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A note on non-inner automorphisms in finite
normally constrained p-groups

By NORBERTO GAVIOLI (L’Aquila), LEIRE LEGARRETA (Bilbao)
and MARCO RUSCITTI (L’Aquila)

Abstract. In this paper, we claim the existence of at least one non-inner auto-
morphism of order p in finite normally constrained p-groups when p is an odd prime.

1. Introduction

The primary aim of this work is to contribute to the longstanding conjecture
of Berkovich posed in 1973, which conjectures that every finite p-group admits
a non-inner automorphism of order p, where p denotes a prime number [18, Prob-
lem 4.13]. The conjecture has attracted the attention of many mathematicians
during the last couple of decades, and has been confirmed for many classes of
finite p-groups. It is remarkable to put on record that, in 1965, LIEBECK [17]
proved the existence of a non-inner automorphism of order p in all finite p-groups
of class 2, where p is an odd prime. However, the fact that there always ex-
ists a non-inner automorphism of order 2 in all finite 2-groups of class 2 was
proved by ABDOLLAHI [1] in 2007. The conjecture was confirmed for finite regular
p-groups by SCHMID [22] in 1980. Indeed, DEACONESCU and SILBERBERG [12]
proved it for all finite p-groups which are not strongly Frattinian. Moreover,
ABDOLLAHI [2] proved it for finite p-groups G such that G/Z(G) is a power-
ful p-group, and JAMALI and VISEH [16] did the same for finite p-groups with
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cyclic commutator subgroup. In the realm of finite groups, quite recently, the
result has been confirmed for semi-abelian p-groups by BENMOUSSA and GUER-
BOUSSA [7], and for p-groups of nilpotency class 3, by ABDOLLAHI, GHORAISHI
and WILKENS [3]. To be more precise, ABDOLLAHI and GHORAISHI in [4] proved
that in some cases the non-inner automorphism of order p can be chosen so that
it leaves Z(G) elementwise fixed (see also [15]). In line with this, GHORAISHI
in [14] reduces the problem to groups having an element out of the second center
that centralizes the Frattini subgroup, proving the existence of non-inner auto-
morphisms of order p when p is odd and of order 2 or 4 when p = 2. Moreover,
ABDOLLAHI and GHORAISHI proved in [6] that every two-generator finite p-group
with abelian Frattini subgroup has a non-inner automorphism of order p. Finally,
ABDOLLAHI et al. [5] proved the conjecture for p-groups of coclass 2, and not
long ago, in [20], M. RusciTTI, L. LEGARRETA and M. K. YADAV did the same
for p-groups of coclass 3, when p is any prime different from 3.

With the contribution of this work, we add another class of finite p-groups
to the above list, by proving directly that the earlier mentioned conjecture holds
true for all finite normally constrained p-groups, when p is an odd prime.

The organization of the work is as follows. In Section 2, we exhibit some
preliminary facts and tools that will be used in the main result of the paper, and
also the finite normally constrained p-groups are introduced. Lastly, in Section 3,
the Berkovich conjecture is proved for finite normally constrained p-groups, when
p is an odd prime, and a pending fact is outlined in the case p is even. Throughout
the paper, p will be an odd prime, and concerning the notation, most of it is
standard and it can be found, for instance, in [19].

2. Preliminaries

Let us start this section recalling some facts about derivations, and some
related results, which will be useful to prove the main Theorem 3.1 of the paper.
The reader could be referred to [13] for more details and explicit proofs about
derivations not shown in this section. Notice that we mostly work with right-
modules, and we switch to additive or to multiplicative notation depending on
the convenience.

Definition 2.1. Let G be a group, and M be a right G-module. A derivation
0 : G — M is a function such that

8(gh) = 6(¢g)"6(h), for all g,h € G.
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In terms of its properties, it is well known that a derivation is uniquely de-
termined by its values over a set of generators of G. If F'is a free group generated
by a finite subset X, and G = (X :71,...,7,) a group whose free presentation is
F/R, where R is the normal closure of the set of relations {ry,...,r,} of G, then
a standard argument shows that M is a G-module if and only if M is an F-module
on which R acts trivially. Indeed, if we denote by 7 the canonical homomorphism
m: F — G, then the action of F on M is given by mf = mz(f), for all m € M
and all f € F. The following Lemmas appear as Proposition 2.1 and Lemma 2.2
from [13].

