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Killing fields and curvatures of homogeneous Finsler manifolds

By ZHIGUANG HU (Tianjin) and SHAOQIANG DENG (Tianjin)

Abstract. In this paper, we study Killing vector fields and flag curvature of ho-
mogeneous Finsler spaces. We first give a characterization of Killing vector fields of
homogeneous Finsler spaces. Then we present a formula for the Riemann curvature of
a homogeneous Finsler space using Killing fields, which is a generalization of the formula
for homogeneous Riemannian manifolds.

1. Introduction

A Killing vector field on a manifold endowed with a Riemannian or Finsler
structure is a vector field whose local flow acts by (local) isometries. In Riemann-
ian geometry, Killing fields are closely related to isometry groups, geodesics and
curvatures in various settings (see, for example, [21]). Moreover, Killing fields are
typically used as symmetries in general relativity.

The study of Killing fields is also very important in Finsler geometry. Many
similar problems about Killing fields in Finsler geometry have been considered as
in Riemannian geometry, and many results have been generalized from Riemann-
ian geometry to Finsler geometry. In [9], the second author studied the zero points
of Killing vector fields, and generalized some interesting results of Kobayashi;
see also [10]. More recently, the second author and XU considered the Killing
vector fields of constant length in [11]-[13] and used the Killing frames to get
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a formula of S-curvature of homogeneous Finsler spaces in [29]. In [17], HUANG—
Mo showed that the flag curvature of a Finsler metric does not change under the
influence of a Killing vector field in the navigation process. On the other hand,
using some techniques of Killing vector fields, we got the complete classification
of homogeneous Randers spaces with isotropic S-curvature and positive flag cur-
vature in [15]. Moreover, based on the theory of Killing fields, one can construct
many interesting examples of Finsler manifolds with special curvature properties;
see [27]-[28] and [5].

It is well-known that calculations in Finsler geometry are generally more com-
plicated than in the Riemannian setting. Huang used a method based on single
colored Finsler manifolds (see [16]) and got a formula of the curvature of homoge-
neous Finsler spaces. The popular way to deduce the curvature of homogeneous
Riemannian spaces is based on using Killing fields; see [3]. In this paper, we gen-
eralize this method to homogeneous Finsler spaces and get a similar formula for
their Riemann curvature.

The article is organized as follows. In Section 2, some preliminaries are pre-
sented, including Finsler spaces, the Chern connection and the affine connection
associated with a nowhere zero vector field. In Section 3, we present several
characterizations of Killing vector fields on a Finsler manifold. Section 4 is de-
voted to the study of Riemann curvature of homogeneous Finsler manifolds. Using
the preparatory results of Sections 2 and 3, we deduce a direct generalization of
curvature formula (7.30) in BESSE’s book [3].

2. Preliminaries

In this section, we present some basic definitions and facts of Finsler geom-
etry. In particular, we recall the Chern connection, which is a useful tool in the
study of geometric properties of Finsler spaces. For more details, readers are
referred to [1].

2.1. Finsler spaces.

Definition 2.1. Let V be an n-dimensional real vector space. A Minkowski
norm on V is a function F on V which is smooth on V\{0} and satisfies the
following conditions:

(1) F(u) >0 for all u € V.
(2) F(Au) = AF(u) for all A > 0.
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(3) For any y € V\{0}, the symmetric bilinear form g, on V defined by

1
gy(v,w) == §(F2)"(y)(v,w)
is an inner product (i.e., positive definite scalar product).

The pair (V, F) is called a Minkowski space and the mapping
9:y € V\{0} = g, € T3(T,V) = T3(V)

is the fundamental tensor of (V, F').

For example, let {, ) be an inner product on V. Define F(y) = +/(y,y).
Then (V, F) is a Minkowski space, called a Euclidean Minkowski space.

It can easily be shown that for a Minkowski norm F, we have F'(u) > 0 if
u # 0. Furthermore, F is subadditive, i.e.,

F(uy +ug2) < F(uy) + F(uz),

where equality holds if and only if uy = auy or u; = ausy for some o > 0.
Let (V, F) be a Minkowski space. For any y # 0, the tensor

1
T4
is the Cartan tensor, and (C,)" € Ty (V) is the extended Cartan tensor of (V, F)
at y. By abuse of notation, the latter will also be denoted by C,,. It is well-known
that (V, F) is Euclidean if and only if C,, = 0 for all y € V\{0}.

