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On geodesic invariance and curvature in
nonholonomic Riemannian geometry

By DENNIS I. BARRETT (Grahamstown) and CLAUDIU C. REMSING (Grahamstown)

Abstract. The notion of an isometric immersion is extended to nonholonomic

Riemannian geometry. Geodesically invariant distributions (i.e., distributions invariant

under the geodesic flow) are characterized. A link between geodesic invariance and

the curvature of nonholonomic Riemannian structures is established.

1. Introduction

Nonholonomic Riemannian geometry is a natural generalization of Riemann-

ian geometry. A nonholonomic Riemannian structure on a manifold consists of

a pair of complementary distributions D and D⊥, where D is assumed to be

nonholonomic (i.e., nonintegrable), and a positive-definite metric tensor g on D.

The “admissible” trajectories are curves tangent to D; the geodesics are given by

an affine connection (defined only on sections of D), analogous to the Levi-Civita

connection. (Contrast this with another significant generalization of Riemann-

ian geometry, viz., sub-Riemannian geometry, wherein the geodesics are speci-

fied by means of the Carnot–Carathéodory distance.) Nonholonomic Riemann-

ian geometry originated from the study of nonholonomic mechanical systems,

wherein a nonholonomic Riemannian structure models the motion of a body with

nonholonomic constraints linear in velocities and a kinetic-energy Lagrangian.

(Even today, most of the literature on the subject is still from the mechanical

perspective.)
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Key words and phrases: nonholonomic Riemannian immersion, geodesically invariant

distribution.
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Nonholonomic Riemannian geometry has, under one guise or another,

been a topic of study for over a hundred years, attracting the attention of such

mathematicians as E. Cartan, Synge, Schouten, Wagner, and (more recently)

Vershik and Gershkovich [19]–[21], Lewis [14]–[15], Bloch, Crouch, and

collaborators [3] (and references therein), and Koiller et al. [8], [11], to name

but a few (primarily geometric) references. Standard textbooks on the subject

are [3], [5]–[6].

A fundamental concept in Riemannian geometry is that of isometric im-

mersion. A key tool in the study of such immersions is the second fundamen-

tal form. Indeed, the geodesics of an immersed Riemannian structure are also

geodesics of the ambient structure, precisely when the second fundamental form

vanishes. In this paper, we generalize the notion of isometric immersions to non-

holonomic Riemannian geometry, with the particular aim of generalizing the fore-

going result.

The paper is organized as follows. In Section 2, we review some basic con-

cepts from nonholonomic Riemannian geometry, including the Schouten and Wag-

ner curvature tensors. We also extend the idea of a “geodesically invariant”

distribution to nonholonomic Riemannian geometry. (A distribution is geodesi-

cally invariant if it is invariant under the geodesic flow.) We prove a number of

characterizations of geodesic invariance. In Section 3, we consider nonholonomic

Riemannian immersions. We characterize the immersions for which the geodesics

of the immersed structure are precisely the “tangential” geodesics of the ambient

structure. We consider the identity embedding of a nonholonomic Riemannian

manifold into (a class of) Riemannian manifolds “extending” the nonholonomic

Riemannian structure, and show, for a strongly nonholonomic distribution, that

the “tangential” Riemannian geodesics coincide with the nonholonomic geodesics

precisely when a component of the Schouten tensor vanishes. Using the Wagner

tensor, we extend this result to a wider class of nonholonomic Riemannian struc-

tures. Finally, geodesic invariance is related to the problem of when nonholonomic

geodesics are also sub-Riemannian geodesics.

Convention. Throughout, we shall assume that all manifolds, distributions,

etc., under consideration are smooth, i.e., of class C∞.
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2. Nonholonomic Riemannian structures

2.1. Basic concepts. Let D be a distribution on a manifold M. The flag of D
is the filtration D1 ⊆ D2 ⊆ · · · , where

D1 = D and Di+1 = Di + [Di,Di] for i ≥ 1.

(Throughout, all distributions, and the elements of their flag, are assumed to

have constant rank.) D is said to be completely nonholonomic if DN−1 ( TM

and DN = TM for some N ≥ 2 (called the degree of nonholonomy of D);

a completely nonholonomic distribution for which N = 2 is also said to be

strongly nonholonomic. A curve γ : [0, 1]→ M is called a D-curve if γ̇(t) ∈ Dγ(t)

for every t ∈ [0, 1]; the Chow–Rashevskii theorem guarantees the existence of

a D-curve joining any two points in M when D is completely nonholonomic (see,

e.g., [17, Chapter 2]). A nonholonomic Riemannian manifold (or nonholonomic

Riemannian structure) is a quadruple (M,D,D⊥,g), where M is a manifold, D is

a completely nonholonomic distribution on M, D⊥ is a distribution complemen-

tary to D (so that TM = D ⊕ D⊥), and g is a (positive-definite) metric tensor

on D. We shall also find it convenient to treat a Riemannian manifold (M,g) as

a nonholonomic Riemannian manifold (M,D,D⊥,g) with D = TM.

