Publ. Math. Debrecen
94/1-2 (2019), 197213
DOI: 10.5486/PMD.2019.8317

On geodesic invariance and curvature in
nonholonomic Riemannian geometry

By DENNIS I. BARRETT (Grahamstown) and CLAUDIU C. REMSING (Grahamstown)

Abstract. The notion of an isometric immersion is extended to nonholonomic
Riemannian geometry. Geodesically invariant distributions (i.e., distributions invariant
under the geodesic flow) are characterized. A link between geodesic invariance and
the curvature of nonholonomic Riemannian structures is established.

1. Introduction

Nonholonomic Riemannian geometry is a natural generalization of Riemann-
ian geometry. A nonholonomic Riemannian structure on a manifold consists of
a pair of complementary distributions D and D+, where D is assumed to be
nonholonomic (i.e., nonintegrable), and a positive-definite metric tensor g on D.
The “admissible” trajectories are curves tangent to D; the geodesics are given by
an affine connection (defined only on sections of D), analogous to the Levi-Civita
connection. (Contrast this with another significant generalization of Riemann-
ian geometry, viz., sub-Riemannian geometry, wherein the geodesics are speci-
fied by means of the Carnot—Carathéodory distance.) Nonholonomic Riemann-
ian geometry originated from the study of nonholonomic mechanical systems,
wherein a nonholonomic Riemannian structure models the motion of a body with
nonholonomic constraints linear in velocities and a kinetic-energy Lagrangian.
(Even today, most of the literature on the subject is still from the mechanical
perspective.)
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distribution.
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Nonholonomic Riemannian geometry has, under one guise or another,
been a topic of study for over a hundred years, attracting the attention of such
mathematicians as E. Cartan, Synge, Schouten, Wagner, and (more recently)
VERSHIK and GERSHKOVICH [19]-[21], LEwis [14]-[15], BLocH, CROUCH, and
collaborators [3] (and references therein), and KOILLER et al. [8], [11], to name
but a few (primarily geometric) references. Standard textbooks on the subject
are [3], [5]-[6].

A fundamental concept in Riemannian geometry is that of isometric im-
mersion. A key tool in the study of such immersions is the second fundamen-
tal form. Indeed, the geodesics of an immersed Riemannian structure are also
geodesics of the ambient structure, precisely when the second fundamental form
vanishes. In this paper, we generalize the notion of isometric immersions to non-
holonomic Riemannian geometry, with the particular aim of generalizing the fore-
going result.

The paper is organized as follows. In Section 2, we review some basic con-
cepts from nonholonomic Riemannian geometry, including the Schouten and Wag-
ner curvature tensors. We also extend the idea of a “geodesically invariant”
distribution to nonholonomic Riemannian geometry. (A distribution is geodesi-
cally invariant if it is invariant under the geodesic flow.) We prove a number of
characterizations of geodesic invariance. In Section 3, we consider nonholonomic
Riemannian immersions. We characterize the immersions for which the geodesics
of the immersed structure are precisely the “tangential” geodesics of the ambient
structure. We consider the identity embedding of a nonholonomic Riemannian
manifold into (a class of) Riemannian manifolds “extending” the nonholonomic
Riemannian structure, and show, for a strongly nonholonomic distribution, that
the “tangential” Riemannian geodesics coincide with the nonholonomic geodesics
precisely when a component of the Schouten tensor vanishes. Using the Wagner
tensor, we extend this result to a wider class of nonholonomic Riemannian struc-
tures. Finally, geodesic invariance is related to the problem of when nonholonomic
geodesics are also sub-Riemannian geodesics.

Convention. Throughout, we shall assume that all manifolds, distributions,
etc., under consideration are smooth, i.e., of class C*°.
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2. Nonholonomic Riemannian structures

2.1. Basic concepts. Let D be a distribution on a manifold M. The flag of D
is the filtration D' C D? C - - -, where

D'=D and D' =D+ [D) D fori>1.

(Throughout, all distributions, and the elements of their flag, are assumed to
have constant rank.) D is said to be completely nonholonomic if DN=1 C TM
and DY = TM for some N > 2 (called the degree of nonholonomy of D);
a completely nonholonomic distribution for which N = 2 is also said to be
strongly nonholonomic. A curve v : [0,1] — M is called a D-curve if §(t) € Dy
for every t € [0,1]; the Chow—Rashevskii theorem guarantees the existence of
a D-curve joining any two points in M when D is completely nonholonomic (see,
e.g., [17, Chapter 2]). A nonholonomic Riemannian manifold (or nonholonomic
Riemannian structure) is a quadruple (M, D, D+, g), where M is a manifold, D is
a completely nonholonomic distribution on M, D+ is a distribution complemen-
tary to D (so that TM = D @ D), and g is a (positive-definite) metric tensor
on D. We shall also find it convenient to treat a Riemannian manifold (M, g) as
a nonholonomic Riemannian manifold (M, D, D+, g) with D = TM.