Given a linear coordinate system y',...,y" on V, the components of the
fundamental tensor, the Cartan tensor and the extended Cartan tensor of (V, F)

Cy = 1 (F*)"(y) € T3(V)

relative to (y!,...,y") are the functions
1 1 1
9ij = §[F2]yiyj7 Cijk = Z[Fz]y'iyfyka Cijrl = Z[Fz]yiyjykyl;

all of them are smooth on V\{0}. The inverse of the matrix (g;;) will be denoted
by (g*7).

Theorem 2.2 (DEICKE [8], see also [1] and [4]). A Minkowski space (V, F')
is Euclidean if and only if Cy, := ¢"/Cyj, = 0 for all k € {1,2,...,n}.

Definition 2.3. Let M be a (connected smooth) manifold. A Finsler metric
on M is a function F: TM — [0,00) such that
(1) F is C* on the slit tangent bundle TM, := TM\{0};
(2) Fp:= F|r,n is a Minkowski norm for all p € M.



218 Zhiguang Hu and Shaogiang Deng

2.2. The Chern connection and the flag curvature. Let (M, F') be a Finsler
space and (z!,...,2™) be a local coordinate system on an open subset U of M.
Then 8%1’ ceey % form a basis for the tangent space at any point in U, and
(xt, ... 2™y, ..., y™) is a local coordinate system of the open subset TU\{0}.
Therefore, on TU\{0} we have the components g;; and C;;;. Define

C;:k: = giscsjk.
The formal Christoffel symbols of the second kind are

is1 (09s;  Ogjk . OGks
2\ 9zk Qx5 O )

’Y;i‘kzg

They are smooth functions on TU\{0}. We can also define some other quantities
on TU\{0} by
Nj =" = Oty y®.
Now the slit tangent bundle T My is a fibre bundle over the manifold M

with the natural projection w. Since TM is a vector bundle over M, we have
a pull-back bundle 7*T'M over T Mj.

Theorem 2.4 (CHERN [6], see also [1]). The pull-back bundle 7*T' M admits
a unique linear connection, called the Chern connection, which is torsion-free and
almost g-compatible. The coefficients of this connection are

sz = ’Yé'k — gli(Cijlei — CjksNis + C]“‘SN;).
Using the notation introduced above, let

§ _ 0 s O
szt " Ot Coys’

Syt = dy' + N;darj.

The connection 1-forms o.); and the curvature 2-forms Q; of the Chern connection
are defined on T'Uj as follows:

i T gk A RN S
wj = Ipdx”, Q= dw; — wj AN wy.

We have

S . 1.
Q) = SR yda® Ndat + Pyl ydat Aoy’ + SQ;" 00" Aoy
where
_ oT%,  oTh,
TR Sk Sl

+ FZkF?l - Fﬁ;zf?k, Pjikl =
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For
’U,:’U,i (881) ) 'U:’Ui (aaz> 3 ’LU:wi <881> ’ y:yl <881> ETva
T/ p T/ p T/ p T/ p
define

Ry(u,v)w = R} (p, y)uolw’ <8xi)p’ Py(u, v)w = P;",(p, y)u*olw! <83:1>

p

Then it is easily seen that g,(P,(y, u)v, w) is symmetric with respect to u, v, w,
and that

9y<Py(yvu)va) =0. (2'1)

Now we can introduce the notion of flag curvature. A flag on M at p € M
is a pair (o,y), where o is a plane in the tangent space T, M and y is a non-zero
vector in o. The flag curvature of (o,y) is defined to be

gy(Ry(v, y)y7 U)
9y (Y, ¥) gy (v,v) — [gy(y,v)]?’

K(U’ y) =

where v = Ui(a?ci)p is any nonzero vector in o such that o = span{y,v}. It can

be shown that K (o,y) is independent of the choice of v.

