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Killing fields and curvatures of homogeneous Finsler manifolds

By ZHIGUANG HU (Tianjin) and SHAOQIANG DENG (Tianjin)

Abstract. In this paper, we study Killing vector fields and flag curvature of ho-

mogeneous Finsler spaces. We first give a characterization of Killing vector fields of

homogeneous Finsler spaces. Then we present a formula for the Riemann curvature of

a homogeneous Finsler space using Killing fields, which is a generalization of the formula

for homogeneous Riemannian manifolds.

1. Introduction

A Killing vector field on a manifold endowed with a Riemannian or Finsler

structure is a vector field whose local flow acts by (local) isometries. In Riemann-

ian geometry, Killing fields are closely related to isometry groups, geodesics and

curvatures in various settings (see, for example, [21]). Moreover, Killing fields are

typically used as symmetries in general relativity.

The study of Killing fields is also very important in Finsler geometry. Many

similar problems about Killing fields in Finsler geometry have been considered as

in Riemannian geometry, and many results have been generalized from Riemann-

ian geometry to Finsler geometry. In [9], the second author studied the zero points

of Killing vector fields, and generalized some interesting results of Kobayashi;

see also [10]. More recently, the second author and Xu considered the Killing

vector fields of constant length in [11]–[13] and used the Killing frames to get
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a formula of S-curvature of homogeneous Finsler spaces in [29]. In [17], Huang–

Mo showed that the flag curvature of a Finsler metric does not change under the

influence of a Killing vector field in the navigation process. On the other hand,

using some techniques of Killing vector fields, we got the complete classification

of homogeneous Randers spaces with isotropic S-curvature and positive flag cur-

vature in [15]. Moreover, based on the theory of Killing fields, one can construct

many interesting examples of Finsler manifolds with special curvature properties;

see [27]–[28] and [5].

It is well-known that calculations in Finsler geometry are generally more com-

plicated than in the Riemannian setting. Huang used a method based on single

colored Finsler manifolds (see [16]) and got a formula of the curvature of homoge-

neous Finsler spaces. The popular way to deduce the curvature of homogeneous

Riemannian spaces is based on using Killing fields; see [3]. In this paper, we gen-

eralize this method to homogeneous Finsler spaces and get a similar formula for

their Riemann curvature.

The article is organized as follows. In Section 2, some preliminaries are pre-

sented, including Finsler spaces, the Chern connection and the affine connection

associated with a nowhere zero vector field. In Section 3, we present several

characterizations of Killing vector fields on a Finsler manifold. Section 4 is de-

voted to the study of Riemann curvature of homogeneous Finsler manifolds. Using

the preparatory results of Sections 2 and 3, we deduce a direct generalization of

curvature formula (7.30) in Besse’s book [3].

2. Preliminaries

In this section, we present some basic definitions and facts of Finsler geom-

etry. In particular, we recall the Chern connection, which is a useful tool in the

study of geometric properties of Finsler spaces. For more details, readers are

referred to [1].

2.1. Finsler spaces.

Definition 2.1. Let V be an n-dimensional real vector space. A Minkowski

norm on V is a function F on V which is smooth on V \{0} and satisfies the

following conditions:

(1) F (u) ≥ 0 for all u ∈ V .

(2) F (λu) = λF (u) for all λ > 0.
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(3) For any y ∈ V \{0}, the symmetric bilinear form gy on V defined by

gy(v, w) :=
1

2
(F 2)′′(y)(v, w)

is an inner product (i.e., positive definite scalar product).

The pair (V, F ) is called a Minkowski space and the mapping

g : y ∈ V \{0} 7→ gy ∈ T 0
2 (TyV

0) ∼= T 0
2 (V )

is the fundamental tensor of (V, F ).

For example, let 〈 , 〉 be an inner product on V . Define F (y) =
√
〈y, y〉.

Then (V, F ) is a Minkowski space, called a Euclidean Minkowski space.

It can easily be shown that for a Minkowski norm F , we have F (u) > 0 if

u 6= 0. Furthermore, F is subadditive, i.e.,

F (u1 + u2) ≤ F (u1) + F (u2),

where equality holds if and only if u2 = αu1 or u1 = αu2 for some α ≥ 0.