Let (M, D, D+, g) be a nonholonomic Riemannian manifold. We denote by &2
the projection onto D along D+, and by 2 the complementary projection onto
D+ For convenience, let [-,-] % (or simply [, -] if there is no danger of confusion)
be the projected Lie bracket Z([-,]) : T'(TM) x I'(TM) — I'(D). If Z € T(TM),
then let £7 denote the derivation given by £ f = Z[f] and £7U = [Z,U]
for f € C>(M) and U € T'(D). (£% is a restricted tensor derivation; cf. [2].)
Associated to (M,D,D+,g) is a connection V : T'(D) x I'(D) — T'(D), called
the nonholonomic connection. (If D = TM, then V is precisely the Levi-Civita
connection.)

Proposition 2.1. There exists a unique connection V : I'(D)xI'(D) — I'(D)
such that
(i) V is metric: Vg =0, i.e., X[g(V,2)] = g(VxY,Z) + g(Y,VxZ) for every
X,Y,Z e T(D).
(ii) V is torsion-free: VxY — Vy X = [X,Y] for every X, Y € I'(D).
(See, e.g., [12] for a proof of Proposition 2.1.) The nonholonomic connection V

induces a parallel translation along D-curves. Let « : [0,1] — M be such a curve.
A section V of D is parallel along v if V4V (t) = 0 for every t € [0,1].
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Proposition 2.2. Let Vo € D.(q); there exists a unique parallel section V
of D such that V(0) = V. (V is called the parallel translate of Vj along .)

The parallel translation IT., : D,y — Dy along v is defined as IT:, (Vo) =
V(t), where V' is the parallel translate of Vo € D, (o) along v. If V' is a section
of D along ~, then

V,V(0) = lim —*

t—0 t

(1)

The curve 7 is a nonholonomic geodesic of (M, D, D+, g) if it is a geodesic of the
nonholonomic connection, i.e., V47(t) = 0 for every ¢t € [0,1]. The symmetric
bracket, denoted (- : -)) » (or simply {(- : -)) if there is no danger of confusion), is
the mapping I'(D) x T'(D) — I'(D) given by

(X:Y)=VxY +VyX, X,YeI(D)

(cf. [1], [14]). Tt should be clear that {- : -)) is a derivation in each argument;
furthermore, if X,Y € I'(D), then VxV = $[X, Y] + 3(X : V).

Let m : D — M be the natural projection, and let U, € D. The vertical lift
over U, is given by

vy, Dq — TUQD, Xq — (Uq +th).

t=0

dt
The horizontal lift over Uy is
hy, : Dy — Ty, D, Xy = T,U-Xq—wvy, - Vx,U(q)

(cf. [4]). Here U € I'(D) is any vector field such that U(q) = U,;. The nonholo-
nomic geodesic spray of (M, D, D+, g) is the vector field = on D given by

=(U,) = hu, (U,), U, €D.

The flow of =, denoted by ®y, is called the nonholonomic geodesic flow. The terms
“nonholonomic geodesic spray” and “nonholonomic geodesic flow” are justified
by the following result. (The proof is straightforward.)

Proposition 2.3. = satisfies the following properties:
(i) Tw -2 =, where v : D — TM is the inclusion map.
(i) Eo ¢y =Ty - €' E, where ¢y : D — D, U, — €' U, is the canonical dilation.

(iii) If v is a nonholonomic geodesic, then t — #(t) is an integral curve of Z;
conversely, if n is an integral curve of =, then won is a nonholonomic geodesic.
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Remark 2.4. We briefly discuss some aspects pertaining to the foregoing def-
initions and results in the context of nonholonomic mechanics. A nonholonomic
mechanical system with kinetic-energy Lagrangian and linear-in-velocities non-
holonomic constraints is specified by means of a triple (M, g, D), where (M, g) is
a Riemannian manifold, and D is a (completely) nonholonomic distribution on M.
(The Lagrangian is given by L : TM — R, X, — %Eq(Xq,Xq).) The nonholo-
nomic extremals are specified by means of the Lagrange-D’Alembert Principle:
a D-curve 7 : [0,1] — M is a nonholonomic extremal if

ViA(t) e D#(t) for every t € [0, 1]