2.3. An affine connection along a nowhere zero vector field. Let N be
an open subset of the Finsler manifold (M, F'). Let X(N) be the space of smooth
vector fields on N, and let XT(N) be the subset of nowhere vanishing vector
fields on N. Then for any Y € X7 (N), we can define an affine connection on the
tangent bundle TN over N, denoted by VY, such that the following hold:

(1) VY is torsion-free:
VLV —VYU =[U,V], forall UV € X(N).
(2) VY is almost metric-compatible:
Way (U, V) = gy (VipU, V) + gy (U, Vi, V) 4+ 2Cy (Vi Y, U, V)

for any vector fields W, U,V on N.
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In the above formulas, gy, resp. Cy, is the fundamental tensor, resp. the Cartan
tensor, of (M, F) along Y. In a local coordinate system, the connection V¥ can
be defined by
9Vt , , 0
Y _ ki
VUV - U‘j@ + UJV (ij OY) @,

where U = U? ai,HV =V a?civ and the functions F;k are the coefficients of
the Chern connection. It is worthwhile to point out that the connection VY
is uniquely determined by conditions (1), (2). For details, see [22] and [18].

Lemma 2.5. For any vector fields U,V,W, Z on N, we have
ZCy (U, V,W) = Cy (VyU,V,W) + Cy(U,V5V,W) + Cy (U, V,VL W)
— S0 (P(ZW)UV) = Sov (Pr(Z,W)V,U)
— Cy (U, V,P(Y,W)Z) + Cy(V,Y,U,V,W). (2.2)

PROOF. We use the natural local coordinate system, and we write C;;5(Y) :=
Cijp oY, I‘;k(Y) = F;k oY, etc. Then

0
amimcijk(y)
807; ik 6Yb 1 8Y‘S
= S + Cigre (V) g = 5[0y (V) + Cipns (V)5
1 S s s oYs
s s 1 s 1 s
- (Ciksrjm + Cajrllim — §gi5Pj mk ~ 59sit mk> (Y)

)
o™

T CyaY) ( (VY ) O (V)P (V)Y 4 (CuaTi) (V).

In the third equation above, we have used the formula (5.29) of SHEN’s book [23].
Thus the lemma follows. O

Let RY be the curvature of the connection VY defined, as usual, by
RY(U, V)W = VVyW = ViV W — Vi W,

where U, V,W € X(N).

Lemma 2.6. For any vector fields U,V,W on N, we have

RY (U, V)W = Ry (U, V)W — Py (W,V5Y)V + Py (W, VyY)U. (2.3)
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PROOF. To prove the lemma, we calculate the expressions of (2.3) in a nat-

ural local coordinate system (x!,... 2" y!,...,y") of TMy. Let
g 0 0 .0

UVW)=|—,—,— Y=Y"—.

(V. W) (3xk’3xl’8xﬂ>’ 0z’

For simplicity, write ffj = Ffj(Y). Then

ays ~ 0
Y R s Y
vaik Y= <8$’f Y Flk) Ors’
and ~ i i
ox* ox* oyt ox®
Thus
g 0 0
Y [ —_—
R <8xk’ 8x1> Oz

9
ozt

<8x"3 02!
. or:, /gy o, [OY* )
_ K Jjl S _ Jjk S
= <RJ kl(Y)Jr—ays (axk +Nk(Y)> oy (ml + N, (Y)>> 5
o 9\ 0 0 _y B 0 vy 0
fty (axk amz) o 1Y (axvy> ot 1Y (axvy> P

Here we have used the fact that Yiffk = N;(Y). Therefore, equality (2.3) holds
for any natural coordinate vector fields on T'M,, which implies the result. (I

L f;zkf?l - fﬁﬂ%)

3. Killing vector fields of a Finsler manifold

Definition 3.1. Let (M, F') be a Finsler manifold. A diffeomorphism ¢ of M

onto itself is called an isometry if it satisfies
F(o(p), oxy) = F(p,y), forallpe M,y e T,M.

