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Rigidity results in certain manifolds with density

By HENRIQUE F. DE LIMA (Paráıba), ERALDO A. LIMA JR. (Paráıba),

ADRIANO A. MEDEIROS (Paráıba) and MÁRCIO S. SANTOS (Paráıba)

Abstract. We apply some maximum principle in order to obtain rigidity results

concerning two-sided hypersurfaces immersed in a Killing warped product endowed with

a suitable density. A particular study of entire Killing graphs is also made.

1. Introduction

Given a complete n-dimensional Riemannian manifold (Mn, g) and a smooth

function ψ : M → R, the weighted manifold Mψ associated to M and ψ is the

triple (M, g, dµ = e−ψdM), where dM denotes the standard volume element of M .

A theory of Ricci curvature for weighted manifolds goes back to Lichnerowicz

[17]–[18] and it was later developed by Bakry and Émery in the seminal work [2].

In this setting, as a crucial ingredient to understand the geometry of a weighted

manifold Mψ, they introduced the so-called Bakry–Émery–Ricci tensor Ricψ as

being the following extension of the standard Ricci tensor Ric of M :

Ricψ = Ric + Hessψ.

A natural line of investigation that appears into this thematic is the problem of

extending results stated in terms of the Ricci curvature to analogous results for

the Bakry–Émery–Ricci tensor.
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It is also interesting to remark that weighted manifolds are closely related to

some classical mathematical concepts, as they can be used as a powerful mathe-

matical tool in order to obtain new results related to them. Specifically, in the case

where Ricψ is constant, we can induce on M a structure of a gradient Ricci soli-

ton. Its mathematical relevance is due to Perelman’s solution of the Poincaré

conjecture, since gradient Ricci solitons correspond to self-similar solutions to

Hamilton’s Ricci flow and often arise as limits of dilations of singularities de-

veloped along the Ricci flow. For an overview of results in this scope, one can

consult [27]. Furthermore, weighted manifolds have also been considered when

studying harmonic heat flows and heat kernels. For instance, Grigor’yan and

Saloff-Coste established in [14] a result which relates the heat kernel on a com-

plete, noncompact Riemannian manifold M with the Dirichlet heat kernel on the

exterior of a compact set of M . For further results of geometric investigations

concerning these manifolds, we also refer the reader to the articles of Morgan [21]

and Wei–Wylie [30].

On the other hand, Killing vector fields are important objects which have

been widely used in order to understand the geometry of submanifolds and, more

particularly, of hypersurfaces immersed in Riemannian spaces. Into this branch,

Aĺıas, Dajczer and Ripoll [1] extended the classical Bernstein’s theorem [4]

to the context of complete minimal surfaces in Riemannian spaces of nonneg-

ative Ricci curvature carrying a Killing vector field. This was done under the

assumption that the sign of the angle function between a global Gauss mapping

and the Killing vector field remains unchanged along the surface. Afterwards,

Dajczer, Hinojosa and de Lira [8] defined a notion of Killing graphs in a class

of Riemannian manifolds endowed with a Killing vector field, and solved the cor-

responding Dirichlet problem for prescribed mean curvatures under hypothesis

involving domain data and the Ricci curvature of the ambient space. More re-

cently, Dajczer and de Lira [9] showed that an entire Killing graph of constant

mean curvature lying inside a slab must be a totally geodesic slice, under certain

restrictions on the curvature of the ambient space. To prove their Bernstein-type

result, they used as main key ingredient the Omori–Yau maximum principle for

the Laplacian in the sense of Pigola, Rigoli and Setti given in [25].

Here, our purpose is to apply some maximum principle in order to obtain

rigidity results concerning two-sided hypersurfaces immersed in a Killing warped

product Pn ×ρ R endowed with a suitable weighted function ψ which is nat-

urally derived from the warping function ρ. This manuscript is organized as

follows: Section 2 is devoted to recall some basic facts concerning two-sided

hypersurfaces immersed in a Killing warped product endowed with a weighted
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function. Afterwards, in Section 3, we establish our first results of rigidity re-

lated to parabolic and, more generally, L1-Liouville two-sided hypersurfaces im-

mersed in a weighted Killing warped product Pn ×ρ R, where the weighted func-

tion is given by ψ = − log ρ. Finally, considering the weighted function in the

form ψ = −2 log ρ, in Section 4, we obtain further rigidity results. In particular,

we study the rigidity of entire Killing graphs constructed over the base Pn.