Lemma 2.2. Let M be an F-module. Then every function f : X — M
extends in a unique way to a derivation 6§ : F — M.

Lemma 2.3. Let M be a G-module, and 6 : G — M be a derivation. Then
§ : F — M given by the composition §(f) = &(w(f)) is a derivation such that
0(r;) =0, foralli € {1,...,n}. Conversely, if § : F — M is a derivation such that
6(r;) =0, for alli € {1,...,n}, then 6(fR) = 6(f) defines uniquely a derivation
on G = F/R to M such that § = o .

The following Lemma (see [20, Lemma 2.7]) can be useful to reduce calcula-
tions in terms of commutators.

Lemma 2.4. Let F' be a free group, p be a prime number, and A be
an F-module. If § : F — A is a derivation, then

(i) 0(FP) = 6(F)PI6(F),p—1 Fl;
(ii) if [A,; F] =1, we have §(v;(F)) < [6(F),i—1 F], for all : € N.

The next Lemma is well-known and easily proved.

Lemma 2.5. Let G be a finite p-group, and M be a normal abelian subgroup
of G viewed as a G-module. Then, for any derivation § : G — M, we can define
uniquely an endomorphism ¢ of G such that ¢(g) = 6(9)g = 6(g)? for all g € G.
Furthermore, if (M) = 1, then ¢ is an automorphism of G.

Now, in order to conclude this section, let us introduce the family of finite
normally constrained p-groups when p is an odd prime, according to [9]. In the
first place, for a group G, we let G; = G, and recursively G, 1 = [G;, G] fori > 1,
denote the terms of the lower central series.

Definition 2.6. Let G be a finite p-group and c¢ be its nilpotency class. We say
that G is normally constrained (NC for short) if for every i, 1 < i < ¢, the following
equivalent conditions hold true:
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(i) G; is the unique normal subgroup of G of its order;
(ii) if N <G, we have N < G; or N > Gy;
(iii) if z € G — Gy, then G; < (z)€.

Let us notice that factor groups of NC-p-groups are NC, and that the second
statement of the previous definition is equivalent to saying that if N <1 G, then
there exists a positive integer ¢ such that G; > N > G,;y1. Next, let us list
useful properties of such those groups whose proofs can be found in [9]. In the
first place, recall that a finite p-group is said to be special if is either elementary
abelian itself or of class 2 with its derived group, its center, and its Frattini group
all equal and elementary abelian.

Proposition 2.7 ([9, Proposition 3.1]). Let G be an NC-p-group of nilpo-
tency class at least 3. Then G = G/G3 is special of exponent p, and |G’ /G3|? =
G/

As a consequence, the following result holds.

Corollary 2.8 ([9, Corollary 3.2]). Let G be an NC-p-group of nilpotency
class at least 3. Then G;/G ;1o is elementary abelian for all i > 2.

Moreover, we can state one more condition known as covering property which
is equivalent to any of those defining NC-p-groups.

Proposition 2.9 (]9, Proposition 3.3]). Let G be a p-group of nilpotency
class at least 3. The following conditions are equivalent:

(i) G is an NC-p-group;
(ii) for all i > 1 and for all x € G; — G,;41, it holds that [z,G]Gi12 = Git1
(covering property).

Consequently, in an NC-p-group G of nilpotency class at least 3, the upper
and lower central series of G coincide, and thus the covering property holds in
an NC-p-group also for upper central series. Furthermore, the sections of the
lower and upper central series are elementary abelian, and thus G’ = ®(G). Let
us finish this section recalling the following theorem.

Theorem 2.10 ([9, Theorem 3.5]). Let G be an NC-p-group of nilpotency
class at least 3 such that |G : G'| = p*" for some n € N. Then for all 2 < i < c,
we have p" < |G; : Gia| < p*™.