(see [14] and references therein). Here V is the Levi-Civita connection of (M, ),
and D+ is the orthogonal complement of D. Equivalently, we have that v is
a nonholonomic extremal if and only if f@(ﬁﬁ"y) =0, where & : TM — D is the
(orthogonal) projection. The definition of a nonholonomic extremal does not de-
pend on g|p., but rather on the data (M, D, D+, g|p). In fact, (M, D, D+, g|p) is
a nonholonomic Riemannian manifold; moreover, its nonholonomic connection V
is given by VxY = 2(VxY) for X,Y € I'(D). Hence the nonholonomic ex-
tremals of (M, g, D) are precisely the nonholonomic geodesics of (M, D, D+, g|p).
The results of this paper thus specialize to the case of a nonholonomic mechanical
system (M, g, D). On the other hand, many results in nonholonomic mechan-
ics (specifically, those that do not depend on g|pi) are actually results about
the underlying nonholonomic Riemannian manifold (M, D, D+, g|p). Accordingly,
one may view a nonholonomic Riemannian structure as a fundamental geometric
structure underlying a nonholonomic mechanical system.

2.2. The Schouten and Wagner curvature tensors. Associated to the non-
holonomic connection is the Schouten curvature tensor K : \>T(D) x T'(D) —
(D), given by

K(XAY)Z = [Vx,Vy]Z - VixyiZ - [2(X,Y)),Z], X,Y,ZeT(D).

(See, e.g., [2], [7].) Let K be the tensor K (W, X,Y, Z) = g(K(W A X)Y, Z), and
let R, C be the components of K given by

~

RW,X,Y,Z) = |K(W,X,Y,Z2) - KW,X,2,Y)|, C=K-R

N |

(Here W, XY, Z € I'(D).) The following symmetries hold true:
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(S1) K(W,X,Y,Z)+ K(X,W,Y, Z) = 0.

(82) K(W,X,Y,Z)+ K(W,X,Y,Z) + K(W,X,Y,Z) = 0.
(S3) RIW,X.,Y,Z)+ R(W,X,Z,Y)=0.

(S4) R(W,X,Y,Z) = R(Y, Z,W,X).

(S5) C(W,X,Y,Z)=C(W,X,Z,Y).

(Evidently, (S1) and (S2) also hold for R and C.) In particular, R satisfies
all symmetries of a Riemannian curvature tensor; accordingly, one may view R
as the “Riemannian” component of K , and C as a “remainder.” It turns out
that C may be expressed solely in terms of the metric g and the projection
operators ([2]):

~ 1
CW, XY, Z) = 5 (£5qw,x)8)(Y: 2), W.Y,X,Z €T(D). 2)

Let R,C : A°T(D) x I'(D) — I'(D) be the tensors defined as
R(XAY)Z =g (R(X,Y,Z,+)) and C(XAY)Z=g C(X.Y.Z, ")),

where X,Y,Z € I'(D). (Here g = (g°)~', where g’ is the mapping g’(X) =
g(X,-) for X € T'(D).) It should be clear that K = R+ C.

The construction of the Wagner curvature tensor is quite sophisticated;
for details, see [2], [7]. Let (M, D, D+, g) be a nonholonomic Riemannian manifold
with degree of nonholonomy N, and suppose there exist distributions £, ..., N1
on M such that

Dt=¢&'q...a&N! and DF'=Dig¢,

where D! C --- C DV is the flag of D. (Throughout this section, we assume
that i ranges through 1,..., N —1.) We shall refer to the structure (M, D, D+, g),
together with the distributions £',...,EN 1, as a Wagner structure. Let 2; be
the projection TM — &% and let &, = P, Py = P D2, D - D 2; be
the projections onto D' and D+, respectively. Let A; : A>I(D?) — T(EF) be
the (surjective) tensor given by A;(X AY) = 2,([X,Y]). Using Aq,...,An_1,
we may extend g to a Riemannian metric.

Proposition 2.5. There exists a unique Riemannian metric g on M satisfy-
ing the following conditions:

(i) The decomposition TM = D & E' @ -+ @ EN~1 is orthogonal and g = g @
h'®---®h"V', where h' = glei-
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(i) Each map Aigep ;- @ (ker Ayt — E satisfies
W' (M(WAX),ANYAZ) =8 (WAX,YAZ)

for WA XY AZ € (kerA;)*. Here g is the metric induced on \> D'
by the metric g8 = g ®h! @ --- @ h~! on D, jie., g¢(WAX,Y ANZ) =
g' (W, Y)g'(X,Z) — g'(W, Z)g"(X,Y).