2. Preliminaries

Let M̄n+1 be an (n + 1)-dimensional Riemannian manifold endowed with

a Killing vector field Y . Suppose that the distribution orthogonal to Y is of

constant rank and integrable. Given an integral leaf Pn of that distribution, let

Φ : I×Pn → M̄n+1 be the flow generated by Y with initial values in M̄n+1, where

I is a maximal interval of definition. Without loss of generality, in what follows,

we will consider I = R.

In this setting, M̄n+1 can be regarded as the Killing warped product Pn×ρR,

that is, the product manifold Pn × R endowed with the warping metric

〈 , 〉 = π∗P(〈 , 〉P) + (ρ ◦ πP)2π∗R(dt2), (2.1)

where πP and πR denote the canonical projections from Pn × R onto each factor,

〈 , 〉P is the induced Riemannian metric on the base Pn, and the warping function

ρ ∈ C∞ is ρ = |Y | > 0. We observe that the Killing warped product Pn ×ρ R is

a weighted manifold with density ρ.

Throughout this work, we will deal with hypersurfaces Σn immersed in

a Killing warped product M̄n+1 = Pn ×ρ R and with two-sided hypersurfaces.

This condition means that there is a globally defined unit normal vector field N .

In this setting, we will consider two particular smooth functions, namely, the

(vertical) height function h = (πR)|Σ and the angle function Θ = 〈N,Y 〉. Let us

denote by ∇, ∇ and ∇̃ the gradients with respect to the metrics of Pn ×ρ R, Σn

and Pn, respectively.

Denoting by ( )> the tangential component of a vector field in X(M̄n+1)

along Σn, we have that

∇h =
1

ρ2
Y >. (2.2)

Moreover, it follows that

N∗ = N − 1

ρ2
ΘY. (2.3)
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Hence, from (2.2) and (2.3) it is not difficult to verify that the following relation

holds:

|∇h|2 =
1

ρ2
|N∗|2M̄ . (2.4)

Now, let ψ be a weighted function defined in Pn ×ρ R. The ψ-divergence

operator on Σn is defined by

divψ(X) = eψdiv(e−ψX),

where X is a tangent vector field on Σn. From this, we define the drift Laplacian

by

∆ψu = divψ(∇u) = ∆u− 〈∇u,∇ψ〉, (2.5)

where u is a smooth function on Σn. We will also refer to this operator as the

ψ-Laplacian of Σn.

3. Parabolic and L1-Liouville two-sided hypersurfaces in Pn ×ρ R

Considering the same set up of the previous section, we observe that the

Killing vector field Y determines in Pn ×ρ R a codimension-one foliation by to-

tally geodesic slices Pn × {t}, t ∈ R. In general, slices are not the only totally

geodesic hypersurfaces in Killing warped products. For instance, if Γ is a geo-

desic of the hyperbolic plane H2, the cylinder Γ×R is totally geodesic in H2×R.

So, a hypersurface being totally geodesic is strictly weaker than being a slice in

general. Motivated by this fact, in this section, we establish some results which

guarantee that (open pieces of) slices are the only totally geodesic hypersurfaces

in Pn ×ρ R, under certain curvature constraints on Pn.

For this, we recall that a Riemannian manifold without boundary Σn is said

to be parabolic when the only superharmonic and bounded from below functions

on Σn are the constant ones. Now, we are able to state and prove our first

Bernstein-type result concerning parabolic two-sided hypersurfaces immersed in

a weighted Killing warped product, whose weighted function is given by ψ =

− log ρ.

