Publ. Math. Debrecen
94/1-2 (2019), 231-261
DOI: 10.5486/PMD.2019.8346

The Cotton tensor in the projective geometry of sprays

By MIKE CRAMPIN (Norfolk)

Abstract. I define, by analogy with the projective theory of linear connections,
a Cotton tensor for any spray, and discuss its role in the projective geometry of sprays.

1. Introduction

It may seem that there is little new to be said about the projective geometry
of sprays. After all the subject has a long history, dating back as it does to Dou-
glas and Berwald; has been extensively covered in standard texts by ANTONELLI
et al. [1] and SHEN [15]; and has been brought up to date by J. SziLasI et al. [16],
Z. S7Z1LASI [17], and YOUSSEF et al. [18].

My excuse for writing another paper on the topic is that it seems to me
that there is a curious lacuna in the literature on the projective geometry of
sprays, which I can best explain by comparing it to the special, but longer es-
tablished, case of the projective geometry of symmetric linear connections or
quadratic sprays. In the latter a projectively invariant tensor, the Weyl projec-
tive curvature tensor, is defined, and it is shown that in dimension 3 or more
the vanishing of the Weyl tensor is the necessary and sufficient condition for
the linear connection to be locally projectively flat, that is, locally projectively
equivalent to the flat connection. If one consults the literature on the projective
geometry of general sprays, however, one finds that a great deal of effort has been
put into defining a generalized Weyl projective curvature tensor, but almost none,
so far as I can see, into explaining what it is for, in particular, into deriving the
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consequences of its vanishing. The one exception to these criticisms that I know
of is, T have to confess, a paper of my own [9]: and on reflection, I now think that
it does not really do the matter justice.

Let me explain my title. In the projective theory of symmetric linear con-
nections there is, in addition to the Weyl tensor, a second equally important but
less prominent tensor called the projective Cotton tensor. This comes into its
own in the case of 2-dimensional manifolds with symmetric linear connection.
In 2 dimensions the Weyl tensor vanishes identically, and the necessary and suf-
ficient condition for projective flatness is the vanishing of the Cotton tensor. But
in fact, the Cotton tensor does a lot of the work in the proof of the result that in
dimension 3 or more the vanishing of the Weyl tensor entails projective flatness.
It so happens that the vanishing of the Weyl tensor in such higher dimensions
implies that the Cotton tensor vanishes, and this latter fact is the key to the
proof. Searching for a mention of a generalized Cotton tensor in the projective
theory of sprays should be an indirect way of finding a proof of the missing re-
sults. It produces, for me at least, no hits. (The generalized Cotton tensor to
be introduced below does actually appear in my paper [9] referred to earlier, but
was not named because I did not recognise its significance at the time. A version
also appears in a section of Shen’s book [15] entitled ‘Berwald—Weyl Curvature’;
but Shen, following BERWALD [3], really deals only with the 2-dimensional case.
I shall discuss Berwald’s work in my final section.) The aim of this paper is to
rectify the deficiences described above.

In the projective theory of general sprays there is, of course, in addition to
the Weyl and Cotton tensors, a projectively invariant tensor called the Douglas
tensor which has no counterpart in the linear theory, whose vanishing is the
necessary and sufficient condition for the Berwald connection to be projectively
equivalent to a linear connection. And it is well known that in dimension 3 or
more the vanishing of both the Douglas tensor and the Weyl tensor is necessary
and sufficient for the spray to be projectively flat. But the argument for this
assertion first uses the fact that the vanishing of the Douglas tensor ensures that
the Berwald connection is projectively linear; then the Weyl tensor is just that
of any projectively equivalent linear connection, so one can use the result for the
linear case. I want to emphasise that the question of interest in this paper is what
happens when the Weyl tensor is zero but the Douglas tensor is not.

There is another way of looking at this theory, which emphasises the role
of systems of second-order differential equations, such as those which define the
geodesics of a spray, and investigates the invariants of such systems under so-
called point transformations (in which the independent variable is treated on the
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same footing as the dependent ones). FELS [12] solved this problem for a system
of two or more equations (which is locally equivalent to a spray over a base
manifold of at least 3 dimensions), and found invariants which are versions of
the Douglas and Weyl tensors (see [11] for the details). (The case of a single
second-order differential equation — a 2-dimensional spray — had been studied
long before by CARTAN [5]: see also [7].) Those who approach the theory from
this starting point ([6], for example) refer to the collection of those systems for
which the equivalent of the Douglas tensor vanishes (but not necessarily the Weyl
tensor) as the projective branch, those for which the equivalent of the Weyl tensor
vanishes (but not necessarily the Douglas tensor) as the conformal branch. The
results to be established in this paper are concerned with the conformal branch,
in this (slightly mysterious) terminology.