Let ©; : T(EY) — A’T(D?) be the mapping A;| 7 (ker Ay - Define connections
Vi ..., V¥ as follows: V! =V, and Vi*!: T(D*1) x T(D) — I'(D) is given by

ViU = V’ )U+KZ(@ (2;(X))U + [2:(X),U]

for X € T(D"*), U e F(D). Here K! = K and Kt : A°’T(Di1) x (D) —
(D) is the (curvature) tensor

EHU X AU = VYL VU =V xypU = [20a (X, Y), U,

for X,V € T(D*1), U € (D). The curvature tensor K is called the Wagner
curvature tensor.

We can decompose each tensor K**! into an “R-like” component and a “C-
like” component. Let K' = K, and let K*! be the tensor K+ (X,Y,U,V) =
g(K" (X AY)U,V). Define R = R, C' = C, and R, C't as

RHYX,Y,U,V) = 5 [f{l‘“ (X,Y,U,V) - K""Y(X,Y,V,U)],
and Ct! = Kt — Ri+1 Tt turns out that
. 1
CHYX,Y, U, V) = §(£gi+l([x’y])g)(U, V). (3)

(Here X,Y € T'(D"™!) and U,V € I'(D).) Lastly, let R* = R, C! = C, and let
R ! be the tensors given by R (X AY)U = gf(RTYX,Y,U, -)) and
CHUX AY)U = gt(C™(X,Y,U, -)). Evidently, we have K' = R! + C' and
K+l — RiJrl + Citl,

2.3. Geodesic invariance. Let (M, D, D+, g) be a nonholonomic Riemannian
structure. A distribution § C D is said to be geodesically invariant in D if,
for every nonholonomic geodesic 7 : [0,1] — M such that ¥(0) € S, ), we have
J(t) € Sy for every t € [0,1] (cf. [1], [14]). An immersed submanifold N € M is
said to be totally geodesic in M if every nonholonomic geodesic v : [0,1] — M with
7(0) € N and 4(0) € TN lies entirely in N. (The latter is a standard notion
in Riemannian geometry.) Geodesic invariance is a natural generalization of this
concept: the integral manifolds of geodesically invariant integrable distributions
are totally geodesic.
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Proposition 2.6. If S is integrable and geodesically invariant in D, then
the integral manifolds of S are totally geodesic in M. Conversely, if N is totally
geodesic in M, then for every nonholonomic geodesic v : [0,1] — N such that
4(0) € Ty )N N D gy, we have §(t) € T ;)N ND, ) for every t € [0,1].

PROOF. Suppose that S is integrable and geodesically invariant in D. Let
g € M, and let N C M be the integral manifold of S through ¢; then S, = T,,N for
every p € N. If v : [0,1] — M is a nonholonomic geodesic such that v(0) € N and
7(0) € Tyo)N = Sy(0), then ¥(t) € S;4) = TN for every t € [0,1]. Tt follows
that y(t) € N for every ¢ € [0,1], i.e., N is totally geodesic in M. Conversely, let
N be totally geodesic in M, and let S = TN N D. (In general, S will not have
constant rank.) Let «y : [0, 1] — M be a nonholonomic geodesic such that (0) € N
and §(0) € Sy(). By the assumption that N is totally geodesic, we have that ~y
is a D-curve lying entirely in N. It follows that ¥(t) € T, )N N Dy for every
te0,1]. O

Proposition 2.7. The following statements are equivalent:

(i) S is geodesically invariant in D.
(i)
)
)

(iii
iv) S is invariant under parallel translation along nonholonomic geodesics with
p g g

S is preserved by the nonholonomic geodesic flow ®;.

The restricted nonholonomic geodesic spray Z|g is tangent to S.

initial velocity in S.
(v) VxX €T'(S) for every X € T'(S).
(vi) (X :Y)) e T(S) for every X, Y € T'(S).

PROOF. If v : [0,1] — M is a nonholonomic geodesic, then 4(t) = ®.(4(0)).
Hence S is geodesically invariant in D if and only if it is preserved by &, i.e.,
®,(S) = S. Furthermore, it should be clear that the condition ®,(S) = S is
equivalent to the condition =|g € I'(T'S), i.e., E|s tangent to S. The first three
items are thus equivalent. On the other hand, the equivalence of items (v) and
(vi) follows by polarization. To complete the proof, it suffices to show that (i) =
(iv) = (v) = ().