Let (V, F ) be a Minkowski space. For any y 6= 0, the tensor

Cy :=
1

4
(F 2)′′′(y) ∈ T 0

3 (V )

is the Cartan tensor, and (Cy)′ ∈ T 0
y (V ) is the extended Cartan tensor of (V, F )

at y. By abuse of notation, the latter will also be denoted by Cy. It is well-known

that (V, F ) is Euclidean if and only if Cy = 0 for all y ∈ V \{0}.
Given a linear coordinate system y1, . . . , yn on V , the components of the

fundamental tensor, the Cartan tensor and the extended Cartan tensor of (V, F )

relative to (y1, . . . , yn) are the functions

gij =
1

2
[F 2]yiyj , Cijk =

1

4
[F 2]yiyjyk , Cijkl =

1

4
[F 2]yiyjykyl ;

all of them are smooth on V \{0}. The inverse of the matrix (gij) will be denoted

by (gij).

Theorem 2.2 (Deicke [8], see also [1] and [4]). A Minkowski space (V, F )

is Euclidean if and only if Ck := gijCijk = 0 for all k ∈ {1, 2, . . . , n}.

Definition 2.3. Let M be a (connected smooth) manifold. A Finsler metric

on M is a function F : TM → [0,∞) such that

(1) F is C∞ on the slit tangent bundle TM0 := TM\{0};
(2) Fp := F |TpM is a Minkowski norm for all p ∈M .
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2.2. The Chern connection and the flag curvature. Let (M,F ) be a Finsler

space and (x1, . . . , xn) be a local coordinate system on an open subset U of M .

Then ∂
∂x1 , . . . ,

∂
∂xn form a basis for the tangent space at any point in U , and

(x1, . . . , xn, y1, . . . , yn) is a local coordinate system of the open subset TU\{0}.
Therefore, on TU\{0} we have the components gij and Cijk. Define

Ci
jk = gisCsjk.

The formal Christoffel symbols of the second kind are

γijk = gis
1

2

(
∂gsj
∂xk

− ∂gjk
∂xs

+
∂gks
∂xj

)
.

They are smooth functions on TU\{0}. We can also define some other quantities

on TU\{0} by

N i
j := γijky

k − Ci
jkγ

k
rsy

rys.

Now the slit tangent bundle TM0 is a fibre bundle over the manifold M

with the natural projection π. Since TM is a vector bundle over M , we have

a pull-back bundle π∗TM over TM0.

Theorem 2.4 (Chern [6], see also [1]). The pull-back bundle π∗TM admits

a unique linear connection, called the Chern connection, which is torsion-free and

almost g-compatible. The coefficients of this connection are

Γl
jk = γljk − gli(CijsN

s
k − CjksN

s
i + CkisN

s
j ).

Using the notation introduced above, let

δ

δxi
:=

∂

∂xi
−Ns

i

∂

∂ys
, δyi := dyi +N i

jdx
j .

The connection 1-forms ωi
j and the curvature 2-forms Ωi

j of the Chern connection

are defined on TU0 as follows:

ωi
j := Γi

jkdx
k, Ωi

j := dωi
j − ωk

j ∧ ωi
k.

We have

Ωi
j =

1

2
Rj

i
kldx

k ∧ dxl + Pj
i
kldx

k ∧ δyl +
1

2
Qj

i
klδy

k ∧ δyl,

where

R i
j kl =

δΓi
jl

δxk
−
δΓi

jk

δxl
+ Γi

hkΓh
jl − Γi

hlΓ
h
jk, P i

j kl = −
∂Γi

jk

∂yl
.
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For

u = ui
(

∂

∂xi

)
p

, v = vi
(

∂

∂xi

)
p

, w = wi

(
∂

∂xi

)
p

, y = yi
(

∂

∂xi

)
p

∈ TpM,

define

Ry(u, v)w = R i
j kl(p, y)ukvlwj

(
∂

∂xi

)
p

, Py(u, v)w = P i
j kl(p, y)ukvlwj

(
∂

∂xi

)
p

.