Let (M,D,D⊥,g) be a nonholonomic Riemannian manifold. We denote by P

the projection onto D along D⊥, and by Q the complementary projection onto

D⊥. For convenience, let J·, ·KP (or simply J·, ·K if there is no danger of confusion)

be the projected Lie bracket P([·, ·]) : Γ(TM)× Γ(TM) → Γ(D). If Z ∈ Γ(TM),

then let £P
Z denote the derivation given by £P

Z f = Z[f ] and £P
Z U = JZ,UK

for f ∈ C∞(M) and U ∈ Γ(D). (£P
Z is a restricted tensor derivation; cf. [2].)

Associated to (M,D,D⊥,g) is a connection ∇ : Γ(D) × Γ(D) → Γ(D), called

the nonholonomic connection. (If D = TM, then ∇ is precisely the Levi-Civita

connection.)

Proposition 2.1. There exists a unique connection∇ : Γ(D)×Γ(D)→ Γ(D)

such that

(i) ∇ is metric: ∇g ≡ 0, i.e., X[g(Y,Z)] = g(∇XY,Z) + g(Y,∇XZ) for every

X,Y, Z ∈ Γ(D).

(ii) ∇ is torsion-free: ∇XY −∇YX = JX,Y K for every X,Y ∈ Γ(D).

(See, e.g., [12] for a proof of Proposition 2.1.) The nonholonomic connection ∇
induces a parallel translation along D-curves. Let γ : [0, 1]→ M be such a curve.

A section V of D is parallel along γ if ∇γ̇V (t) = 0 for every t ∈ [0, 1].
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Proposition 2.2. Let V0 ∈ Dγ(0); there exists a unique parallel section V

of D such that V (0) = V0. (V is called the parallel translate of V0 along γ.)

The parallel translation Πt
γ : Dγ(0) → Dγ(t) along γ is defined as Πt

γ(V0) =

V (t), where V is the parallel translate of V0 ∈ Dγ(0) along γ. If V is a section

of D along γ, then

∇γ̇V (0) = lim
t→0

Π−tγ (V (t))− V (0)

t
. (1)

The curve γ is a nonholonomic geodesic of (M,D,D⊥,g) if it is a geodesic of the

nonholonomic connection, i.e., ∇γ̇ γ̇(t) = 0 for every t ∈ [0, 1]. The symmetric

bracket, denoted 〈〈· : ·〉〉P (or simply 〈〈· : ·〉〉 if there is no danger of confusion), is

the mapping Γ(D)× Γ(D)→ Γ(D) given by

〈〈X : Y 〉〉 = ∇XY +∇YX, X, Y ∈ Γ(D)

(cf. [1], [14]). It should be clear that 〈〈· : ·〉〉 is a derivation in each argument;

furthermore, if X,Y ∈ Γ(D), then ∇XY = 1
2JX,Y K + 1

2 〈〈X : Y 〉〉.
Let π : D → M be the natural projection, and let Uq ∈ D. The vertical lift

over Uq is given by

vUq
: Dq → TUq

D, Xq 7→
d

dt

∣∣∣∣
t=0

(Uq + tXq).

The horizontal lift over Uq is

hUq : Dq → TUqD, Xq 7→ TqU ·Xq − vUq · ∇XqU(q)

(cf. [4]). Here U ∈ Γ(D) is any vector field such that U(q) = Uq. The nonholo-

nomic geodesic spray of (M,D,D⊥,g) is the vector field Ξ on D given by

Ξ(Uq) = hUq
(Uq), Uq ∈ D.

The flow of Ξ, denoted by Φt, is called the nonholonomic geodesic flow. The terms

“nonholonomic geodesic spray” and “nonholonomic geodesic flow” are justified

by the following result. (The proof is straightforward.)

Proposition 2.3. Ξ satisfies the following properties:

(i) Tπ · Ξ = ι, where ι : D → TM is the inclusion map.

(ii) Ξ ◦ φt = Tφt · et Ξ, where φt : D → D, Uq 7→ et Uq is the canonical dilation.

(iii) If γ is a nonholonomic geodesic, then t 7→ γ̇(t) is an integral curve of Ξ;

conversely, if η is an integral curve of Ξ, then π◦η is a nonholonomic geodesic.
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Remark 2.4. We briefly discuss some aspects pertaining to the foregoing def-

initions and results in the context of nonholonomic mechanics. A nonholonomic

mechanical system with kinetic-energy Lagrangian and linear-in-velocities non-

holonomic constraints is specified by means of a triple (M, g̃,D), where (M, g̃) is

a Riemannian manifold, and D is a (completely) nonholonomic distribution on M.

(The Lagrangian is given by L : TM → R, Xq 7→ 1
2 g̃q(Xq, Xq).) The nonholo-

nomic extremals are specified by means of the Lagrange–D’Alembert Principle:

a D-curve γ : [0, 1]→ M is a nonholonomic extremal if

∇̃γ̇ γ̇(t) ∈ D⊥γ(t) for every t ∈ [0, 1]

(see [14] and references therein). Here ∇̃ is the Levi-Civita connection of (M, g̃),

and D⊥ is the orthogonal complement of D. Equivalently, we have that γ is

a nonholonomic extremal if and only if P(∇̃γ̇ γ̇) = 0, where P : TM→ D is the

(orthogonal) projection. The definition of a nonholonomic extremal does not de-

pend on g̃|D⊥ , but rather on the data (M,D,D⊥, g̃|D). In fact, (M,D,D⊥, g̃|D) is

a nonholonomic Riemannian manifold; moreover, its nonholonomic connection ∇
is given by ∇XY = P(∇̃XY ) for X,Y ∈ Γ(D). Hence the nonholonomic ex-

tremals of (M, g̃,D) are precisely the nonholonomic geodesics of (M,D,D⊥, g̃|D).