(i) = (iv) Suppose S is geodesically invariant in D. Let X, € S, and let
v :[0,1] — M be the (unique) nonholonomic geodesic such that v(0) = ¢ and
4(0) = X4. As v is a nonholonomic geodesic, it is invariant under parallel transla-
tion along v, i.e., ¥(t) = IT} (§(0)) for every ¢ € [0,1]. Thus ITf (X,) = §(t) € Sy (-
Since ITY, is a linear isomorphism, it follows that IT% (S, (0)) = Sy(¢)-

(iv) = (v) Suppose that S is invariant under parallel translation along non-
holonomic geodesics with initial velocity in S, i.e., H%(Sy(o)) = Sy for every
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nonholonomic geodesic v : [0,1] — M such that 4(0) € S,). Let X € I'(S),
g € M, and let v : [0,1] — M be the nonholonomic geodesic such that v(0) = ¢
and §(0) = X (g). The expression Vx X (q) depends only on the values of X along
any curve tangent to X (q); consequently, by equation (1), we have

VxX(q) = V5(X 07)(0) = lim =] (X(V(';))) - X(q)

€S,

That is, Vx X € I'(S).
(v) = (i) Suppose that VxX € T'(S) for every X € T'(S). Let Y € T'(S);
then t — Y (q) +tVyY(q) is a curve in Sy, and so

d
Vy (q) * VyY(q) = P o Y(g)+tVyY(q)) € Ty(q)S.

Since T,Y - Y(q) € Ty (¢S, it follows that
E(Y(q) = hy (Y () =T5Y - Y(q) —vy(q) - Vy(9Y € Ty(9)S.

That is, Z|g is tangent to S, which is equivalent to the geodesic invariance of S
in D. (Il

3. Nonholonomic Riemannian immersions

3.1. Definition and basic properties. Let (M, D, D+, g) and (M’,D',D’J‘,g’)
be nonholonomic Riemannian manifolds. We shall call an injective immersion
t: M — M’ a nonholonomic Riemannian immersion if

Tye-Dy C Di(q) and  gq = (L*g/)q|Tqb‘Dq

for every ¢ € M; if ¢ is an embedding, then we call it a nonholonomic Riemannian
embedding. Since immersions are locally embeddings, and the results of this
section are essentially local in nature, we shall restrict to the case of nonholonomic
Riemannian embeddings.

Fix a nonholonomic Riemannian embedding ¢ : M — M’. We shall identify
(M) with M, and D with | | ¢y Tqt Dg; hence we treat M as a submanifold of M’,
and D as a subbundle of (the pullback bundle) D'|,, = ¢*D’. We shall also write
g’ for the metric ¢*g" on D’|,,. Every (local) vector field on M may be extended
to a (local) vector field on M’; that is, if Z € T'(TM) is defined on an open set



206 Dennis I. Barrett and Claudiu C. Remsing

U C M, then there exists an extension of Z to an open neighbourhood U’ of U
in M’; which we shall also denote by Z.

Let NV be the orthogonal complement of D with respect to g’ in D’|,, i.e.,
D'y =D dN; we call N the normal bundle. If X, € D' (resp. X € I'(D)), then
we shall write X,/ € D (resp. X € I'(D)) for the tangential part of X,, and
X} €N (resp. X+ € T'(N)) for the normal part. If Z € I'(TM), then we have
P(Z) = 2"(Z)" and 2(Z) = 2/(Z) + 2'(Z)*. Moreover, the nonholonomic
connection V', evaluated on vector fields X,Y € I'(D), decomposes as follows:

ViY = (ViY)T + (Vi Y)L

(It should be clear that the expression VY is well-defined.) It turns out that the
tangential part of V' is exactly the nonholonomic connection of (M, D, D+, g).

Lemma 3.1. Let X,Y € I'(D); then VxY = (V4 Y)T.
(X

PrOOF. Let X,Y,Z € I'(D). The mapping (X,Y) — (V4Y)T is clearly
an affine connection. Moreover, we have (V4 Y)" — (V4. X)T = [X,Y]L, =
[X,Y] and g/(V,X)T,Y) + (X, (V,Y)T) = g(V,X,Y) + g(X, V,Y) =
Zg(X,Y)], ie., (X,Y) — (V4Y)T is metric and torsion-free. By uniqueness of
the nonholonomic connection, it follows that the connections (X,Y) — (V4Y)T
and V are identical. g

We define the second fundamental form 11: T'(D) x T'(D) — T'(N) to be the
normal component of V', i.e.,

II(X,Y) =VyY - VxY = (ViYV):, X,Y €eT(D).
IT is tensorial in both arguments; in particular, II(X,Y) does not depend on the
extensions of X and Y.