Theorem 3.1. Let M̄n+1 = Pn×ρR be a warped product satisfying R̃icψ ≥
−κ for some constant κ, and suppose that ρ is a superharmonic function. Let

Σn be a parabolic two-sided hypersurface immersed in M̄n+1 with constant mean

curvature and with angle function Θ having strict sign. We have the following:



Rigidity results in certain manifolds with density 175

(a) If κ > 0 and, for some constant 0 < α < 1,

|∇h|2 ≤ α

κ(n− 1)ρ2
|A|2, (3.1)

then Σn is contained in a slice. In addition, if Σn is complete, then Pn is

complete, Σn is a slice, and M̄n+1 = Pn × R is a product space.

(b) If κ = 0, then Σn is totally geodesic. Moreover, if R̃icψ is strictly positive,

then Σn is contained in a slice of M̄n+1. In addition, if Σn is complete, then

Pn is complete, Σn is a slice, and M̄n+1 = Pn × R is a product space.

Proof. Firstly, we prove item (a). For this, we note that from [3, Proposi-

tion 2.12] we have that

∆Θ = −Θ(Ric(N,N) + |A|2). (3.2)

Moreover, from [23, Corollary 7.43] we get that

Ric(N,N) = R̃ic(N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗)−Θ2 ∆̃ρ

ρ3
. (3.3)

Then, (3.2) and (3.3) show that

∆Θ = −

(
R̃ic(N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗)−Θ2 ∆̃ρ

ρ3
+ |A|2

)
Θ. (3.4)

On the other hand, since ψ = − log ρ, a straightforward calculation gives

R̃ic(N∗, N∗)− 1

ρ
H̃essρ(N∗, N∗) = R̃icψ(N∗, N∗).

Then

∆Θ = −

(
R̃icψ(N∗, N∗)−Θ2 ∆̃ρ

ρ3
+ |A|2

)
Θ. (3.5)

We also note that, since we are assuming that Θ has strict sign, for an ap-

propriated choice of N , we can suppose Θ > 0 on Σn. Since ρ is assumed to be

superharmonic and taking into account our constraint on R̃icψ, from equations

(3.5) and (2.4) we get

∆Θ ≤
(
κ(n− 1)ρ2|∇h|2 − |A|2

)
Θ. (3.6)
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Using hypothesis (3.1), we obtain that

∆Θ ≤ (α− 1)|A|2Θ. (3.7)

Hence, from (3.7) we have that Θ is a positive superharmonic function on Σn,

and since we are assuming that Σn is parabolic, Θ must be constant on Σn. So,

returning to (3.7), we see that Σn is totally geodesic. Therefore, hypothesis (3.1)

assures that h is constant on Σn, that is, Σn is contained in a slice of M̄n+1.

Moreover, if Σn is complete, we have that Pn is also complete, Σn is a slice of

M̄n+1, and since in this case Θ = ρ, we have that ρ must be constant on Pn.

Now, we prove item (b). Since ρ is superharmonic and R̃icψ ≥ 0, from equa-

tion (3.5) we obtain that (for an appropriated choice of N) Θ is a positive function

on Σn such that

∆Θ ≤ −(R̃icψ(N∗, N∗) + |A|2)Θ ≤ 0. (3.8)

Thus, the parabolicity of Σn assures that Θ is constant on it. So, returning to

(3.8) we have that |A| ≡ 0, that is, Σn is totally geodesic. Moreover, we also

obtain that R̃icψ(N∗, N∗) = 0 on Σn. But, assuming that R̃icψ > 0, we conclude

that N∗ vanishes identically on Σn, which means that Σn is contained in a slice of

M̄n+1. In addition, if Σn is complete, as in the last part of the proof of item (a),

we have that Pn is complete, Σn is a slice of M̄n+1, and ρ is constant. �

According to the terminology due to Bessa, Pigola and Setti [5], a smooth

Riemannian manifold (Σn, g) is said to satisfy the L1-Liouville property (shortly,

Σn is L1-Liouville), if every nonnegative superharmonic function u ∈ L1(Σ) must

be constant. In this setting, we close this section with the following rigidity result.