Then it is easily seen that gy(Py(y, u)v, w) is symmetric with respect to u, v, w,

and that

gy(Py(y, u)v, y) = 0. (2.1)

Now we can introduce the notion of flag curvature. A flag on M at p ∈ M
is a pair (σ, y), where σ is a plane in the tangent space TpM and y is a non-zero

vector in σ. The flag curvature of (σ, y) is defined to be

K(σ, y) :=
gy(Ry(v, y)y, v)

gy(y, y)gy(v, v)− [gy(y, v)]2
,

where v = vi( ∂
∂xi )p is any nonzero vector in σ such that σ = span{y, v}. It can

be shown that K(σ, y) is independent of the choice of v.

2.3. An affine connection along a nowhere zero vector field. Let N be

an open subset of the Finsler manifold (M,F ). Let X(N) be the space of smooth

vector fields on N , and let X+(N) be the subset of nowhere vanishing vector

fields on N . Then for any Y ∈ X+(N), we can define an affine connection on the

tangent bundle TN over N , denoted by ∇Y , such that the following hold:

(1) ∇Y is torsion-free:

∇Y
UV −∇Y

V U = [U, V ], for all U, V ∈ X(N).

(2) ∇Y is almost metric-compatible:

WgY (U, V ) = gY (∇Y
WU, V ) + gY (U,∇Y

WV ) + 2CY (∇Y
WY, U, V )

for any vector fields W,U, V on N .
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In the above formulas, gY , resp. CY , is the fundamental tensor, resp. the Cartan

tensor, of (M,F ) along Y . In a local coordinate system, the connection ∇Y can

be defined by

∇Y
UV =

[
U j ∂V

i

∂xj
+ U jV k(Γi

jk ◦ Y )

]
∂

∂xi
,

where U = U i ∂
∂xi , V = V i ∂

∂xi , and the functions Γi
jk are the coefficients of

the Chern connection. It is worthwhile to point out that the connection ∇Y

is uniquely determined by conditions (1), (2). For details, see [22] and [18].

Lemma 2.5. For any vector fields U, V,W,Z on N , we have

ZCY (U, V,W ) = CY (∇Y
ZU, V,W ) + CY (U,∇Y

ZV,W ) + CY (U, V,∇Y
ZW )

− 1

2
gY (PY (Z,W )U, V )− 1

2
gY (PY (Z,W )V,U)

− CY (U, V, P (Y,W )Z) + CY (∇Y
ZY, U, V,W ). (2.2)

Proof. We use the natural local coordinate system, and we write Cijk(Y ) :=

Cijk ◦ Y,Γi
jk(Y ) := Γi

jk ◦ Y , etc. Then

∂

∂xm
Cijk(Y )

=
∂Cijk

∂xm
(Y ) + Cijks(Y )

∂Y s

∂xm
=

1

2

[
gij
]
xmyk(Y ) + Cijks(Y )

∂Y s

∂xm

=
1

2

[
gisΓ

s
jm + gsjΓ

s
im + 2CijsΓ

s
mly

l
]
yk(Y ) + Cijks(Y )

∂Y s

∂xm

=

(
CiksΓ

s
jm + CsjkΓs

im −
1

2
gisP

s
j mk −

1

2
gsjP

s
i mk

)
(Y )

+ Cijsk(Y )

(
Γs
ml(Y )Y l +

∂Y s

∂xm

)
− Cijs(Y )P s

m lk(Y )Y l + (CijsΓ
s
mk)(Y ).

In the third equation above, we have used the formula (5.29) of Shen’s book [23].

Thus the lemma follows. �

Let RY be the curvature of the connection ∇Y defined, as usual, by

RY (U, V )W = ∇Y
U∇Y

VW −∇Y
V∇Y

UW −∇Y
[U,V ]W,

where U, V,W ∈ X(N).

Lemma 2.6. For any vector fields U, V,W on N , we have

RY (U, V )W = RY (U, V )W − PY (W,∇Y
UY )V + PY (W,∇Y

V Y )U. (2.3)
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Proof. To prove the lemma, we calculate the expressions of (2.3) in a nat-

ural local coordinate system (x1, . . . , xn, y1, . . . , yn) of TM0. Let

(U, V,W ) :=

(
∂

∂xk
,
∂

∂xl
,
∂

∂xj

)
, Y = Y i ∂

∂xi
.