Lemma 3.2. Let X,Y € I'(D); then
I(X,Y) - I(Y,X) = [X,Y]5, and II(X,Y)+II(Y,X) = (X : V)%,

PrROOF. We have II(X,Y) — II(Y, X) = (V4Y — V4 X)* = [X,Y]3, and
(X, Y)+ 1Y, X) = (VY + Vi X)L = (X : Y) 5. O

3.2. Geodesic invariance. We now consider the relation between the nonholo-
nomic geodesics of the embedded structure (M, D, D+, g) and those of the ambient
structure (M’, D', D’ l, g’). In particular, we characterize when the nonholonomic
geodesics of (M, D, D+, g) coincide with those of (M, D’, D, g’) that are tangent
to D.
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Proposition 3.3. Let v be a D-curve in M.

(i) ~ is a nonholonomic geodesic of both (M, D, D+, g) and (M',D',D'*,g') if
and only if TI(%, %) vanishes identically.
(ii) If~y is a nonholonomic geodesic of (M', D', D, g’), then it is also a nonholo-

nomic geodesic of (M, D, D+, g).

ProoOF. This follows easily from the definition of the second fundamental
form. (]
Theorem 3.4. The following statements are equivalent:

(i) D is geodesically invariant in D'|,, i.e., for every nonholonomic geodesic
~:[0,1] = M of (M', D, D'*, g') such that 4(0) € Dy, we have 4(t) € Dy
for every t € [0,1].

(ii) The set of nonholonomic geodesics of (M, D, D+, g) coincides with the set of
nonholonomic geodesics of (M, D’ D'+, g’) that lie in M and are tangent to D.

) The second fundamental form 11 is skew-symmetric.
(iv) (X :Y) o € T(D) for every X,Y € T'(D).

(v) I(X,Y) = L[X,Y]5, for every X,Y € I'(D).

(vi) £7g =0 for every V € T'(N).

(iii

PROOF. (i) = (ii) Suppose that D is geodesically invariant in D’|,,; then
by Proposition 2.7, we have V5 X € T'(D) for every X € I'(D). Hence, if v
is a D-curve in M, then Vﬁf'y = V47. It is thus clear that a D-curve in M
is a nonholonomic geodesic of (M, D, D+, g) if and only if it is a nonholonomic
geodesic of (I\/I’7D',D’J‘, g’).

(ii) = (iii) Suppose (ii) holds; then by Proposition 3.3, we have II(X, X) =0
for every X € T'(D), i.e., II is skew-symmetric.

(iii) = (iv) If IT is skew-symmetric, then by Lemma 3.2, we have that (X :
Y) % = 0. Hence (X : Y)) 5 € I(D) for every X,Y € I'(D).

(iv) = (v) If (iv) holds, then (again by Lemma 3.2) we get II(X,Y) =
%[[X’ Yﬂé”

(v) = (i) Suppose that II(X,Y) = L[X, Y], for X,Y € T(D). If X € (D),
then

Vi X = Vx X +II(X, X) = Vx X € [(D).

Hence, by Proposition 2.7, D is geodesically invariant in D’|,.
(i)« (vi) Suppose that D is geodesically invariant in D’|,; then, by item (iii),
we have that II is skew-symmetric, and so (V5 X)+ = II(X, X) = 0 for every
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X € T'(D). Consequently, if X € ['(D) and V € T'(N), then
0= g/(TxX), V) = g/(VAX, V) = —¢/(X, Vi V)
= g/ (X, Vi X + [X, V]) = —3 VIg(X, X)] - (X, [X, V].»)
= S (£Zg)(X, ).

Since .,Egd g is symmetric, it is determined by its values on the diagonal, and
hence £ “}7 g = 0 for every V € I'(NV). Conversely, suppose that .f;“%& g = 0 for
every V € '(N). Let X € I'(D) and V € I'(N); then

g/(H(X7X)> V) = g/((v/XX)J_7 V) = g,(v/XXa V)
=—g'(VxV,X) = —g'([X,V]» — Vi X, X)

= g(X, [V, X]») + 5 VIg(X, X)] = VIg(X, X))

In particular, if (X,) is an orthonormal frame for D, then g'(II(X,, X3), V) =0,
g (Xo+Xp, Xo+Xp) =0, and II(X,, Xp)+I1( Xy, Xo) = IH( X+ Xy, Xo+X3) = 0.
Thus, if X = 2%X, for some 2% € C>(M), then II(X, X) = z%2’T(X,, X;) =
—2%2T1( Xy, Xo) = —1I(X, X), ie., II is skew-symmetric. It follows that D is
geodesically invariant in D'|,. O

Corollary 3.5. If there exists an orthonormal frame (X,) for D such that
[Xo,T(N)] CT(N) (ie., such that N is invariant under the flow of X, ), then D
is geodesically invariant in D'|,.

PRrROOF. Let (X,) be an orthonormal frame for D such that [X,,['(N)] C
L(N). If V e T(N), then

(£7'8)(Xa, Xp) = V[g(Xa, Xp)] +28(Xa, [ X5, V] ) = 0.