Theorem 3.2. Let M̄n+1 = Pn ×ρ R be a Killing warped product with

R̃icψ ≥ −κ for some constant κ and warping function ρ superharmonic. Let Σn

be a L1-Liouville two-sided hypersurface immersed in M̄n+1 with constant mean

curvature such that its angle function Θ has strict sign and Θ ∈ L1(Σ). We have

the following:

(a) If κ = 0, then Σn is totally geodesic. Furthermore, if |∇h| ≤ α|A|β for

some positive constants α and β, Σn is complete, then Σn is a slice and

M̄n+1 = Pn × R is a product space, with Pn being compact.

(b) If κ > 0 and, for some constant 0 < α < 1,

|∇h|2 ≤ α

κ(n− 1)ρ2
|A|2, (3.9)

then Σn is contained in a slice of M̄n+1. In addition, if Σn is complete, then

Σn is a slice and M̄n+1 = Pn × R is a product space.
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(c) If κ < 0, then Σn is contained in a slice of M̄n+1. In addition, if Σn is

complete, then Σn is a slice and M̄n+1 = Pn×R is a product space, with Pn

being compact.

Proof. Let us assume the set up of item (a). We have that

∆Θ ≤ −(R̃icψ(N∗, N∗) + |A|2)Θ ≤ 0. (3.10)

Since Σn is L1-Liouville and (after an appropriated choice of N) Θ > 0, we have

that Θ must be constant. Therefore, using this in (3.10), we obtain

0 = ∆Θ ≤ −(R̃icψ(N∗, N∗) + |A|2)Θ ≤ 0.

So, Σn must be totally geodesic. Since |∇h| ≤ α|A|β , we conclude that Σn is,

in fact, contained in a slice of M̄n+1. Moreover, if Σn is complete, then Σn is

a slice, and since Θ is constant, we have that ψ is constant on Mn. Moreover, we

also get that vol(Σ) < +∞. But, [32, Theorem 7] guarantees that every complete

noncompact Riemannian manifold with nonnegative Ricci curvature has infinite

volume. Hence, we conclude that Σn is compact, and consequently, Pn must be

also compact.

In order to prove item (b), we observe that (3.9) implies

∆Θ ≤ −(R̃icψ(N∗, N∗)+ |A|2)Θ ≤ (κ(n−1)ρ2|∇h|2−|A|2)Θ ≤ (α−1)|A|2Θ ≤ 0.

Hence, at this point we can reason in a similar way to the proof of item (a).

Let us assume the set up of item (c). Following the same ideas of item (b),

we have that Σn is contained in a slice of M̄ . Moreover, if Σn is complete, then

Pn is compact. �

Remark 3.3. According to [25, Chapter 3], a Riemannian manifold Σn is

said to be stochastically complete if, for some (and hence, for any) (x, t) ∈ Σ ×
(0,+∞), the heat kernel p(x, y, t) of the Laplace–Beltrami operator ∆ satisfies

the conservation property ∫
Σ

p(x, y, t)dy = 1. (3.11)

From the probabilistic viewpoint, stochastical completeness is the property of

a stochastic process to have infinite life time. For the Brownian motion on

a manifold, the conservation property (3.11) means that the total probability

of the particle to be found in the state space is constantly equal to one (cf. [10],

[12]–[13], [29]). Moreover, it is a direct consequence of [25, Theorem 3.1] jointly
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with the so-called Omori–Yau maximum principle ([22], [31]) that complete Rie-

mannian manifolds having Ricci curvature bounded from below are stochastically

complete.

Under the light of this previous digression, and taking into account

[5, Corollary 3] which ensures that a stochastically complete manifold is always

L1-Liouville, we see that Rn (n > 2) and Hn constitute examples of L1-Liouville

manifolds which are not parabolic. On the other hand, we also observe that in

[5, Section 2] the authors constructed nontrivial examples of stochastically incom-

plete (and, in particular, non-parabolic) L1-Liouville manifolds.