Definition 3.2. A vector field X on a Finsler manifold (M, F) is called
a Killing vector field if the local one-parameter group (¢;) of M generated by X
consists of local isometries.
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Theorem 3.3. Let X be a vector field on a Finsler manifold (M, F). Then
the following conditions are mutually equivalent:

(1) X is a Killing vector field.
(2) For any open subset N of M, and Y € XT(N), U,V € X(N),

Xgy (YY) =2¢y ([X,Y],Y).
(3) For N,Y,U and V as in (2),
Xgy (UY) = gv (X, ULY) + gv (U, [X, Y]).
(4) For N,Y,U and V as in (2),
Xgy (U, V) =gy (X, U], V) 4+ 9v(U,[X,V]) + 2Cy (X, Y], U, V).
(5) For N,Y,U and V as in (2),
gy (VY X,Y) =0.
(6) For N,Y,U and V as in (2),
gy (VY X, U) + gy (Y, Vi X) = 0.
(7) For N,Y,U and V as in (2),
gy (VEX, V) 4 gy (U, VY X) +2Cy (VY- X,U, V) = 0.

PROOF. Let (¢;) be the local one-parameter group generated by X. Then
we have

d 1 d
i, (pe(@), (o) Y) = 5o I 12y (90): Y5 (9)4Y)

1
= 55 Xy (YY) = 29y ([X, Y], Y)).
Thus the equivalence of (1) and (2) follows. For ¢ small enough, by (2) we have
ng+tU(Y + tU,Y +tU) = 29Y+tU([X,Y +tU],Y +tU)

Differentiating with respect to ¢t at t = 0, we obtain (3). Similarly, we can get (4)
from (3). Taking U =V =Y, we conclude (4) = (2).

Using the almost metric compatibility of VY, we easily get (2) < (5), (3) &
(6) and (4) < (7). This completes the proof. O
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Further equivalent conditions of the Killing property can be found in [26,
Corollary 1].

Theorem 3.4. Let U,V,W be Killing vector fields on a Finsler manifold
(M, F), and let Y be a nowhere zero vector field on an open subset N of M.
Then on N we have

29y (Vi V. W)
=gy ([U, VI, W) + gy ([V,W],U) + gy ([U, W], V)
— 20y (Vy U, V,W) = 2Cy (V3 V,W,U) + 2Cy (Vy W, U, V). (3.4)
In particular,
gy (VY V. W) = gy ([V,W],V) = 20y (VY V, VW) + Cy (Vy W,V V). (3.5)
ProoF. By Theorem 3.3, we have
gy (VuV,W) = =gy (Vi V,U) = 20y (Vy V.U, W)
= —gy ((W,V],U) — gy (VY W,U) — 2Cy (VY. V,U,W).
Similarly,
—gy (VyW,U) = gy ([U,W],V) + gy (Viy U, V) + 2Cy (Vy W, U, V),
gy (Vi U,V) = =gy ([V,U,W) = gy (V5 V, W) = 2Cy (V3 U, W, V).
Taking the summation of the above three equalities, we get (3.4). In particular,
setting U = V in (3.4), we get (3.5). O
Corollary 3.5. Let Y, V,W be Killing vector fields on M, and suppose that

Y is a nowhere vanishing vector field on an open subset N of M. Then on N we
have

gy (VYY, V) = gy ([, V], Y), (3.6)
20y (VY V. W) = —gy (W, V],Y) — gy ([V, Y], W)
+ gy ([Y, W], V) = 20y (VY Y, V,W). (3.7)

Similarly to the Riemannian case, we can prove the following results.

Proposition 3.6. Let ¢ and 1 be two isometries of a connected Finsler
manifold (M, F'). Suppose there exists a point p € M such that ¢(p) = ¥ (p) and
dpp, = dip,. Then ¢ = 1.

Theorem 3.7. Let (M, F) be a connected Finsler manifold, and let X1, X»
be Killing vector fields of (M, F). If there exists a point p € M and a nowhere zero
vector field Y on a neighborhood of p such that (X1), = (X2), and (V¥ X;)|, =
(VY X3)|p, then X7 = Xo.
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4. Homogeneous Finsler manifolds

Definition 4.1. A Finsler manifold (M, F) is called homogeneous if its isom-
etry group I(M, F) acts transitively on M, i.e., for any p,q € M, there exists
an isometry f such that f(p) = gq.