For simplicity, write Γ̃k
ij := Γk

ij(Y ). Then

∇Y
∂

∂xk
Y =

(
∂Y s

∂xk
+ Y iΓ̃s

ik

)
∂

∂xs
,

and
∂Γ̃k

ij

∂xs
=
∂Γk

ij

∂xs
(Y ) +

∂Γk
ij

∂yt
(Y )

∂Y t

∂xs
.

Thus

RY

(
∂

∂xk
,
∂

∂xl

)
∂

∂xj

=

(
∂Γ̃i

jl

∂xk
−
∂Γ̃i

jk

∂xl
+ Γ̃i

hkΓ̃h
jl − Γ̃i

hlΓ̃
h
jk

)
∂

∂xi

=

(
R i

j kl(Y ) +
∂Γi

jl

∂ys

(
∂Y s

∂xk
+Ns

k(Y )

)
−
∂Γi

jk

∂ys

(
∂Y s

∂xl
+Ns

l (Y )

))
∂

∂xi

= RY

(
∂

∂xk
,
∂

∂xl

)
∂

∂xj
− PY

(
∂

∂xj
,∇Y

∂

∂xk
Y

)
∂

∂xl
+ PY

(
∂

∂xj
,∇Y

∂

∂xl
Y

)
∂

∂xk
.

Here we have used the fact that Y iΓ̃s
ik = Ns

k(Y ). Therefore, equality (2.3) holds

for any natural coordinate vector fields on TM0, which implies the result. �

3. Killing vector fields of a Finsler manifold

Definition 3.1. Let (M,F ) be a Finsler manifold. A diffeomorphism ϕ of M

onto itself is called an isometry if it satisfies

F (ϕ(p), ϕ∗y) = F (p, y), for all p ∈M,y ∈ TpM.

Definition 3.2. A vector field X on a Finsler manifold (M,F ) is called

a Killing vector field if the local one-parameter group (ϕt) of M generated by X

consists of local isometries.
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Theorem 3.3. Let X be a vector field on a Finsler manifold (M,F ). Then

the following conditions are mutually equivalent:

(1) X is a Killing vector field.

(2) For any open subset N of M , and Y ∈ X+(N), U, V ∈ X(N),

XgY (Y, Y ) = 2gY ([X,Y ], Y ).

(3) For N,Y, U and V as in (2),

XgY (U, Y ) = gY ([X,U ], Y ) + gY (U, [X,Y ]).

(4) For N,Y, U and V as in (2),

XgY (U, V ) = gY ([X,U ], V ) + gY (U, [X,V ]) + 2CY ([X,Y ], U, V ).

(5) For N,Y, U and V as in (2),

gY (∇Y
YX,Y ) = 0.

(6) For N,Y, U and V as in (2),

gY (∇Y
YX,U) + gY (Y,∇Y

UX) = 0.

(7) For N,Y, U and V as in (2),

gY (∇Y
UX,V ) + gY (U,∇Y

VX) + 2CY (∇Y
YX,U, V ) = 0.

Proof. Let (ϕt) be the local one-parameter group generated by X. Then

we have

d

dt

∣∣∣∣
t=0

F (ϕt(x), (ϕt)∗Y ) =
1

2F

d

dt

∣∣∣∣
t=0

g(ϕt(x),(ϕt)∗Y )((ϕt)∗Y, (ϕt)∗Y )

=
1

2F
(XgY (Y, Y )− 2gY ([X,Y ], Y )).

Thus the equivalence of (1) and (2) follows. For t small enough, by (2) we have

XgY+tU (Y + tU, Y + tU) = 2gY+tU ([X,Y + tU ], Y + tU).

Differentiating with respect to t at t = 0, we obtain (3). Similarly, we can get (4)

from (3). Taking U = V = Y , we conclude (4)⇒ (2).

Using the almost metric compatibility of ∇Y , we easily get (2)⇔ (5), (3)⇔
(6) and (4)⇔ (7). This completes the proof. �
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Further equivalent conditions of the Killing property can be found in [26,

Corollary 1].

Theorem 3.4. Let U, V,W be Killing vector fields on a Finsler manifold

(M,F ), and let Y be a nowhere zero vector field on an open subset N of M .