4. Further rigidity results

In this section, we will consider the weighted function ψ = −2 log ρ on Killing

warped product Pn ×ρ R. In order to prove our Bernstein-type theorems in

weighted warped products, we will need some auxiliary lemmas.

Lemma 4.1. Let Σn be a two-sided hypersurface immersed in M̄n+1 =

Pn ×ρ R with mean curvature H, height function h and angle function Θ. Then,

∆ψh = nHeψΘ.

Proof. Firstly, note that

ρ−2div
(
ρ−2Y T

)
=ρ−2

(
〈∇ρ−2, Y T 〉+ρ−2divY T

)
=ρ−2

(
〈∇ρ−2, Y T 〉+ρ−2div(Y −ΘN)

)
=〈∇ρ−2,∇h〉+nρ−4HΘ.

Thus, from the previous equality we get

div (∇h) = 〈∇ log ρ−2,∇h〉+ nρ−2HΘ. (4.1)

From equations (2.5) and (4.1) we obtain the desired result. �

In what follows, we consider Lqψ(Σ) := {u : Σn → R :
∫

Σ
|u|q(x)e−ψ(x)dΣ <

+∞}. As a first application of Lemma 4.1, we obtain the following result.

Theorem 4.2. Let Σn be a complete two-sided hypersurface immersed in

Pn ×ρ R. Suppose that H and Θ have simultaneously the same sign. If h is

nonnegative and such that h ∈ Lqψ(Σ), with q > 1, then Σn is a slice. In addition,

if R̃ic is nonnegative and h is strictly positive, then Pn is compact.
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Proof. Applying Lemma 4.1, from the hypothesis we have that ∆ψh ≥ 0.

But, it follows from [26, Theorem 1.1] that in a complete weighted manifold there

does not exist any nonconstant nonnegative ψ-subharmonic function u ∈ Lqψ(Σ),

with q > 1. Thus, we conclude that h is constant, and therefore Σn is a slice.

In particular, ψ is constant.

Note that if h > 0, we have that the volume of Σn is finite. Moreover,

supposing R̃ic is nonnegative, we can apply once more [32, Theorem 7], already

mentioned in the proof of Theorem 3.2, to conclude that Pn must be compact. �

In [32], Yau established the following version of Stokes’ Theorem on an

n-dimensional complete noncompact Riemannian manifold Σn: if ω ∈ Ωn−1(Σn)

is an integrable (n − 1)-differential form on Σn, then there exists a sequence Bi
of domains on Σn such that Bi ⊂ Bi+1, Σn = ∪i≥1Bi and limi

∫
Bi
dω = 0.

Later on, supposing that Σn is oriented by the volume element dΣ and denoting

by ω = ιXdΣ the contraction of dΣ in the direction of a smooth vector field X on

Σn, Caminha extended this result of Yau showing that if the divergence of X,

divΣX, does not change sign and |X| is Lebesgue integrable on Σn, then divΣX

must be identically zero on Σn (see [6, Proposition 2.1]).

Since divψ(X) = eψdiv(e−ψX), it is not difficult to see that from the above-

mentioned [6, Proposition 2.1] we get the following result:

Lemma 4.3. Let u be a smooth function on a complete weighted Riemannian

manifold Σn with weighted function ψ, such that ∆ψu does not change sign on Σn.

If |∇u| ∈ L1
ψ(Σ), then ∆ψu vanishes identically on Σn.

Using Lemma 4.3, we get the following result.

Theorem 4.4. Let Σn be a complete two-sided hypersurface which lies in

a slab of Pn ×ρ R. Suppose that H and Θ do not change sign on Σn. If |∇h| ∈
L1
ψ(Σ), then Σn is a slice of Pn ×ρ R.

Proof. Taking into account our restrictions on H and Θ, we get that ∆ψh

does not change sign. Then, from Lemma 4.3 we get that ∆ψh = 0.

On the other hand, note that

∆ψh
2 = 2h∆ψh+ 2|∇h|2 ≥ 0.

But, since h is bounded, and using once more that |∇h| ∈ L1
ψ(Σ), Lemma 4.3

guarantees also that ∆ψh
2 = 0.