In the particular case, when G is a two-generator NC-p-group, the sections
of the lower central series are besides of order at most p?.
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3. The Berkovich conjecture for finite normally constrained p-groups

In what follows, to avoid repetitions, we deal with finite p-groups of nilpo-
tency class ¢ > 4, since Liebeck in [17] proved the existence of at least a non-inner
automorphism of order p in finite p-groups of class 2 for any p odd prime, Abdol-
lahi in [1] proved the existence of such non-inner automorphism of order 2 in finite
2-groups of class 2, and Abdollahi, Ghoraishi and Wilkens in [3] did the same in
the case of finite p-groups of nilpotency class 3. Besides, since Deaconescu and
Silberberg in [12] proved the existence of at least a non-inner automorphism of
order p for finite p-groups which are not strongly Frattinian, we may assume that
the finite p-groups G we are interested in are strongly Frattinian, in other words,
that the groups of our interest satisfy Ca(®(G)) = Z(P(Q)).

Furthermore, as a result due to Abdollahi in [2], if G is a finite p-group such
that G has no non-inner automorphisms of order p leaving ®(G) elementwise
fixed, then d(Z2(G)/Z(G)) = d(G)d(Z(@G)), with d(G) the minimum number
of generators of G or the rank of G. Due to that, we assume that the condition
d(Z2(G)/Z(G)) = d(G)d(Z(G)) holds. Then, by a consequence of Proposition 2.9
and Theorem 2.10, the center of G is cyclic of order p and d(Z2(G)/Z(G)) = d(G).
In addition to this, again by the consequences after Proposition 2.9, Z2(G)/Z(G)
is elementary abelian, and thus it follows that Z(G) is abelian (from [12]).

3.1. Proofs.

Theorem 3.1. Let G be a finite normally constrained p-group, where p is an
odd prime. Then G has a non-inner automorphism of order p leaving the Frattini
subgroup elementwise fixed.

PROOF OF THEOREM 3.1. Let d > 2 be the minimum number of genera-
tors of G, and x1,...,x4 be such generators of G. Under our assumptions, the
elementary abelian group Z3(G)/Z(G) is generated by d elements, and Z3(G) is
an abelian subgroup of rank d + 1.

Now we can continue in two ways: A) using tools related to derivations, or
otherwise, B) producing directly an automorphism.

A) Firstly, let us notice that the assignment *®(G) +— [, z]| defines an in-
jective homomorphism 6 from G/®(G) into Hom(Z>(G)/Z(G), Z(G)), which is
actually an isomorphism, since Z3(G)/Z(G) is a d-generator group. Indeed the
set of elements 0(z;) (i =1, ...,d) forms a basis of the dual space of Z2(G)/Z(G).
Thus the intersection of the kernels of d — 1 of such maps is a one-dimensional
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vector space. Moreover, if we define K := ﬂ?:g Cz,(c)(x;), then its order is ex-
actly p?. Now let us take u € K — Z(G), and define the following assignment on
the generators x; of G:

5 Tr1 — U,
. x;— 1, fori>2.
By Lemmas 2.2 and 2.3, the above assignment map extends in a unique way

to a derivation from the d-generator free group Fy to the Fy-module K, and it
also induces a derivation from

G/®(G) = (x1,...,xq | 2, ... 2, (@i, 2;], for all i,j)

to Z2(@G), since due to the description of K, for all 4,5 € {1,...,d}, we get
5(x?) = 6(z)P[6(x:), 2] = 1 and 6([2s,2,]) = [21,0(2;)][0(x), z;] = 1. Next,
since K < Z(®(G)), by Lemma 2.5, the obtained derivation extends to an au-
tomorphism ¢, defined by ¢(g) = d(g)g for all ¢ € G, whose order is p (see,
for instance, [8, Lemma 32.3]) and that leaves the Frattini subgroup elementwise
fixed.

B) In particular, since Z(G) is cyclic, Z2(G) has a non-central element u of
order p. As in [20, Lemma 3.5] the subgroup M = Cg(u) is a maximal subgroup
of G, it follows that G = (g) M for some g € G\ M. The map f,: G — G defined
by fu(g'm) = (gu)im, for all 1 <i < p—1, and for all m € M is an automorphism
of G of order p. Let K = Z(G) (u). Note that K, being 2-generated, is a proper
non-central subgroup of Z(G), which is at least 3-generated.