The results of this paper thus specialize to the case of a nonholonomic mechanical

system (M, g̃,D). On the other hand, many results in nonholonomic mechan-

ics (specifically, those that do not depend on g̃|D⊥) are actually results about

the underlying nonholonomic Riemannian manifold (M,D,D⊥, g̃|D). Accordingly,

one may view a nonholonomic Riemannian structure as a fundamental geometric

structure underlying a nonholonomic mechanical system.

2.2. The Schouten and Wagner curvature tensors. Associated to the non-

holonomic connection is the Schouten curvature tensor K :
∧2

Γ(D) × Γ(D) →
Γ(D), given by

K(X ∧ Y )Z = [∇X ,∇Y ]Z −∇JX,Y KZ − JQ([X,Y ]), ZK, X, Y, Z ∈ Γ(D).

(See, e.g., [2], [7].) Let K̂ be the tensor K̂(W,X, Y, Z) = g(K(W ∧X)Y,Z), and

let R̂, Ĉ be the components of K̂ given by

R̂(W,X, Y, Z) =
1

2

[
K̂(W,X, Y, Z)− K̂(W,X,Z, Y )

]
, Ĉ = K̂ − R̂.

(Here W,X, Y, Z ∈ Γ(D).) The following symmetries hold true:
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(S1) K̂(W,X, Y, Z) + K̂(X,W, Y, Z) = 0.

(S2) K̂(W,X, Y, Z) + K̂(W,X, Y, Z) + K̂(W,X, Y, Z) = 0.

(S3) R̂(W,X, Y, Z) + R̂(W,X,Z, Y ) = 0.

(S4) R̂(W,X, Y, Z) = R̂(Y,Z,W,X).

(S5) Ĉ(W,X, Y, Z) = Ĉ(W,X,Z, Y ).

(Evidently, (S1) and (S2) also hold for R̂ and Ĉ.) In particular, R̂ satisfies

all symmetries of a Riemannian curvature tensor; accordingly, one may view R̂

as the “Riemannian” component of K̂, and Ĉ as a “remainder.” It turns out

that Ĉ may be expressed solely in terms of the metric g and the projection

operators ([2]):

Ĉ(W,X, Y, Z) =
1

2
(£P

Q([W,X])g)(Y, Z), W, Y,X,Z ∈ Γ(D). (2)

Let R,C :
∧2

Γ(D)× Γ(D)→ Γ(D) be the tensors defined as

R(X ∧ Y )Z = g](R̂(X,Y, Z, · )) and C(X ∧ Y )Z = g](Ĉ(X,Y, Z, · )),

where X,Y, Z ∈ Γ(D). (Here g] = (g[)−1, where g[ is the mapping g[(X) =

g(X, ·) for X ∈ Γ(D).) It should be clear that K = R+ C.

The construction of the Wagner curvature tensor is quite sophisticated;

for details, see [2], [7]. Let (M,D,D⊥,g) be a nonholonomic Riemannian manifold

with degree of nonholonomyN , and suppose there exist distributions E1, . . . , EN−1

on M such that

D⊥ = E1 ⊕ · · · ⊕ EN−1 and Di+1 = Di ⊕ E i,

where D1 ( · · · ( DN is the flag of D. (Throughout this section, we assume

that i ranges through 1, . . . , N−1.) We shall refer to the structure (M,D,D⊥,g),

together with the distributions E1, . . . , EN−1, as a Wagner structure. Let Qi be

the projection TM → E i, and let P1 = P, Pi+1 = P ⊕ Q1 ⊕ · · · ⊕ Qi be

the projections onto D1 and Di+1, respectively. Let Λi :
∧2

Γ(Di) → Γ(E i) be

the (surjective) tensor given by Λi(X ∧ Y ) = Qi([X,Y ]). Using Λ1, . . . ,ΛN−1,

we may extend g to a Riemannian metric.

Proposition 2.5. There exists a unique Riemannian metric g̃ on M satisfy-

ing the following conditions:

(i) The decomposition TM = D ⊕ E1 ⊕ · · · ⊕ EN−1 is orthogonal and g̃ = g ⊕
h1 ⊕ · · · ⊕ hN−1, where hi = g̃|Ei .
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(ii) Each map Λi|(ker Λi)⊥
: (ker Λi)

⊥ → E i satisfies

hi(Λi(W ∧X),Λi(Y ∧ Z)) = ĝi(W ∧X,Y ∧ Z)

for W ∧ X,Y ∧ Z ∈ (ker Λi)
⊥. Here ĝi is the metric induced on

∧2Di
by the metric gi = g ⊕ h1 ⊕ · · · ⊕ hi−1 on Di, i.e., ĝi(W ∧ X,Y ∧ Z) =

gi(W,Y )gi(X,Z)− gi(W,Z)gi(X,Y ).