Hence, we conclude that h is a constant, and therefore Σn is a slice

of Pn ×ρ R. �
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A smooth function u on a weighted manifold (Σn, g, dµ = e−ψdΣ) is said to

be ψ-superharmonic if ∆ψu ≤ 0 on Σn. In this setting, Σn is called ψ-parabolic

if there is no nonconstant, nonnegative, φ-superharmonic function on Σn. From

Theorem 4.4 we obtain the following consequence.

Corollary 4.5. Let Σn be a complete two-sided hypersurface which lies in

a slab of Pn ×ρ R. Suppose that H and Θ do not change sign on Σn. If Σn is

ψ-parabolic, then Σn is a slice of Pn ×ρ R.

According to [9], we define the entire Killing graph Σn(u) associated to

a smooth function u ∈ C∞(P) as the hypersurface given by

Σn(u) = {Φ(x, u(x)) : x ∈ Pn} ⊂ Pn ×ρ R.

The metric induced on Pn from the Riemannian metric (2.1) via Σn(u) is given by

〈 , 〉u = 〈 , 〉P + ρ2du2. (4.2)

On the other hand, the function g : Pn × R→ R given by g(x, t) = t− u(x)

is such that Σn(u) = Φ(g−1(0)). Thus, for all vector field X tangent to Pn ×ρ R,

we have

X(g) = X∗(g) +
1

ρ2
〈X, ∂t〉∂t(g) =

〈
1

ρ2
∂t −Du,X

〉
,

where Du denotes the gradient of a function u with respect to the metric 〈 , 〉P
of Pn, and X∗ is the orthogonal projection of X onto TP. Thus,

∇g =
1

ρ2
∂t −Du

is a normal vector field on g−1(0), and consequently,

N0 = Φ∗(∇g) =
1

ρ2
Y − Φ∗(Du)

is a normal vector field on Σn(u). Since

|N0| =
(1 + ρ2|Du|2P)1/2

ρ
,

it follows that

N =
N0

|N0|
=

1

ρ(1 + ρ2|Du|2P)1/2
(Y − ρ2Φ∗(Du))
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gives an orientation on Σn(u) such that its angle function is given by

Θ = 〈N,Y 〉 =
ρ

(1 + ρ2|Du|2P)1/2
> 0. (4.3)

As a consequence of Theorem 4.4, we will obtain the following non-parametric

result concerning entire Killing graphs in Pn ×ρ R.

Theorem 4.6. Let Σn(u) be an entire Killing graph which lies in a slab of

Pn ×ρ R whose base Pn is complete. Suppose that H and Θ do not change sign

on Σn(u). If |Du| ∈ L1
ψ(P), then u is constant on Pn.

Proof. Firstly, we proof that Σn(u) is complete. Indeed, let X be any

vector field tangent to Σn(u). From the Cauchy–Schwarz inequality we get

〈X,X〉u = 〈X∗, X∗〉P + ρ2〈Du,X∗〉P ≥ 〈X∗, X∗〉P.

This implies that

Lu(γ) ≥ LP(γ∗),

where Lu(γ) stands for the length of a curve γ on Σn(u) with respect to the

induced metric (4.2), and LP(γ∗) denotes the length of the projection γ∗ of γ

onto Pn with respect to its metric 〈 , 〉P. Consequently, since projections onto Pn

of divergent curves on Σn(u) give divergent curves on Pn, and as we assume that

the metric 〈, 〉P is complete, we can apply the Hopf–Rinow theorem to conclude

that the induced metric (4.2) is also complete.

On the other hand, note that

Θ2 =
ρ2

1 + ρ2|Du|2
.

So,

|∇h|2 =
|Du|2

1 + ρ2|Du|2
≤ |Du|2.