Suppose that (M, F') is a homogeneous Finsler manifold, and let G be a closed
subgroup of I(M, F') which acts transitively on M. We can assume that G is con-
nected. Fix a point p € M. Then the isotropy subgroup H = {f € G|f(p) = p}
at the point p is compact and closed in G. Denote by g and b the Lie alge-
bra of G and H, respectively. Let Ad be the adjoint representation of G in g.
Since Ad(H) is compact, there exists an Ad(H )-invariant subspace m of g that is

g=b@Pm

In this case, the coset space G/H is called reductive.

complementary to b in g, i.e.,

Given y € g, the fundamental vector field corresponding to y, denoted by Y
or v, is defined by

d
Y, = —

= 2| expty)-q, geM.

t=0

Since the transformations exp(tx) are isometries, the vector field X is a Killing
vector field. Notice that for any y and z in g, we have

Y, Z] = =y, z].
Identify m with 7, M by taking the values of the corresponding Killing vector
fields at p. In this way, the isotropy representation of H in T, M coincides with
the restriction of the adjoint representation Ad of H to m. Then we have

Theorem 4.2. Let G be a Lie group, H a compact subgroup of G which
contains no nontrivial invariant subgroup of G, and m an AdH -invariant comple-
ment to by in g. Then there is a one-to-one correspondence between the G-invariant
Finsler metrics on G/H and the Minkowski norms on m satisfying

F(Ad(h)y) = F(y), forallhe H,yem.

Moreover, if H is connected, then the above condition is equivalent to each of the
following conditions:

(1) gy(y,[u,y]) =0 for all u € b,y € m\{0};
(2) gy(z’ [u, y]) + gy(yv [U» ZD =0,
(3) gy([u, 2], w) + gy(z, [u,w]) + 2C,([u, y], z,w) =0; u € bh,y,z,w e m\{0}.
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For a proof, see [10].
Given any nonzero vector y € m, we define a bilinear operation U, : m x m —
m by

9y(Uy(u,v),w) = %(gy([w, Um; 0) + gy (w; [w, 0]wm)) + Cy ([, Ylms u,0), - (4.8)

where u,v,w € m and [w, u]y is the component of the vector [w, u] in the space m.

In particular, if w = v := y, we have a vector Uy (y, y), which is called a spray
vector in [16]. With the help of the vector Uy(y,y), we define a linear operator
N, on m by

Gy(Ny(u),v) = Cy(Uy(y,y),u,v), u,veEm. (4.9)

Proposition 4.3. Let (G/H, F) be a homogeneous Finsler manifold, and
let m be defined as in 4.2. Let Y,V be the Killing vector fields corresponding to
the nonzero vectors y,v € m. Then at the point o = eH, we have

VEVIo = =3l vln + Uy l:0) = Ny(0), (1.10)
VIV o = = 5osulm + Uyly,0) = Ny ). (411)
PROOF. First, by (3.6), we have
VYo =Uy(y.9)-
Then (4.10) and (4.11) follow from (3.7) and the torsion-freeness of V¥, respec-

tively. [l

Theorem 4.4. Let (G/H, F) be a homogeneous Finsler manifold, and let m
be defined as in 4.2. Then for any nonzero y,v € m, we have

Gy (Ry (v,9)y,v)

3 ([, Vo [, ) —

1 9y ([Y; [y, V]]m, v) — *gy([ [0, Y y)

+ 9y(Uy(y,0), Uy(y,v)) — 9y (Uy(y,9), Uy (v,v)) + gy (Ny(v), Ny(v)
- 3[1/7@} —2U, ( )) y( y( 7y)7 Y y,y)ﬂ),v) - Cy([yv Uy(yay)]mvvvv)
- 201/( y(y7 Uy(i%y)) - y( y( ,y)),v,v). (412)

@
~—~~ —~
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PROOF. Let Y and V be the (fundamental) Killing vector fields on G/H
corresponding to y and v. Then, by (2.3) and the torsion-freeness and almost
metric compatibility of VY, we have

9y(Ry(v,9)y,v)
= g,(VyVyY = Vi VY = Vi Y, V) = g, (Py (Y, VYY)V, V)
+ 9y (Py (Y, VY)Y, V) + g, (VVY, Vi V)
= Vgy(VyY,V) = g,(VYY, Vi V) =Yg, (VY V) + g, (VLY [V, Y])
+2C, (VY'Y [V,Y],V) = g, (Py (Y, VYY)V, V)
= Vgy(VYY,V) =Yg, (VVY, V) = g,(V3Y, Vi V) + g, (VVY, V3 Y)
— 29, (Ny(v), [v,ylm) — gy (Py (Y, VYY)V, V). (4.13)