Let Θi : Γ(E i) →
∧2

Γ(Di) be the mapping Λi|−1
(ker Λi)⊥

. Define connections

∇1, . . . ,∇N as follows: ∇1 = ∇, and ∇i+1 : Γ(Di+1)× Γ(D)→ Γ(D) is given by

∇i+1
X U = ∇iPi(X)U +Ki(Θi(Qi(X)))U + JQi(X), UK

for X ∈ Γ(Di+1), U ∈ Γ(D). Here K1 = K and Ki+1 :
∧2

Γ(Di+1) × Γ(D) →
Γ(D) is the (curvature) tensor

Ki+1(X ∧ Y )U = [∇i+1
X ,∇i+1

Y ]U −∇iPi+1([X,Y ])U − JQi+1([X,Y ]), UK,

for X,Y ∈ Γ(Di+1), U ∈ Γ(D). The curvature tensor KN is called the Wagner

curvature tensor.

We can decompose each tensor Ki+1 into an “R-like” component and a “C-

like” component. Let K̂1 = K̂, and let K̂i+1 be the tensor K̂i+1(X,Y, U, V ) =

g(Ki+1(X ∧ Y )U, V ). Define R̂1 = R̂, Ĉ1 = Ĉ, and R̂i+1, Ĉi+1 as

R̂i+1(X,Y, U, V ) =
1

2
[K̂i+1(X,Y, U, V )− K̂i+1(X,Y, V, U)],

and Ĉi+1 = K̂i+1 − R̂i+1. It turns out that

Ĉi+1(X,Y, U, V ) =
1

2
(£P

Qi+1([X,Y ])g)(U, V ). (3)

(Here X,Y ∈ Γ(Di+1) and U, V ∈ Γ(D).) Lastly, let R1 = R, C1 = C, and let

Ri+1, Ci+1 be the tensors given by Ri+1(X ∧ Y )U = g](R̂i+1(X,Y, U, · )) and

Ci+1(X ∧ Y )U = g](Ĉi+1(X,Y, U, · )). Evidently, we have K1 = R1 + C1 and

Ki+1 = Ri+1 + Ci+1.

2.3. Geodesic invariance. Let (M,D,D⊥,g) be a nonholonomic Riemannian

structure. A distribution S ( D is said to be geodesically invariant in D if,

for every nonholonomic geodesic γ : [0, 1] → M such that γ̇(0) ∈ Sγ(0), we have

γ̇(t) ∈ Sγ(t) for every t ∈ [0, 1] (cf. [1], [14]). An immersed submanifold N ( M is

said to be totally geodesic in M if every nonholonomic geodesic γ : [0, 1]→ M with

γ(0) ∈ N and γ̇(0) ∈ Tγ(0)N lies entirely in N. (The latter is a standard notion

in Riemannian geometry.) Geodesic invariance is a natural generalization of this

concept: the integral manifolds of geodesically invariant integrable distributions

are totally geodesic.
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Proposition 2.6. If S is integrable and geodesically invariant in D, then

the integral manifolds of S are totally geodesic in M. Conversely, if N is totally

geodesic in M, then for every nonholonomic geodesic γ : [0, 1] → N such that

γ̇(0) ∈ Tγ(0)N ∩ Dγ(0), we have γ̇(t) ∈ Tγ(t)N ∩ Dγ(t) for every t ∈ [0, 1].

Proof. Suppose that S is integrable and geodesically invariant in D. Let

q ∈ M, and let N ( M be the integral manifold of S through q; then Sp = TpN for

every p ∈ N. If γ : [0, 1]→ M is a nonholonomic geodesic such that γ(0) ∈ N and

γ̇(0) ∈ Tγ(0)N = Sγ(0), then γ̇(t) ∈ Sγ(t) = Tγ(t)N for every t ∈ [0, 1]. It follows

that γ(t) ∈ N for every t ∈ [0, 1], i.e., N is totally geodesic in M. Conversely, let

N be totally geodesic in M, and let S = TN ∩ D. (In general, S will not have

constant rank.) Let γ : [0, 1]→ M be a nonholonomic geodesic such that γ(0) ∈ N

and γ̇(0) ∈ Sγ(0). By the assumption that N is totally geodesic, we have that γ

is a D-curve lying entirely in N. It follows that γ̇(t) ∈ Tγ(t)N ∩ Dγ(t) for every

t ∈ [0, 1]. �

Proposition 2.7. The following statements are equivalent:

(i) S is geodesically invariant in D.

(ii) S is preserved by the nonholonomic geodesic flow Φt.

(iii) The restricted nonholonomic geodesic spray Ξ|S is tangent to S.

(iv) S is invariant under parallel translation along nonholonomic geodesics with

initial velocity in S.

(v) ∇XX ∈ Γ(S) for every X ∈ Γ(S).

(vi) 〈〈X : Y 〉〉 ∈ Γ(S) for every X,Y ∈ Γ(S).

Proof. If γ : [0, 1] → M is a nonholonomic geodesic, then γ̇(t) = Φt(γ̇(0)).

Hence S is geodesically invariant in D if and only if it is preserved by Φt, i.e.,

Φt(S) = S. Furthermore, it should be clear that the condition Φt(S) = S is

equivalent to the condition Ξ|S ∈ Γ(TS), i.e., Ξ|S tangent to S. The first three

items are thus equivalent. On the other hand, the equivalence of items (v) and

(vi) follows by polarization. To complete the proof, it suffices to show that (i) ⇒
(iv) ⇒ (v) ⇒ (i).