Then, we have that |∇h| ∈ L1
ψ(Σ). From Theorem 4.4, we get that Σn(u) is

a slice, which means that u must be constant on Pn. �

Given a weighted manifold (Σn, g, dµ = e−ψdΣ), we say that the weak

Omori–Yau maximum principle holds if for every u ∈ C2(Σ) satisfying supΣ u <

+∞, there exists a sequence of points {pk} ⊂ Σn such that

lim
k
u(pk) = sup

Σ
u and lim sup

k
∆ψu(pk) ≤ 0.

Considering this context, it follows from [27, Remark 2.18] that the weak Omori–

Yau maximum principle holds on Σn, provided that Ricψ is bounded from below

on it. Motivated by this previous digression, we get the following result.



182 H. F. de Lima, E.A. Lima Jr., A.A. Medeiros and M. S. Santos

Theorem 4.7. Let Σn be a complete minimal two-sided hypersurface im-

mersed in Pn ×ρ R. If Ricψ ≥ κ, for some constant κ > 0, and ρ is bounded from

below, then Σn is a slice. In particular, Pn is compact.

Proof. Firstly, from Bochner’s formula (see, for instance, [30, page 378]),

we have that

1

2
∆ψ|∇h|2 = |Hessh|2 + Ricψ(∇h,∇h) + 〈∇∆ψh,∇h〉. (4.4)

Consequently, taking into account our restriction on Ricψ and the assumption

that Σn is minimal, from Lemma 4.1 and (4.4) we obtain that

1

2
∆ψ|∇h|2 ≥ Ricψ(∇h,∇h) ≥ κ|∇h|2. (4.5)

On the other hand, since the boundedness of ρ also implies the boundedness of

|∇h|, and using once more the fact that Ricψ is bounded from below, the above-

mentioned [27, Remark 2.18] guarantees that the weak Omori–Yau maximum

principle holds on Σn, that is, there exists a sequence of points (pk)k≥1 in Σn

such that

lim
k
|∇h|2(pk) = sup

Σ
|∇h|2 and lim

k
sup ∆ψ|∇h|2(pk) ≤ 0. (4.6)

Hence, from (4.5) and (4.6) we get that supΣ |∇h| = 0, and consequently,

Σn is a slice. In particular, ψ is constant, and therefore Pn is compact. �

Finally, we state and prove the last rigidity result of this paper.

Theorem 4.8. Let Σn be a complete two-sided hypersurface which lies in

a slab of Pn ×ρ R. Suppose that the Bakry–Émery–Ricci tensor Ricψ of Σn is

bounded from below and ψ is bounded. If H is constant and Θ is nonnegative,

then Σn is minimal. Moreover, if Ricψ ≥ 0, then Σn is a slice.

Proof. Recall that, from Lemma 4.1, we have ρ2∆ψh = nHΘ. Moreover,

since Ricψ is bounded from below, the maximum principle of Omori–Yau holds

on Σn.

Suppose that H ≥ 0. So, taking into account that h is bounded, we have

a sequence {pk} ∈ Σn such that

0 ≥ lim sup
k→∞

ρ2∆ψh(pk) = nH lim sup
k→∞

Θ(pk) ≥ 0.

Then, we have that H = 0 on Σn.
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Now, supposing H ≤ 0 and, again, taking into account that h is bounded,

we have a sequence {pk} ∈ Σn such that

0 ≤ lim inf
k→∞

ρ2∆ψh(pk) = n lim inf
k→∞

HΘ(pk) = nH lim sup
k→∞

Θ(pk) ≤ 0.

Consequently, from the above expression we conclude that H = 0 on Σn. Thus,

we can conclude that Σn is minimal. In particular, from Lemma 4.1 we get that

h is ψ-harmonic.

On the other hand, since Σn lies in a slab, there exists a constant β such

that h− β > 0. But, it follows from [16, Theorem 2.2] that the only positive and

ψ-harmonic functions defined on a weighted manifold whose Bakry–Émery–Ricci

tensor is nonnegative are the constant ones. Hence, assuming in addition that

Ricψ ≥ 0, we conclude that h is constant on Σn. Therefore, Σn is a slice of

Pn ×ρ R. �

Acknowledgements. The authors would like to thank the referees for

their valuable suggestions and useful comments which improved the paper.

References
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