It is not very difficult to guess what the results in question might be. As-
sociated with the Berwald connection of any spray, there are two tensors which
are usually described as curvatures: the hv-curvature, which is usually called the
Berwald curvature, and the hh-curvature, which is called the Riemann curvature.
A Berwald connection whose Riemann curvature vanishes, but whose Berwald
curvature is not necessarily zero, is said to be R-flat (the terminology is that
used by Shen in [15]). Then, as I show below, over a manifold of dimension at
least 3, the vanishing of its Weyl projective curvature tensor is the necessary and
sufficient condtion for a spray to be locally projectively equivalent to one which
is R-flat; and over a manifold of dimension 2, the vanishing of its projective
Cotton tensor is the necessary and sufficient condition for a spray to be locally
projectively equivalent to one which is R-flat. In fact, if one were to go through
the basic results of the linear theory subsituting ‘Berwald connection of a spray’
for ‘symmetric linear connection’ and ‘R-flat’ for ‘flat’, one would obtain correct
results for the general theory.

The main aims of this paper are the identification of the Cotton tensor and
the proofs of the sufficiency parts of the theorems just described. The paper also
aims to provide a clear, comprehensive and definitive account of the fundamentals
of the projective geometry of sprays, so that much of what is covered will of
necessity be familiar in one guise or another; but I hope that the methods used
will be of interest.

(The relevant results for linear connections are as follows: see, for example,
[14], or [2] for a modern account which names the Cotton tensor. The Weyl
projective curvature tensor is given by

h h h h h
Wkij = Rk” + Sk;q,(sj — Sk:jéi + (3]1 — Sij)(sk,
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where
1

w21

Sij = nRij + Rji)
with R;; = R?hj, the Ricci tensor: s is often called the Schouten tensor. Notice
that

1

Sij = Sji = m(&j - Rji).
The Weyl projective curvature tensor is projectively invariant. The projective
Cotton tensor is
Ski;j — Skj;i = Ckij,
where the semicolon indicates a covariant derivative. The Cotton tensor is not in
general projectively invariant, but satisfies

(n — 2)Ck¢j = _Wlélij;h'

A linear connection is projectively flat if and only if, in dimension 3 or more the
Weyl tensor vanishes, and in dimension 2 the Cotton tensor vanishes.)

2. Background

I gather together here basic facts and formulae and establish notations.

I denote by 7 : T°M — M the slit tangent bundle of a manifold M, with
projection the restriction of the usual tangent bundle projection, and with local
coordinates z?,y’ where the y* are the canonical fibre coordinates corresponding
to local coordinates x* on M.

In the Introduction, I have been somewhat cavalier with my use of the term
‘tensor’ when referring to geometric objects associated with general sprays. The
usual approach to the geometry of sprays is to work with 7*(T'M) — T°M, the
pullback of TM to T°M: this is of course a vector bundle over T°M whose fibre at
(x,y) € T°M is isomorphic to T, M. One may then form tensor products of copies
of 7*(T'M) and its dual, and a tensor field on T°M is a section of such a tensor
product bundle over T°M. In short, when referring to a tensor, I expected the
reader to supply the phrase ‘along the tangent bundle projection’.

There is however an alternative, which is to replace 7*(T'M) with V (T°M),
the subbundle of T(T°M) consisting of vertical vectors, the kernel bundle of 7, :
T(T°M) — T°M. Its fibre at (x,y) € T°M is the vertical subspace of T, ,)T°M;
it too is isomorphic to T, M, and indeed the two bundles 7*(T'M) and V(T°M)
are naturally isomorphic. One can equally well take ‘tensor’ to mean a section
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of a tensor bundle formed from V(T°M). For most of the paper, it makes little
difference which interpretation is used. However, there is one section, Section 4,
where there is a distinct advantage in using the V(7T°M) approach.