(i) ⇒ (iv) Suppose S is geodesically invariant in D. Let Xq ∈ S, and let

γ : [0, 1] → M be the (unique) nonholonomic geodesic such that γ(0) = q and

γ̇(0) = Xq. As γ is a nonholonomic geodesic, it is invariant under parallel transla-

tion along γ, i.e., γ̇(t) = Πt
γ(γ̇(0)) for every t ∈ [0, 1]. Thus Πt

γ(Xq) = γ̇(t) ∈ Sγ(t).

Since Πt
γ is a linear isomorphism, it follows that Πt

γ(Sγ(0)) = Sγ(t).

(iv) ⇒ (v) Suppose that S is invariant under parallel translation along non-

holonomic geodesics with initial velocity in S, i.e., Πt
γ(Sγ(0)) = Sγ(t) for every
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nonholonomic geodesic γ : [0, 1] → M such that γ̇(0) ∈ Sγ(0). Let X ∈ Γ(S),

q ∈ M, and let γ : [0, 1] → M be the nonholonomic geodesic such that γ(0) = q

and γ̇(0) = X(q). The expression ∇XX(q) depends only on the values of X along

any curve tangent to X(q); consequently, by equation (1), we have

∇XX(q) = ∇γ̇(X ◦ γ)(0) = lim
t→0

Π−tγ (X(γ(t)))−X(q)

t
∈ Sq.

That is, ∇XX ∈ Γ(S).

(v) ⇒ (i) Suppose that ∇XX ∈ Γ(S) for every X ∈ Γ(S). Let Y ∈ Γ(S);

then t 7→ Y (q) + t∇Y Y (q) is a curve in Sq, and so

vY (q) · ∇Y Y (q) =
d

dt

∣∣∣∣
t=0

(Y (q) + t∇Y Y (q)) ∈ TY (q)S.

Since TqY · Y (q) ∈ TY (q)S, it follows that

Ξ(Y (q)) = hY (q)(Y (q)) = TqY · Y (q)− vY (q) · ∇Y (q)Y ∈ TY (q)S.

That is, Ξ|S is tangent to S, which is equivalent to the geodesic invariance of S
in D. �

3. Nonholonomic Riemannian immersions

3.1. Definition and basic properties. Let (M,D,D⊥,g) and (M′,D′,D′⊥,g′)
be nonholonomic Riemannian manifolds. We shall call an injective immersion

ι : M→ M′ a nonholonomic Riemannian immersion if

Tqι · Dq ⊆ D′ι(q) and gq = (ι∗g′)q|Tqι·Dq

for every q ∈ M; if ι is an embedding, then we call it a nonholonomic Riemannian

embedding. Since immersions are locally embeddings, and the results of this

section are essentially local in nature, we shall restrict to the case of nonholonomic

Riemannian embeddings.

Fix a nonholonomic Riemannian embedding ι : M → M′. We shall identify

ι(M) with M, and D with
⊔
q∈M Tqι ·Dq; hence we treat M as a submanifold of M′,

and D as a subbundle of (the pullback bundle) D′|M = ι∗D′. We shall also write

g′ for the metric ι∗g′ on D′|M. Every (local) vector field on M may be extended

to a (local) vector field on M′; that is, if Z ∈ Γ(TM) is defined on an open set
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U ⊆ M, then there exists an extension of Z to an open neighbourhood U ′ of U
in M′, which we shall also denote by Z.

Let N be the orthogonal complement of D with respect to g′ in D′|M, i.e.,

D′|M = D⊕N ; we call N the normal bundle. If Xq ∈ D′ (resp. X ∈ Γ(D)), then

we shall write X>q ∈ D (resp. X> ∈ Γ(D)) for the tangential part of Xq, and

X⊥q ∈ N (resp. X⊥ ∈ Γ(N )) for the normal part. If Z ∈ Γ(TM), then we have

P(Z) = P ′(Z)> and Q(Z) = Q′(Z) + P ′(Z)⊥. Moreover, the nonholonomic

connection ∇′, evaluated on vector fields X,Y ∈ Γ(D), decomposes as follows:

∇′XY = (∇′XY )> + (∇′XY )⊥.

(It should be clear that the expression ∇′XY is well-defined.) It turns out that the

tangential part of ∇′ is exactly the nonholonomic connection of (M,D,D⊥,g).

Lemma 3.1. Let X,Y ∈ Γ(D); then ∇XY = (∇′XY )>.

Proof. Let X,Y, Z ∈ Γ(D). The mapping (X,Y ) 7→ (∇′XY )> is clearly

an affine connection. Moreover, we have (∇′XY )> − (∇′YX)> = JX,Y K>P′ =

JX,Y KP and g′((∇′ZX)>, Y ) + g′(X, (∇′ZY )>) = g(∇′ZX,Y ) + g(X,∇′ZY ) =

Z[g(X,Y )], i.e., (X,Y ) 7→ (∇′XY )> is metric and torsion-free. By uniqueness of

the nonholonomic connection, it follows that the connections (X,Y ) 7→ (∇′XY )>

and ∇ are identical. �

We define the second fundamental form II : Γ(D)× Γ(D)→ Γ(N ) to be the

normal component of ∇′, i.e.,

II(X,Y ) = ∇′XY −∇XY = (∇′XY )⊥, X, Y ∈ Γ(D).

