curves on P", and as we assume that
the metric (,)p is complete, we can apply the Hopf~Rinow theorem to conclude
that the induced metric (4.2) is also complete.
On the other hand, note that
2

2 _ p
1+ p?|Dul?’
So, ,
|Vh|? = 1+|f;ﬂ)u|2 < |Dul*.
Then, we have that [Vh| € £},(X). From Theorem 4.4, we get that X" (u) is
a slice, which means that « must be constant on P™. O

Given a weighted manifold (X", g,du = e~ ¥dX), we say that the weak
Omori-Yau maximum principle holds if for every u € C?(X) satisfying supy, u <
+00, there exists a sequence of points {p;} C ¥" such that

liin u(pg) = supu and lim sup Ayu(pg) < 0.
s k
Considering this context, it follows from [27, Remark 2.18] that the weak Omori-

Yau maximum principle holds on ¥", provided that Ricy is bounded from below
on it. Motivated by this previous digression, we get the following result.
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Theorem 4.7. Let X" be a complete minimal two-sided hypersurface im-
mersed in P" x,R. If Ricy, > &, for some constant x > 0, and p is bounded from
below, then ¥™ is a slice. In particular, P" is compact.

PROOF. Firstly, from Bochner’s formula (see, for instance, [30, page 378]),
we have that

1
§A¢|Vh|2 = |Hess h|? + Ricy (Vh, Vh) + (VA h, V). (4.4)

Consequently, taking into account our restriction on Ricy and the assumption
that X" is minimal, from Lemma 4.1 and (4.4) we obtain that

1
§A¢|Vh|2 > Ricy, (Vh, Vh) > k|Vh|?. (4.5)

On the other hand, since the boundedness of p also implies the boundedness of
|Vh|, and using once more the fact that Ricy is bounded from below, the above-
mentioned [27, Remark 2.18] guarantees that the weak Omori—Yau maximum
principle holds on X", that is, there exists a sequence of points (pg)r>1 in X"
such that

lilgn |Vh|*(py) = sup |Vh|? and li’gnsup Ay VA (pr) < 0. (4.6)
)

Hence, from (4.5) and (4.6) we get that supy, |Vh| = 0, and consequently,
¥™ is a slice. In particular, v is constant, and therefore P™ is compact. ([

Finally, we state and prove the last rigidity result of this paper.

Theorem 4.8. Let ¥ be a complete two-sided hypersurface which lies in
a slab of P" x, R. Suppose that the Bakry-Emery—Ricci tensor Ricy of ™ is
bounded from below and v is bounded. If H is constant and © is nonnegative,
then X" is minimal. Moreover, if Ricy, > 0, then X" is a slice.

PROOF. Recall that, from Lemma 4.1, we have p?A,h = nHO. Moreover,
since Ricy is bounded from below, the maximum principle of Omori-Yau holds
on X",

Suppose that H > 0. So, taking into account that h is bounded, we have
a sequence {p} € ¥" such that

0 > limsup p®Ayh(px) = nH limsup O(py,) > 0.

k—o0 k—o0

Then, we have that H = 0 on X".
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Now, supposing H < 0 and, again, taking into account that h is bounded,
we have a sequence {p;} € X" such that

0 < liminf p?Ayh(py) = nliminf HO(py) = nH limsup O(py,) < 0.
k—o0 k—o0 k—00
Consequently, from the above expression we conclude that H = 0 on ™. Thus,
we can conclude that X" is minimal. In particular, from Lemma 4.1 we get that
h is 1p-harmonic.

On the other hand, since X" lies in a slab, there exists a constant S such
that h — 8 > 0. But, it follows from [16, Theorem 2.2] that the only positive and
1-harmonic functions defined on a weighted manifold whose BakrnymeryfRicci
tensor is nonnegative are the constant ones. Hence, assuming in addition that
Ricy > 0, we conclude that h is constant on ¥". Therefore, X" is a slice of
P x, R. |
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