As £ g’ g is tensorial in both arguments, it follows that £ “? g =0 for every V €
I'(NV), and so D is geodesically invariant in D’|,,. O

3.3. Embeddings into a Riemannian manifold. Let (M, D, D+, g) be a non-
holonomic Riemannian manifold and let g be an extension of g to a Riemannian
metric on M such that D 1z D+. Clearly, ¢ = idy is a nonholonomic Riemannian
embedding of (M, D, D', g) into (M, g). For this embedding, the normal bundle N
is simply D+; hence X,| = 2(X,) and X = 2(X,) for X, € TM. In particular,
the second fundamental form is given by II(X,Y) = 2(VxY) for X,Y € I'(D),
where V is the Levi-Civita connection of (M, g).
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As D is a vector subbundle of TM, we may consider its geodesic invariance
in TM; if this is the case, we shall simply say that D is geodesically invariant.
The following result is an immediate consequence of Theorem 3.4.

Proposition 3.6. The set of nonholonomic geodesics of (M, D, D+, g) coin-
cides with the set of Riemannian geodesics of (M, g) that are tangent to D if and
only if D is geodesically invariant.

The foregoing result essentially states that, when D is geodesically invari-
ant, the study of the nonholonomic geodesics of (M, D, D+, g) reduces to the
study of a subclass of Riemannian geodesics of (M, g). Since N' = D+, we have,
by Theorem 3.4:

D is geodesically invariant if and only if £€}g =0 for every V € I‘(DJ‘),

Consequently, the geodesic invariance of D is a property of the original structure
(M, D, DL, g), and does not depend on the extension g. Hence one cannot choose
an extension g such that D would be geodesically invariant, unless (M, D, D+, g)
satisfies the foregoing condition (in which case any extension of g for which D
and D+ are orthogonal will suffice). In light of equation (2), it should be clear
that the curvature tensor C' measures the geodesic invariance of D (at least, when
D is strongly nonholonomic).

Theorem 3.7. If D is strongly nonholonomic, then D is geodesically invari-
ant if and only if C = 0.

PROOF. Suppose that D is strongly nonholonomic; then TM = D? = D +
[D, D], whence D+ = 2([D, D]). From equation (2), we then have C = 0 if and
only if £7g = 0 for every V € T'(D+). By Theorem 3.4, the latter condition is
equivalent to the geodesic invariance of D. ([l

Using the Wagner curvature tensor, we can extend Theorem 3.7 to Wagner
structures. Let (M,D,D',g) be a Wagner structure with degree of nonholon-
omy N. Fix 1 < k < N, and let g be an extension of g to a metric on D*
such that D, &Y, ..., EF1 are mutually orthogonal with respect to g. We have
that ¢ = idy is a nonholonomic Riemannian embedding of (M,D,D+,g) into
(M,Dk,DkL,g), where DF" = &k @ ... @ EN-1. Since D¥ =D E' @ - -- @EFT,
it follows that N' = ' @ --- @ £¥~1; accordingly, by Theorem 3.4, we have:

D is geodesically invariant in D if and only if .,E(Z)g =0
for every V; € T'(E") andi=1,...,k — 1.
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(Again, it should be clear that the particular choice of extension is irrelevant,
so long as the distributions D, &Y, ..., ¥~ are mutually orthogonal.)

Theorem 3.8. D is geodesically invariant in D* if and only if C* = 0 for
i=1,...,k—1.

PRrOOF. We have £ = 2;([D?, D']); hence D is geodesically invariant in D*
if and only if £gb_([x7y])g = 0 for every X,Y € I'(D¥) and i = 1,...,k — 1.
By equation (3), the latter condition is equivalent to C* = 0. O

3.4. Sub-Riemannian structures. To a nonholonomic Riemannian manifold
(M, D, D+, g) one can associate a sub-Riemannian manifold (M, D, g). The length
of a D-curve v : [0,1] — M is given by length(y) = fol V&) (3 (), 7(1)) dt.
The Carnot-Carathéodory distance between two points p,q € M is d(p,q) =
inf, length(v), where the infimum is taken over all D-curves v : [0,1] — M such
that v(0) = p and (1) = ¢. Since D is completely nonholonomic, the Chow—
Rashevskii theorem ensures that there exists a D-curve joining p to ¢, and hence
d is well-defined; moreover, d induces on M the original topology. A D-curve 7 :
[0,1] = M is called a (normal) sub-Riemannian geodesic if, for every sufficiently
small interval [t1,to] C [0,1], the restriction 7|, +,] is a length minimizer of the
Carnot—Carathéodory distance, i.e., d(y(t1),v(t2)) = length(7yl, +,))- (There are
also abnormal sub-Riemannian geodesics, which are not necessarily locally length-
minimizing, but we shall not consider them here.) For more on sub-Riemannian
geometry, refer to, e.g., [17]-[18].