II is tensorial in both arguments; in particular, II(X,Y ) does not depend on the

extensions of X and Y .

Lemma 3.2. Let X,Y ∈ Γ(D); then

II(X,Y )− II(Y,X) = JX,Y K⊥P′ and II(X,Y ) + II(Y,X) = 〈〈X : Y 〉〉⊥P′ .

Proof. We have II(X,Y ) − II(Y,X) = (∇′XY − ∇′YX)⊥ = JX,Y K⊥P′ and

II(X,Y ) + II(Y,X) = (∇′XY +∇′YX)⊥ = 〈〈X : Y 〉〉⊥P′ . �

3.2. Geodesic invariance. We now consider the relation between the nonholo-

nomic geodesics of the embedded structure (M,D,D⊥,g) and those of the ambient

structure (M′,D′,D′⊥,g′). In particular, we characterize when the nonholonomic

geodesics of (M,D,D⊥,g) coincide with those of (M′,D′,D′⊥,g′) that are tangent

to D.
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Proposition 3.3. Let γ be a D-curve in M.

(i) γ is a nonholonomic geodesic of both (M,D,D⊥,g) and (M′,D′,D′⊥,g′) if

and only if II(γ̇, γ̇) vanishes identically.

(ii) If γ is a nonholonomic geodesic of (M′,D′,D′⊥,g′), then it is also a nonholo-

nomic geodesic of (M,D,D⊥,g).

Proof. This follows easily from the definition of the second fundamental

form. �

Theorem 3.4. The following statements are equivalent:

(i) D is geodesically invariant in D′|M, i.e., for every nonholonomic geodesic

γ : [0, 1]→ M of (M′,D′,D′⊥,g′) such that γ̇(0) ∈ Dγ(0), we have γ̇(t) ∈ Dγ(t)

for every t ∈ [0, 1].

(ii) The set of nonholonomic geodesics of (M,D,D⊥,g) coincides with the set of

nonholonomic geodesics of (M′,D′,D′⊥,g′) that lie in M and are tangent toD.

(iii) The second fundamental form II is skew-symmetric.

(iv) 〈〈X : Y 〉〉P′ ∈ Γ(D) for every X,Y ∈ Γ(D).

(v) II(X,Y ) = 1
2JX,Y K⊥P′ for every X,Y ∈ Γ(D).

(vi) £P
V g ≡ 0 for every V ∈ Γ(N ).

Proof. (i) ⇒ (ii) Suppose that D is geodesically invariant in D′|M; then

by Proposition 2.7, we have ∇′XX ∈ Γ(D) for every X ∈ Γ(D). Hence, if γ

is a D-curve in M, then ∇′γ̇ γ̇ = ∇γ̇ γ̇. It is thus clear that a D-curve in M

is a nonholonomic geodesic of (M,D,D⊥,g) if and only if it is a nonholonomic

geodesic of (M′,D′,D′⊥,g′).
(ii)⇒ (iii) Suppose (ii) holds; then by Proposition 3.3, we have II(X,X) = 0

for every X ∈ Γ(D), i.e., II is skew-symmetric.

(iii) ⇒ (iv) If II is skew-symmetric, then by Lemma 3.2, we have that 〈〈X :

Y 〉〉⊥P′ = 0. Hence 〈〈X : Y 〉〉P′ ∈ Γ(D) for every X,Y ∈ Γ(D).

(iv) ⇒ (v) If (iv) holds, then (again by Lemma 3.2) we get II(X,Y ) =
1
2JX,Y K⊥P′ .

(v)⇒ (i) Suppose that II(X,Y ) = 1
2JX,Y K⊥P′ for X,Y ∈ Γ(D). If X ∈ Γ(D),

then

∇′XX = ∇XX + II(X,X) = ∇XX ∈ Γ(D).

Hence, by Proposition 2.7, D is geodesically invariant in D′|M.

(i)⇔(vi) Suppose that D is geodesically invariant in D′|M; then, by item (iii),

we have that II is skew-symmetric, and so (∇′XX)⊥ = II(X,X) = 0 for every
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X ∈ Γ(D). Consequently, if X ∈ Γ(D) and V ∈ Γ(N ), then

0 = g′((∇′XX)⊥, V ) = g′(∇′XX,V ) = −g′(X,∇′XV )

= −g′(X,∇′VX + JX,V KP′) = −1

2
V [g(X,X)]− g(X, JX,V KP)

= −1

2
(£P

V g)(X,X).

Since £P
V g is symmetric, it is determined by its values on the diagonal, and

hence £P
V g ≡ 0 for every V ∈ Γ(N ). Conversely, suppose that £P

V g ≡ 0 for

every V ∈ Γ(N ). Let X ∈ Γ(D) and V ∈ Γ(N ); then

g′(II(X,X), V ) = g′((∇′XX)⊥, V ) = g′(∇′XX,V )

= −g′(∇′XV,X) = −g′(JX,V KP′ −∇′VX,X)

= g(X, JV,XKP) +
1

2
V [g(X,X)] = V [g(X,X)].

In particular, if (Xa) is an orthonormal frame for D, then g′(II(Xa, Xb), V ) = 0,

g′(Xa+Xb, Xa+Xb) = 0, and II(Xa, Xb)+II(Xb, Xa) = II(Xa+Xb, Xa+Xb) = 0.