I denote by A the Liouville vector field on T°M

;0
R

it generates dilations in the fibres, and is fundamental to the definition of positive
homogeneity. Any spray I' is of course positively homogeneous:

[A,T] =T.

For a spray on T°M, conventionally expressed as

0 .0
- — 21" —
Oxt oyt’

I =y

where the coefficients I'? are positively-homogeneous of degree 2, I denote by H;
the horizontal lift to T°M, with respect to the horizontal distribution it defines,
of the basic coordinate field 9/0x :

0

B 0 P orJ
T Qat

= _—.
i ayz

J

Hi AN
1ayj

It is often convenient to write V; for the vertical lift of 9/0x%, that is,

0
=55

Vi

The connection coefficients of the corresponding Berwald connection are given by

orh . .
ho_ _ 1h. Jo_ ki
ij — ay;' =L I =y
Covariant derivatives with respect to the Berwald connection are expressed as
follows: for a vector field with components U?, the components of its covariant

derivatives with respect to H; and V; respectively are

U, =H;(U)+TRU U5 =V;(UY).

) 5]

Note that ,j simply stands for partial differentiation with respect to v/, and will
be extensively used with this meaning. Since the I‘Z-hj are symmetric in their lower
indices,

[H;, V] = T} Vi = [H;, Vi).
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The Berwald curvature of the connection is defined componentwise as follows:

o3rh

B =V,(Th) = ————.
k ( _]k) ayzayjayk

ij
The Riemann curvature comes in three versions. It may be defined in terms of
the geodesic deviation equation or Jacobi equation, as a type (1,1) tensor with
components RZ‘, so that the equation for a Jacobi field J is

h h 7k
ViJ" + REJF =0.
Secondly, there is the type (1,2) tensor with components R?j which measures the
failure of the horizontal distribution to be involutive:

And thirdly, there is the usual definition in terms of the covariant derivative,
here applied to covariant differentiation with respect to the Berwald connection
in horizontal directions, giving a type (1,3) tensor

Rl = Hy(Tf) — Hk(l—‘i@') + FJ}‘LlFilk: - FIiLlFilj'

¥

These three tensors are to be regarded as different presentations of the same
geometric object. They are related as follows:
RZ = ij;‘Lk = yiijiljkv
h 1/ ph h i ph
Rjk = §(Rk,j - Rj,k) = yZRijk’

h _ ph _ 1/ph h
Ry = R, = 5(Ry 5 — Ry n)-

In referring to them, I shall differentiate between them by their types. I shall most
often use the type (1,2) Riemann curvature. This is because the involutivity of
the horizontal distribution will be of importance. When the Berwald connection
is actually linear, so that R?j & is independent of y, R;?k depends linearly on y; and
so in making comparisons with the linear case, one has to mentally differentiate
with respect to y® (say).

These curvatures have the following properties. The coefficient ijk of the
Berwald curvature is positively-homogeneous of degree —1; the coefficient R?k of
the type (1,2) Riemann curvature is positively-homogeneous of degree 1. One
of the Ricci identities for repeated covariant differentiation will be needed, here
exemplified in terms of a vector field with components U":

uh, -t =BLU"

i5J ijk
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The type (1,1) Riemann curvature satisfies Rfy* = 0. The type (1,3) Riemann
curvature satisfies the algebraic Bianchi identity or cyclic identity

h h h

The type (1,2) Riemann curvature satisfies the differential Bianchi identity
R?j;k + R?k’;i + RZi;j =0.

(There are other Bianchi identities but they will not be needed.)
The Ricci tensor is defined by R;; = thj. It is not in general symmetric:
rather, from the cyclic identity we have

Rij — Rji = Rjyi;.

3. Isotropy

Proposition 1. The following conditions on the Riemann curvatures of
a spray are equivalent:

(1) there is a function p, positively-homogeneous of degree 2, and covector T, of
degree 1, such that
Ry = pop: + Ty

(2) there is a covector &, of degree 1, and skew-symmetric type (0,2) tensor 1,
of degree 0, such that

Rl = &3 — &8) + miny”.
Furthermore, when such conditions hold, we must have
p+ 7yt =0,

and for dim M > 2,
ik = &k — k-

ProOF. Using the relations between the variants of the Riemann curvature
quoted in the previous section, one finds that with RZ = pdﬁ + eyl