Generally, there is no relation between the set of nonholonomic geodesics of
(M,D,D+,g) and the set of sub-Riemannian geodesics of (M, D,g). However,
there exist circumstances (see, e.g., [9]-[10] and references therein) under which

{ nonholonomic geodesics} { sub-Riemannian geodesics} )
4

Of (M7ID7DJ_7g) Of (M7D7g)

(The set of sub-Riemannian geodesics is always strictly richer than the set of
nonholonomic geodesics.) It is of interest to study under what conditions the
inclusion (4) holds.

Let ¢ : M — M’ be a nonholonomic Riemannian embedding of (M, D, D+, g)
into (M/, D', D'*,g’). Associated to (M, D, D+, g) and (M',D',D'*,g') are the
sub-Riemannian structures (M, D, g) and (M’,D’,g’), respectively. It turns out
that the sub-Riemannian geodesics of (M’, D', g’) that are tangent to D are also
sub-Riemannian geodesics of (M, D, g).
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Proposition 3.9.

(i) If v is a length-minimizing D-curve of (M, D', g’) between two points in M,
then it is also a length-minimizing curve of (M, D, g).

(ii) If~ is a sub-Riemannian geodesic of (M’ D', g') tangent to D, then it is also
a sub-Riemannian geodesic of (M, D, g).

PRrROOF. (i) Let dy and dys denote the Carnot—Carathéodory metrics of
(M,D,g) and (M, D’ g’), respectively. Since the class of D’-curves is larger
than the class of D-curves, we have dw|mxm < dum. Let p,g € M, and sup-
pose that v : [0,1] — M is a D-curve such that v(0) = p, v(1) = ¢, and
length(y) = dw (p,q). Suppose there exists another curve 7 : [0,1] — M join-
ing p to ¢ such that dw(p,q) = length(¥) and length(y) < length(~); then
dw (p, q) = length(vy) > length(¥) = dm(p, q), a contradiction.

(ii) Let v : [0,1] — M be a sub-Riemannian geodesic of (M, D', g’) tangent
to D; then ~ is locally length-minimizing: for every sufficiently small interval
[t1,t2] C [0, 1], we have that 7|[t17t2} is a length minimizer of (M’, D’ g’) between
7(t1) and 7y(t2). Therefore, by item (i), we have that 7|, ,  is a length minimizer
of (M, D, g), and hence 7 is a sub-Riemannian geodesic of (M, D, g). O

Consider now the embedding ¢ = idy of (M, D, D+, g) into (M, g), where g
is an extension of g to a Riemannian metric on M such that D 1z D+,

Proposition 3.10. If D is geodesically invariant, then every nonholonomic
geodesic of (M, D, D+, g) is a sub-Riemannian geodesic of (M, D, g).

PROOF. Suppose D is geodesically invariant. If  is a nonholonomic geo-
desic, then, by Proposition 3.6, it is a Riemannian geodesic of (M, g). Hence, using
Proposition 3.9, it follows that + is also a sub-Riemannian geodesic
of (M,D,g). O

Remark 3.11. Just as nonholonomic Riemannian structures underlie non-
holonomic mechanical systems (with kinetic-energy Lagrangian L and linear-in-
velocities constraints D), so do sub-Riemannian structures underlie the corre-
sponding vakonomic mechanical systems (cf. [3]). Both approaches derive the
equations of motion by starting with the action functional

Apy] = / Liv(8).4()) dt,

where v : [0,1] — M is a D-curve. The difference between the two approaches
lies in when one imposes the constraints. For the former, the constraints are im-
posed after taking variations (i.e., the variations of v are required to be sections



212 Dennis I. Barrett and Claudiu C. Remsing

of D along +); for the latter, the constraints are imposed before taking variations
(ie., A is restricted to the class of D-curves). Remarkably, these two approaches
are not equivalent, and they give rise to two different geometries. (However, if
the constraints are integrable, then the two approaches coincide.) The vakonomic
equations turn out to be variational (in the classical sense); in fact, they may
be written as Euler-Lagrange equations for a suitable Langrangian (different
from L). The nonholonomic equations are not variational; they satisfy equations
known as the Lagrange—d’Alembert equations (or, more generally, the Chetaev
equations). For more details on the nonholonomic versus vakonomic approaches,
see, e.g., [3], [5], [13], [16], [20] and references therein.
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