Thus, if X = xaXa for some xa ∈ C∞(M), then II(X,X) = xaxbII(Xa, Xb) =

−xaxbII(Xb, Xa) = −II(X,X), i.e., II is skew-symmetric. It follows that D is

geodesically invariant in D′|M. �

Corollary 3.5. If there exists an orthonormal frame (Xa) for D such that

[Xa,Γ(N )] ⊆ Γ(N ) (i.e., such that N is invariant under the flow of Xa), then D
is geodesically invariant in D′|M.

Proof. Let (Xa) be an orthonormal frame for D such that [Xa,Γ(N )] ⊆
Γ(N ). If V ∈ Γ(N ), then

(£P
V g)(Xa, Xb) = V [g(Xa, Xb)] + 2 g(Xa, JXb, V KP) = 0.

As £P
V g is tensorial in both arguments, it follows that £P

V g ≡ 0 for every V ∈
Γ(N ), and so D is geodesically invariant in D′|M. �

3.3. Embeddings into a Riemannian manifold. Let (M,D,D⊥,g) be a non-

holonomic Riemannian manifold and let g̃ be an extension of g to a Riemannian

metric on M such that D ⊥g̃ D⊥. Clearly, ι = idM is a nonholonomic Riemannian

embedding of (M,D,D′,g) into (M, g̃). For this embedding, the normal bundle N
is simply D⊥; hence X>q = P(Xq) and X⊥q = Q(Xq) for Xq ∈ TM. In particular,

the second fundamental form is given by II(X,Y ) = Q(∇̃XY ) for X,Y ∈ Γ(D),

where ∇̃ is the Levi-Civita connection of (M, g̃).
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As D is a vector subbundle of TM, we may consider its geodesic invariance

in TM; if this is the case, we shall simply say that D is geodesically invariant.

The following result is an immediate consequence of Theorem 3.4.

Proposition 3.6. The set of nonholonomic geodesics of (M,D,D⊥,g) coin-

cides with the set of Riemannian geodesics of (M, g̃) that are tangent to D if and

only if D is geodesically invariant.

The foregoing result essentially states that, when D is geodesically invari-

ant, the study of the nonholonomic geodesics of (M,D,D⊥,g) reduces to the

study of a subclass of Riemannian geodesics of (M, g̃). Since N = D⊥, we have,

by Theorem 3.4:

D is geodesically invariant if and only if £P
V g ≡ 0 for every V ∈ Γ(D⊥).

Consequently, the geodesic invariance of D is a property of the original structure

(M,D,D⊥,g), and does not depend on the extension g̃. Hence one cannot choose

an extension g̃ such that D would be geodesically invariant, unless (M,D,D⊥,g)

satisfies the foregoing condition (in which case any extension of g for which D
and D⊥ are orthogonal will suffice). In light of equation (2), it should be clear

that the curvature tensor C measures the geodesic invariance of D (at least, when

D is strongly nonholonomic).

Theorem 3.7. If D is strongly nonholonomic, then D is geodesically invari-

ant if and only if C ≡ 0.

Proof. Suppose that D is strongly nonholonomic; then TM = D2 = D +

[D,D], whence D⊥ = Q([D,D]). From equation (2), we then have C ≡ 0 if and

only if £P
V g ≡ 0 for every V ∈ Γ(D⊥). By Theorem 3.4, the latter condition is

equivalent to the geodesic invariance of D. �

Using the Wagner curvature tensor, we can extend Theorem 3.7 to Wagner

structures. Let (M,D,D⊥,g) be a Wagner structure with degree of nonholon-

omy N . Fix 1 < k ≤ N , and let g̃ be an extension of g to a metric on Dk
such that D, E1, . . . , Ek−1 are mutually orthogonal with respect to g̃. We have

that ι = idM is a nonholonomic Riemannian embedding of (M,D,D⊥,g) into

(M,Dk,Dk⊥, g̃), where Dk⊥ = Ek ⊕ · · · ⊕ EN−1. Since Dk = D⊕E1⊕ · · · ⊕ Ek−1,

it follows that N = E1 ⊕ · · · ⊕ Ek−1; accordingly, by Theorem 3.4, we have:

D is geodesically invariant in Dk if and only if £P
Vi

g ≡ 0

for every Vi ∈ Γ(E i) and i = 1, . . . , k − 1.
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(Again, it should be clear that the particular choice of extension is irrelevant,

so long as the distributions D, E1, . . . , Ek−1 are mutually orthogonal.)

Theorem 3.8. D is geodesically invariant in Dk if and only if Ci ≡ 0 for

i = 1, . . . , k − 1.

Proof. We have E i = Qi([Di,Di]); hence D is geodesically invariant in Dk
if and only if £P

Qi([X,Y ])g ≡ 0 for every X,Y ∈ Γ(Di) and i = 1, . . . , k − 1.

By equation (3), the latter condition is equivalent to Ci ≡ 0. �

3.4. Sub-Riemannian structures. To a nonholonomic Riemannian manifold

(M,D,D⊥,g) one can associate a sub-Riemannian manifold (M,D,g). The length

of a D-curve γ : [0, 1] → M is given by length(γ) =
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt.