Then on N we have

2gY (∇Y
UV,W )

= gY ([U, V ],W ) + gY ([V,W ], U) + gY ([U,W ], V )

− 2CY (∇Y
Y U, V,W )− 2CY (∇Y

Y V,W,U) + 2CY (∇Y
YW,U, V ). (3.4)

In particular,

gY (∇Y
V V,W ) = gY ([V,W ], V )− 2CY (∇Y

Y V, V,W ) + CY (∇Y
YW,V, V ). (3.5)

Proof. By Theorem 3.3, we have

gY (∇Y
UV,W ) = −gY (∇Y

WV,U)− 2CY (∇Y
Y V,U,W )

= −gY ([W,V ], U)− gY (∇Y
VW,U)− 2CY (∇Y

Y V,U,W ).

Similarly,

−gY (∇Y
VW,U) = gY ([U,W ], V ) + gY (∇Y

WU, V ) + 2CY (∇Y
YW,U, V ),

gY (∇Y
WU, V ) = −gY ([V,U ],W )− gY (∇Y

UV,W )− 2CY (∇Y
Y U,W, V ).

Taking the summation of the above three equalities, we get (3.4). In particular,

setting U = V in (3.4), we get (3.5). �

Corollary 3.5. Let Y, V,W be Killing vector fields on M , and suppose that

Y is a nowhere vanishing vector field on an open subset N of M . Then on N we

have

gY (∇Y
Y Y, V ) = gY ([Y, V ], Y ), (3.6)

2gY (∇Y
Y V,W ) = −gY ([W,V ], Y )− gY ([V, Y ],W )

+ gY ([Y,W ], V )− 2CY (∇Y
Y Y, V,W ). (3.7)

Similarly to the Riemannian case, we can prove the following results.

Proposition 3.6. Let ϕ and ψ be two isometries of a connected Finsler

manifold (M,F ). Suppose there exists a point p ∈M such that ϕ(p) = ψ(p) and

dϕp = dψp. Then ϕ = ψ.

Theorem 3.7. Let (M,F ) be a connected Finsler manifold, and let X1, X2

be Killing vector fields of (M,F ). If there exists a point p ∈M and a nowhere zero

vector field Y on a neighborhood of p such that (X1)p = (X2)p and (∇YX1)|p =

(∇YX2)|p, then X1 = X2.
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4. Homogeneous Finsler manifolds

Definition 4.1. A Finsler manifold (M,F ) is called homogeneous if its isom-

etry group I(M,F ) acts transitively on M , i.e., for any p, q ∈ M , there exists

an isometry f such that f(p) = q.

Suppose that (M,F ) is a homogeneous Finsler manifold, and let G be a closed

subgroup of I(M,F ) which acts transitively on M . We can assume that G is con-

nected. Fix a point p ∈ M . Then the isotropy subgroup H = {f ∈ G|f(p) = p}
at the point p is compact and closed in G. Denote by g and h the Lie alge-

bra of G and H, respectively. Let Ad be the adjoint representation of G in g.

Since Ad(H) is compact, there exists an Ad(H)-invariant subspace m of g that is

complementary to h in g, i.e.,

g = h
⊕

m.

In this case, the coset space G/H is called reductive.

Given y ∈ g, the fundamental vector field corresponding to y, denoted by Y

or ỹ, is defined by

Yq =
d

dt

∣∣∣∣
t=0

exp(ty) · q, q ∈M.

Since the transformations exp(tx) are isometries, the vector field X is a Killing

vector field. Notice that for any y and z in g, we have

[Y, Z] = −[̃y, z].

Identify m with TpM by taking the values of the corresponding Killing vector

fields at p. In this way, the isotropy representation of H in TpM coincides with

the restriction of the adjoint representation Ad of H to m. Then we have

Theorem 4.2. Let G be a Lie group, H a compact subgroup of G which

contains no nontrivial invariant subgroup of G, and m an AdH-invariant comple-

ment to h in g. Then there is a one-to-one correspondence between the G-invariant

Finsler metrics on G/H and the Minkowski norms on m satisfying

F (Ad(h)y) = F (y), for all h ∈ H, y ∈ m.