Ry =3 ((pg — )08 — (o — )0 — (T — Ty 5
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while if R;?k =¢;oh — {;@6? + njky", then
Ry = (&7)0) + (nwy’ — &)y".
Now Rpy* =0, s0 p+ my* = 0. If Rl = &6} — &x6" + njry”, then also

Rl =% ((pg —15)08 — (pr — k)0 — (Tjk — o )Y")

with p = ijj and 7, = njkyj — & It is easy to see (and proved in the next
section) that if m;0% — ;6% + ojxy" = 0 for some 7 and skew-symmetric o, then
provided dim M > 2, # =0 and o = 0. So

& =35lp;—7) and mie=—5(min — Ty),
from which evidently n;i = & r — &k,j- O

When dim M = 2, however, it is possible to have ﬂjég—wjé,@—i—ojkyh = 0 with
7 and ¢ nonzero, since —y28% — 48" +y" = 0; and so the final argument does not
work. In fact, the formula for R?k in terms of p and 7 becomes, on substitution
for p and 7 in terms of £ and 7,

Ry = €68 — &0 + oy + (m2 — (€12 — &2.1)) (—y?0% — y'oF + y),

and gives no new information.

A spray is said to be isotropic, or to have isotropic Riemann curvature, if its
curvature satisfies the condition of Proposition 1 in either of its forms, and if in
addition, 15 = &k — &k,; when dim M = 2 (the case when this does not occur
automatically). The condition for a spray to be isotropic will most often be taken
in the type (1,2) form

Rl = &08 — &80 + &k — &)Y

where £ is a covector field which is positively-homogeneous of degree 1. (Other
authors, with Shen [15] as the prime example, tend to use the type (1, 1) version.)

The properties of type (1,2) tensor fields constructed from covectors in the
above manner will be of major importance later. I pause to establish the proper-
ties that will be needed.

Let ¢; be the components of a covector, positively-homogeneous of degree 1.
Consider the type (1,2) tensor @, skew-symmetric in its lower indices, whose
components are given by

?j = Qi(;;-l — ;0 + (a5 — a;.0)y"
I shall call @ the type (1,2) isotropic tensor constructed from ¢, and say that
such a tensor is of isotropic type.
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Lemma 1. The tensor ) satisfies the cyclic identity
Qi+ Qi+ Qi =0.
ProoOF. We have
Qi = 4ik0) — 3,607 + (@i — 43,0)5% + (@ign — Gj,i)y"

from which the result is almost self-evident. O

Lemma 2. With @ as above,

1
qi = m((n -1)Q; + (Qkyk)l)a

where @Q; = Qz j Is the trace of Q. In particular, if Q Is trace-free, then q = 0,
that is, a type (1,2) tensor of isotropic type whose trace vanishes itself vanishes.

Proor. We have
Qi =ngi— ¢+ (¢i; — )y’ =ngi — (¢59").i — @) = (n+ D — (¢4 -
Now qjyj is positively-homogeneous of degree 2, so
(n=1D(g;y’) = Qiy’,
from which the formula follows. Clearly, if @; =0, then ¢; =0, and so Qf‘j =0. O

In the case of an isotropic spray, or indeed for the type (1,2) Riemann curva-
ture in all generality, the formula derived in the previous lemma may be expressed
in terms of the Ricci tensor.

Lemma 3. If R?j are the components of the Riemann curvature of a spray,
then with R; = jo,

(n—1)R;i + (Rey®)i = (n — )R + Ry ; = —(nRu; + Rir)y",
where R;; are the components of the Ricci tensor. Furthermore,

((n=DRi + R};;) . = ((n = DR; + Ry ;) , = (n = 1)(Ryj — Ry).

)
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PROOF. Firstly, Rzlyk = leﬁ so Rpy* = R’,j. Furthermore,
(n = 1R; + (Rxy*) i = nRi + Ry.ay".