Hereinafter Vg, (U, W) means Vgy (U, W)|,. We calculate the first four terms
in the last formula (4.13) above. Using (3.6), we get

ng(v¥yv V)= ng([Yv V]v Y)= gy([V, [Yv V]]v Y)+ gy([Yv V]a [Vv Y])
= —gy([v; [V, YlJm, ) — 9y ([Y; Vm; [y, V]m).- (4.14)

Since Y is a Killing vector field, by Theorem 3.3, we have
gy (VY Y, V) = —Cy (VY V,V).
Then by (2.2), we obtain

~Yg,(VyY,V) =YC, (V3 Y, V,V)
= Cy(Vy VY, V,V) +2C, (VY Y, ViV, V)
+Cy(VYY, VY Y, V, V) — g, (Py (Y, VyY)V, V)
= Cy(VXXV;Y, v, U) + 2gy(Ny('U)a V¥V>
+ Cy(Uy(y,9), Uy(y,y),v,0) — gy (Py (Y, V3 Y)V, V). (4.15)

Using (3.5), one gets

— g,(VYY,V} V)
= —g,(Uy(y,y), VV'V)
= —g,((V,Uy,(y,9)], V) + 20, (V¥ V, Uy (y,y), V) — Cy(V¥Uy(y,y), V. V)
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= gy([v, Uy (¥, Y)Im, v) + 2Cy(V¥V, Uy(y,y),v) — Cy(v¥ ~y(yay)a v, )

= *gy(Uy(ya y)? Uy(vv ’U)) + Cy([Uy(yv y)a y]rm v, U)
+2g, (VY V, Ny (v)) = Cy (V- Uy (9, ), v, 0). (4.16)

Moreover, taking into account (4.11) and the invariance of adh, we find that

9,(VVY,VyY)
o0 (31000 = U000 + Ny (0) 3051 = Uyl ) + N, 0))
191/([/!/’ Vs [Y, V]m) + 9y ([Y, Vlm, Uy (y,0)) + gy (Uy(y,0), Uy(y, v))

4

+ gy (Ny(v), Ny (v) = [y, v]m — 2U, (y,))
= 30u([y: vl [, 0hm) + 5
+ 9y (Uy (4, v), Uy (y,v)) + gy (Ny (v), Ny(v) — [y, v]m — 2U,(y, v))

1

9y [y, 0] ylm, v) + 5.94([[y, 2], v]m, )

(4.17)

On the other hand, for any nonzero z € m, we have

9y (VYVYY, 2) — g,(VY Uy (y,y), 2)

= ng(V%CY, Z) - ng(ﬁy(%y)a Z)
=g, (V. [V, 211, Y) = 9, (Y, Uy (v, )], Z) — 94Uy (5, 9), [, 2))
= 9y ([y; [9: 2llws ) + 9y ([Y, Uy (4, )], 2) + 9y (Uy (4, 9), [Y, 2]m)

= gy ([4, Uy (¥ Y)]m; 2)-
Thus we obtain
VIVEY — VY0, (4 9)lo = [y, Uy (4, 1) (4.18)

Notice that differentiating V%}V with respect to Y along the direction W, one gets
—Py (U,W)V. By (3.7), differentiating with respect to Y along the direction V,

we get
gy (Py (Y, V)V, W) = gy (W, V], V) + gy (VVV, W) + 4Cy (VY V, V, W)
+2Cy ([V,Y],V,W)=Cy ([Y, W], V,V)+Cy (VyY,V,V,W).
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Then, by (4.15) and (4.10),
94(Py (Y, V)V, V}Y)
= gy(Py (Y, V)V, Uy (y,))
= gy (Ny(0), 20, (5,0) + [y, o — 2Ny 0) + 3 Cy ([0, Uy (1 )l )
+Cy(Uy(y,y), Uy(y,y), v,0)+Cy (Uy (y, Uy (y, y)) — Ny (Uy (y, 9)), v,v). (4.19)

Plugging (4.14), (4.15), (4.16), (4.17), (4.19) into (4.13), and taking into account
equations (4.18) and (4.10), we obtain (4.12). O
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