Moreover, if H is connected, then the above condition is equivalent to each of the

following conditions:

(1) gy(y, [u, y]) = 0 for all u ∈ h, y ∈ m\{0};
(2) gy(z, [u, y]) + gy(y, [u, z]) = 0,

(3) gy([u, z], w) + gy(z, [u,w]) + 2Cy([u, y], z, w) = 0; u ∈ h, y, z, w ∈ m\{0}.



Killing fields and curvatures 225

For a proof, see [10].

Given any nonzero vector y ∈ m, we define a bilinear operation Uy : m×m→
m by

gy(Uy(u, v), w) =
1

2
(gy([w, u]m, v) + gy(u, [w, v]m)) + Cy([w, y]m, u, v), (4.8)

where u, v, w ∈ m and [w, u]m is the component of the vector [w, u] in the space m.

In particular, if u = v := y, we have a vector Uy(y, y), which is called a spray

vector in [16]. With the help of the vector Uy(y, y), we define a linear operator

Ny on m by

gy(Ny(u), v) = Cy(Uy(y, y), u, v), u, v ∈ m. (4.9)

Proposition 4.3. Let (G/H,F ) be a homogeneous Finsler manifold, and

let m be defined as in 4.2. Let Y, V be the Killing vector fields corresponding to

the nonzero vectors y, v ∈ m. Then at the point o = eH, we have

∇Y
Y V |o = −1

2
[y, v]m + Uy(y, v)−Ny(v), (4.10)

∇Y
V Y |o = −1

2
[v, y]m + Uy(y, v)−Ny(v). (4.11)

Proof. First, by (3.6), we have

∇Y
Y Y |o = Uy(y, y).

Then (4.10) and (4.11) follow from (3.7) and the torsion-freeness of ∇Y , respec-

tively. �

Theorem 4.4. Let (G/H,F ) be a homogeneous Finsler manifold, and let m

be defined as in 4.2. Then for any nonzero y, v ∈ m, we have

gy(Ry(v, y)y, v)

= −3

4
gy([y, v]m, [y, v]m)− 1

2
gy([y, [y, v]]m, v)− 1

2
gy([v, [v, y]]m, y)

+ gy(Uy(y, v), Uy(y, v))− gy(Uy(y, y), Uy(v, v)) + gy(Ny(v), Ny(v)

− 3[y, v]m − 2Uy(y, v))− Cy(Uy(y, y), Uy(y, y), v, v)− Cy([y, Uy(y, y)]m, v, v)

− 2Cy(Uy(y, Uy(y, y))−Ny(Uy(y, y)), v, v). (4.12)
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Proof. Let Y and V be the (fundamental) Killing vector fields on G/H

corresponding to y and v. Then, by (2.3) and the torsion-freeness and almost

metric compatibility of ∇Y , we have

gy(Ry(v, y)y, v)

= gy(∇Y
V∇Y

Y Y −∇Y
Y∇Y

V Y −∇Y
[V,Y ]Y, V )− gy(PY (Y,∇Y

Y Y )V, V )

+ gy(PY (Y,∇Y
V Y )Y, V ) + gy(∇Y

V Y,∇Y
Y V )

= V gy(∇Y
Y Y, V )− gy(∇Y

Y Y,∇Y
V V )− Y gy(∇Y

V Y, V ) + gy(∇Y
V Y, [V, Y ])

+ 2Cy(∇Y
Y Y, [V, Y ], V )− gy(PY (Y,∇Y

Y Y )V, V )

= V gy(∇Y
Y Y, V )− Y gy(∇Y

V Y, V )− gy(∇Y
Y Y,∇Y

V V ) + gy(∇Y
V Y,∇Y

V Y )

− 2gy(Ny(v), [v, y]m)− gy(PY (Y,∇Y
Y Y )V, V ). (4.13)

Hereinafter V gy(U,W ) means V gY (U,W )|o. We calculate the first four terms

in the last formula (4.13) above. Using (3.6), we get

V gy(∇Y
Y Y, V ) = V gy([Y, V ], Y ) = gy([V, [Y, V ]], Y ) + gy([Y, V ], [V, Y ])

= −gy([v, [v, y]]m, y)− gy([y, v]m, [y, v]m). (4.14)

Since Y is a Killing vector field, by Theorem 3.3, we have

gY (∇Y
V Y, V ) = −CY (∇Y

Y Y, V, V ).