The Ricci tensor is given by Ry; = Ry ;. Now Rly = y* R}, thus R, = y* R}, =

—y*Ry;. Moreover, R;Lk’i = R?jk, and therefore Ry ; = Rij,i = ngj = —Rik.
Thus

nR; + Ryy* = —(nRy; + Rir)y".
Finally,
(n=1)Ri+Rg;) .~ ((n=1)R;+R} ;) , = (n—1)(Rij—R;3) = (n—1)(Rij — Rji)
as claimed. 0O

I can now deal more fully with the case dim M = 2.
Proposition 2. Any spray over a 2-dimensional base is isotropic.
PROOF. Set
&= 2(Ri+ (Riy®).i) = =3 (2Rui + Ri)y*
with R; = R, the values predicted by Lemmas 2 and 3 with n = 2 if the type

177
(1,2) Riemann tensor is to be given by

Rl = &00 — &0 + (& — &Y™

Since the type (1,2) Riemann tensor is skew, when dim M = 2, it has just two
components which could be nonzero, namely Ri, and R%,. Now

Riy = y'Ripp + y* Ry, Ry =y 'Rl + 42 R3ys.
On the other hand,
Ry = Ryy, + Ry = —R3,,, Riz = Riyy + Riy = Ry,
Ro1 = Ryi1 + R3y = —R3s, Ro2 = Ry1a + R3y = Ry
Note that
y'Ri2 + y°Roo = Ri,, y'Ri1 + y*Ra1 = —R3,.
So
Riy — €105 + &07 — (1,2 — &21)y"
=Ry, — (2R + Rop)y* — $(Ri2 — Roy)y’
=R}y — 2(2Ri2 + Ro1 + Ri2 — Ro1)y' — 2(2Ra2 + Ro2)y?
= Riy — (Riay" + Raay®) = 0;

and similarly, for R%,. O
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4. Aside: vector-valued forms

There is a nice way of viewing several of the results in the previous sections
which seems worth discussing, though it is really a side issue. It involves the notion
of a vector-valued form. Here it will be advantageous to use V(T°M) rather than
T(TM).

Observe first of all that the base manifold plays no essential role in many of
our results: we could regard the coordinates z° as mere parameters. So let us fix
a point z € M, and confine our attention to ToM. Now the curvatures may be
considered to be V(T°M) tensors, which means that they can be considered as
defining at any x € M tensor fields on the manifold TpyM. In particular, tensors of
type (1,r) take their values in T, M, and these values may therefore be expressed
in the form

noo 0
119220 8yh )

where the 3/0y", or indeed any vertical lifts, may be regarded as constant vector
fields.

A tensor of type (1, r) which is skew-symmetric in its covariant indices defines
a vector-valued r-form

Th

1102...

, . , P
Cdy"t Ay A Ady't @ —.
i dy Y YT g

Any vector-valued r-form © may be expressed as

where each " is an ordinary r-form. Any (vertical) vector field on T°M is a vector-
valued 0O-form; any type (1,1) tensor field is a vector-valued 1-form; in particular,

0
d h ®
is the identity tensor I, whose components are §.
One may extend the wedge product to a product of p-forms and vector-valued
g-forms on T7M in an obvious way:

0 0
“(ﬁh@ayh) =anfhes
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the result being a vector-valued (p + ¢)-form. Likewise, the interior product ex-
tends to vector-valued forms:

0 0
. h .
iU (9 ® 3yh) = (iyby) ® Ty,ﬂ

where U is a vector field on ToM (or a vertical vector field on T°M ); when applied
to a vector-valued r-form, r > 1, this yields a vector-valued (r — 1)-form.
Again, one may make the exterior derivative act on vector-valued forms by

9 )
h h
d(9 ® ayh> = (d0") & 55

It is crucial here to note that differentiation is with respect to the variables °

only, and that the 0/0y" are to be treated as constants. The upper indices
such as h on A" are tensorial, but transform with the Jacobian of a coordinate
transformation on the base, that is, effectively with a constant matrix, and it is
this which makes this manoeuvre valid — indeed, all the extensions of exterior
algebra and calculus considered so far.

A vector-valued form © such that dO© = 0 is of course said to be closed.

The type (1, 2) Riemann curvature tensor, whose components are R?k, defines
a vector-valued 2-form

ho g k
Rjpdy’ A dy” @ oy
The type (1, 3) Riemann curvature tensor, with components R?j %> does not define
a vector-valued form. Consider, however,

. 0 . , 0
h k _ ph g k .
d <Rjkdyj Ady” ® ayh) = Ridy* Ndy’ Ndy® @ 3y

h

this vanishes, when dim M > 2, precisely because R}, satisfies the cyclic identity

J
h h h
R, + Rjy + Ry = 0.