Finally, we claim that the above automorphisms ¢ and f, are non-inner.
Otherwise, if there exists h € Z3(G) — Z2(G) such that ¢(g) = g" or fu(g) =
g" = glg, h] for all g € G, then [h,G] < K < Z5(G). In particular, [h,G]/Z(G) #
Z5(G)/Z(G). This is not possible, since by item (ii) of Proposition 2.9 and the
fact that in a normally constrained p-group the upper and the lower central se-
ries coincide, we have also [h, G]/Z(G) = Z2(G)/Z(G), which is a contradiction.
As a consequence, the mentioned automorphism of G of order p leaving the Frat-
tini subgroup elementwise fixed is non-inner, as desired. [

The above result is proved for finite NC-p-groups when p is an odd prime.
To point out what can be said in the pending case p = 2, first let us restrict our
interest to p = 2 in the definition of NC-p-group given in Section 2. Although the
authors could not give in general an answer to Theorem 3.1 for finite NC-2-groups
with d > 3, in the below example an explicit finite, not maximal class NC-2-group



A note on non-inner automorphisms of order p in finite NC-p-groups 193

of rank 3, and so a positive answer is introduced. The way the example is found is
taking a rank 3 example H with nilpotency class 3 and looking at ways of making
it larger. The introduced example G would be of nilpotency class 5 with H as
a quotient, and with G and H both being NC-2-groups.

Ezample 3.2. Let us consider the finitely presented 2-group G on the 3 gene-

rators a, b, ¢ of nilpotency class 5 with the below relations:
a8, b8, ¢, eba®c7h, e tabtac o, el e a, b e b el ea T e,
b2a 0 ta e the ™, e tam 20 theb L

An easy consequence of its properties shows that this group, apart from the trivial
subgroups, has 7 normal subgroups of order 2'°, 7 normal subgroups of order 2°,
1 normal subgroup of order 2% (which coincides with G’), 7 normal subgroups
of order 27, 7 normal subgroups of order 2%, 1 normal subgroup of order 2°
(which coincides with Gi3), 3 normal subgroups of order 24, 1 normal subgroup of
order 23 (which coincides with G4), 3 normal subgroups of order 22 and 1 normal
subgroup of order 2 (which coincides with G5). Thus |G/G’| = 23 and |G’ /G3|* =
26, so Proposition 2.7 cannot be extended to NC-2-groups. Furthermore, using
GAP (see [23]), we obtain that the upper central series and the lower central
series of G coincide (this fact is true for all normally constrained p-groups with
p an odd prime, and in particular, for this NC-2-group with 3 > 2 generators).
Moreover, Z(G) = Cq, Z3(G) =2 Cy x Cy x Cy and Z3(G)/Z(G) =2 Cy x Cs.
So d(Z2(G)/Z(G)) # d(G)d(Z(G)). Thus, by [2, Corollary 2.3|, there is a non-
inner automorphism of order 2 leaving the Frattini subgroup elementwise fixed.

As a consequence of the main theorem of this work, we claim that Berko-
vich’s conjecture also holds for finite thin p-groups. To conclude with this, firstly,
let us recall that a p-group is thin if all the antichains in its lattice of normal
subgroups are short, i.e., they have length at most p 4+ 1, where an antichain is
a set of mutually incomparable elements in the lattice of its normal subgroups.
We include p-groups of maximal class in the definition of thin p-groups. Note that
by [10, Theorem B] and [11, Lemma 1.3], a thin p-group is yet a two-generator
NC-p-group. The Nottingham group is an example of an infinite thin group.

Remark 3.3. It is well known that every maximal class p-group admits a
non-inner automorphism of order p leaving the Frattini subgroup elementwise
fixed (see [2, Corollary 2.4]). By [10, Theorem B], we also know that every finite
thin 2-group is of maximal class. As a consequence of Theorem 3.1 we see that
every finite thin p-group admits a non-inner automorphism of order p leaving the
Frattini subgroup elementwise fixed. (See also [14] and [21].)
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