Then by (2.2), we obtain

−Y gy(∇Y
V Y, V ) = Y Cy(∇Y

Y Y, V, V )

= Cy(∇Y
Y∇Y

Y Y, V, V ) + 2Cy(∇Y
Y Y,∇Y

Y V, V )

+ Cy(∇Y
Y Y,∇Y

Y Y, V, V )− gy(PY (Y,∇Y
Y Y )V, V )

= Cy(∇Y
Y∇Y

Y Y, v, v) + 2gy(Ny(v),∇Y
Y V )

+ Cy(Uy(y, y), Uy(y, y), v, v)− gy(PY (Y,∇Y
Y Y )V, V ). (4.15)

Using (3.5), one gets

− gy(∇Y
Y Y,∇Y

V V )

= −gy(Ũy(y, y),∇Y
V V )

= −gy([V, Ũy(y, y)], V ) + 2Cy(∇Y
Y V, Ũy(y, y), V )− Cy(∇Y

Y Ũy(y, y), V, V )
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= gy([v, Uy(y, y)]m, v) + 2Cy(∇Y
Y V,Uy(y, y), v)− Cy(∇Y

Y Ũy(y, y), v, v)

= −gy(Uy(y, y), Uy(v, v)) + Cy([Uy(y, y), y]m, v, v)

+ 2gy(∇Y
Y V,Ny(v))− Cy(∇Y

Y Ũy(y, y), v, v). (4.16)

Moreover, taking into account (4.11) and the invariance of adh, we find that

gy(∇Y
V Y,∇Y

V Y )

= gy

(
1

2
[v, y]m − Uy(y, v) +Ny(v),

1

2
[v, y]m − Uy(y, v) +Ny(v)

)
=

1

4
gy([y, v]m, [y, v]m) + gy([y, v]m, Uy(y, v)) + gy(Uy(y, v), Uy(y, v))

+ gy(Ny(v), Ny(v)− [y, v]m − 2Uy(y, v))

=
1

4
gy([y, v]m, [y, v]m) +

1

2
gy([[y, v], y]m, v) +

1

2
gy([[y, v], v]m, y)

+ gy(Uy(y, v), Uy(y, v)) + gy(Ny(v), Ny(v)− [y, v]m − 2Uy(y, v)). (4.17)

On the other hand, for any nonzero z ∈ m, we have

gy(∇Y
Y∇Y

Y Y, z)− gy(∇Y
Y Ũy(y, y), z)

= Y gy(∇Y
Y Y,Z)− Y gy(Ũy(y, y), Z)

= gy([Y, [Y,Z]], Y )− gy([Y, Ũy(y, y)], Z)− gy(Ũy(y, y), [Y, Z])

= gy([y, [y, z]]m, y) + gy([y, Uy(y, y)]m, z) + gy(Uy(y, y), [y, z]m)

= gy([y, Uy(y, y)]m, z).

Thus we obtain

[∇Y
Y∇Y

Y Y −∇Y
Y Ũy(y, y)]|o = [y, Uy(y, y)]m. (4.18)

Notice that differentiating∇Y
UV with respect to Y along the direction W , one gets

−PY (U,W )V . By (3.7), differentiating with respect to Y along the direction V ,

we get

gY (PY (Y, V )V,W ) = gY ([W,V ], V ) + gY (∇Y
V V,W ) + 4CY (∇Y

Y V, V,W )

+2CY ([V, Y ], V,W )−CY ([Y,W ], V, V )+CY (∇Y
Y Y, V, V,W ).
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Then, by (4.15) and (4.10),

gy(PY (Y, V )V,∇Y
Y Y )

= gy(PY (Y, V )V, Ũy(y, y))

= gy(Ny(v), 2Uy(y, v) + [y, v]m − 2Ny(v) +
1

2
Cy([y, Uy(y, y)]m, v, v)

+Cy(Uy(y, y), Uy(y, y), v, v)+Cy(Uy(y, Uy(y, y))−Ny(Uy(y, y)), v, v). (4.19)

Plugging (4.14), (4.15), (4.16), (4.17), (4.19) into (4.13), and taking into account

equations (4.18) and (4.10), we obtain (4.12). �
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