The Carnot–Carathéodory distance between two points p, q ∈ M is d(p, q) =

infγ length(γ), where the infimum is taken over all D-curves γ : [0, 1] → M such

that γ(0) = p and γ(1) = q. Since D is completely nonholonomic, the Chow–

Rashevskii theorem ensures that there exists a D-curve joining p to q, and hence

d is well-defined; moreover, d induces on M the original topology. A D-curve γ :

[0, 1] → M is called a (normal) sub-Riemannian geodesic if, for every sufficiently

small interval [t1, t2] ⊆ [0, 1], the restriction γ|[t1,t2] is a length minimizer of the

Carnot–Carathéodory distance, i.e., d(γ(t1), γ(t2)) = length(γ|[t1,t2]). (There are

also abnormal sub-Riemannian geodesics, which are not necessarily locally length-

minimizing, but we shall not consider them here.) For more on sub-Riemannian

geometry, refer to, e.g., [17]–[18].

Generally, there is no relation between the set of nonholonomic geodesics of

(M,D,D⊥,g) and the set of sub-Riemannian geodesics of (M,D,g). However,

there exist circumstances (see, e.g., [9]–[10] and references therein) under which{
nonholonomic geodesics

of (M,D,D⊥,g)

}
(

{
sub-Riemannian geodesics

of (M,D,g)

}
. (4)

(The set of sub-Riemannian geodesics is always strictly richer than the set of

nonholonomic geodesics.) It is of interest to study under what conditions the

inclusion (4) holds.

Let ι : M→ M′ be a nonholonomic Riemannian embedding of (M,D,D⊥,g)

into (M′,D′,D′⊥,g′). Associated to (M,D,D⊥,g) and (M′,D′,D′⊥,g′) are the

sub-Riemannian structures (M,D,g) and (M′,D′,g′), respectively. It turns out

that the sub-Riemannian geodesics of (M′,D′,g′) that are tangent to D are also

sub-Riemannian geodesics of (M,D,g).
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Proposition 3.9.

(i) If γ is a length-minimizing D-curve of (M′,D′,g′) between two points in M,

then it is also a length-minimizing curve of (M,D,g).

(ii) If γ is a sub-Riemannian geodesic of (M′,D′,g′) tangent to D, then it is also

a sub-Riemannian geodesic of (M,D,g).

Proof. (i) Let dM and dM′ denote the Carnot–Carathéodory metrics of

(M,D,g) and (M′,D′,g′), respectively. Since the class of D′-curves is larger

than the class of D-curves, we have dM′ |M×M ≤ dM. Let p, q ∈ M, and sup-

pose that γ : [0, 1] → M is a D-curve such that γ(0) = p, γ(1) = q, and

length(γ) = dM′(p, q). Suppose there exists another curve γ̃ : [0, 1] → M join-

ing p to q such that dM(p, q) = length(γ̃) and length(γ̃) < length(γ); then

dM′(p, q) = length(γ) > length(γ̃) = dM(p, q), a contradiction.

(ii) Let γ : [0, 1] → M be a sub-Riemannian geodesic of (M′,D′,g′) tangent

to D; then γ is locally length-minimizing: for every sufficiently small interval

[t1, t2] ⊆ [0, 1], we have that γ|[t1,t2] is a length minimizer of (M′,D′,g′) between

γ(t1) and γ(t2). Therefore, by item (i), we have that γ|[t1,t2] is a length minimizer

of (M,D,g), and hence γ is a sub-Riemannian geodesic of (M,D,g). �

Consider now the embedding ι = idM of (M,D,D⊥,g) into (M, g̃), where g̃

is an extension of g to a Riemannian metric on M such that D ⊥g̃ D⊥.

Proposition 3.10. If D is geodesically invariant, then every nonholonomic

geodesic of (M,D,D⊥,g) is a sub-Riemannian geodesic of (M,D,g).

Proof. Suppose D is geodesically invariant. If γ is a nonholonomic geo-

desic, then, by Proposition 3.6, it is a Riemannian geodesic of (M, g̃). Hence, using

Proposition 3.9, it follows that γ is also a sub-Riemannian geodesic

of (M,D,g). �

Remark 3.11. Just as nonholonomic Riemannian structures underlie non-

holonomic mechanical systems (with kinetic-energy Lagrangian L and linear-in-

velocities constraints D), so do sub-Riemannian structures underlie the corre-

sponding vakonomic mechanical systems (cf. [3]). Both approaches derive the

equations of motion by starting with the action functional

A[γ] =

∫ 1

0

L(γ(t), γ̇(t)) dt,

where γ : [0, 1] → M is a D-curve. The difference between the two approaches

lies in when one imposes the constraints. For the former, the constraints are im-

posed after taking variations (i.e., the variations of γ are required to be sections
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of D along γ); for the latter, the constraints are imposed before taking variations

(i.e., A is restricted to the class of D-curves). Remarkably, these two approaches

are not equivalent, and they give rise to two different geometries. (However, if

the constraints are integrable, then the two approaches coincide.) The vakonomic

equations turn out to be variational (in the classical sense); in fact, they may

be written as Euler–Lagrange equations for a suitable Langrangian (different

from L). The nonholonomic equations are not variational; they satisfy equations

known as the Lagrange–d’Alembert equations (or, more generally, the Chetaev

equations). For more details on the nonholonomic versus vakonomic approaches,

see, e.g., [3], [5], [13], [16], [20] and references therein.
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