That is, the cyclic identity is equivalent to the property of the vector-valued
2-form defined by R;-Lk that it is closed. (When dim M = 2, the vector-valued
2-form defined by R?j is closed simply for dimensional reasons.)
A vector-valued r-form O is positively homogeneous if there is some integer N
such that
0 0 0

LAO=NO=LA[0"® — )= (LA0") ® — — 0" —:
s A( ®3yh) (£a )®3yh © oy
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that is, if each r-form 6" satisfies
LAO" = (N +1)6";

and therefore if each of its coeflicients Hihl in..i, 18 positively-homogeneous of degree

N + 1 —r. If in addition to being homogeneous O is closed, we have

0
— Al ~ P — (s
(N +1)0 =d(iab") @ o d(in®).

Now the vector-valued 2-form defined by the type (1,2) Riemann curvature is
positively-homogeneous with N = 2 (the coefficients R;?k are of degree 1) and
closed; in this case, the formula above gives back the previously established rela-
tionship

3R} = R} ; — R

In particular, the curvature vector-valued 2-form is exact.
Isotropic type (1,2) tensors have a special structure; in the first place,
as vector-valued forms they may be written as

ENT+n®A,

where £ is a 1-form and 7 a 2-form.

I shall show that for n > 2, f tA I +0® A = 0, then 7 = 0, 0 = 0.
Aty € TyM we may choose vectors vi,ve € T, ToM which are linearly independent
of A, and of each other. Evaluate the vector-valued 2-form on vy, va:

Ty (V1)v2 — Ty (V2)v1 + oy (v1,v2) A, = 0.

Linear independence then implies that 7, vanishes on any vector linearly inde-
pendent of Ay, and o, vanishes on any pair of such vectors. Now evaluate the
vector-valued 2-form on A, v with v linearly independent of A,:

Ty (Ay)v + oy (Ay,v)A, =0,

which completes the argument. (For any 2-form o, we get —ianc AT+0 Q@A =0
if n=2.)

More generally, we may consider vector-valued forms é AT +n® A, where £
is an (r — 1)-form, r > 1, n an r-form, and the whole is a vector-valued r-form.
It may be shown, by an extension of the argument used above, that provided that
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r<n, ifrANIT+0c®A =0, then 7 =0, 0 = 0. But if » = n, then for any
n-form o, (=1)"* Vipc AT+ 0@ A =0.
I now consider the exterior derivative of such a vector-valued r-form, say

dE NT+n @A) =(dg+ (1)) AT +dn @ A.
That is, the exterior derivative has the same structure:
dENT+7 @A) =ENT+1 @A,

with
E=d&' + (=)',  n=dy =(-1)"d¢.

This explains the final result of Proposition 1. We have already established that
the curvature vector-valued 2-form is the exterior derivative of a vector-valued
1-form. So if it can be expressed as

. o .
(&0 — &0 + miny™)dy! A dy* ® o= (2&edy™) AT+ (iedy’ A dy*) @ A,

then we must have (with r =1, n > 2)

niedy’ A dy* = —d(2&edy”) = (&5 — &kj)dy’ A dyF.

5. The projective geometry of sprays

The considerations which lead to the study of projective transformations of
sprays may be outlined as follows.

Let 0 : S(TM) — M be the sphere bundle of M, that is, the quotient of
T°M by the action induced by A, so that a point s of S(T'M) is an equivalence
class [y] of nonzero vectors y in T, M, x = o(s), where the equivalence relation is
multiplication by a positive scalar; in other words, s = [y] is the ray through y.
Suppose given a spray I'. The fact that it is positively homogeneous means that
the 2-dimensional distribution D on T°M spanned by it and A is involutive; the
leaves of D project down to S(T'M) to define on it a smooth foliation by oriented
1-dimensional submanifolds & which satisfy the so-called second-order property,
namely that if &, is the submanifold through s, the (oriented) tangent space
to 0(6s) at x coincides with the ray s. Such a structure is called a path ge-
ometry on M, and captures the idea of a collection of paths — unparametrised
but oriented 1-dimensional submanifolds — with one path through each point
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of M in each direction. It may be shown that every path geometry on M
may be constructed from a spray on T°M in this way. In fact, starting from &,
we may define a distribution D on T°M by stipulating that v € T\, ,yT°M belongs
to D(y,y) if the projection of v to S(T'M) is tangent to &, s = [y]. Then D is
a two-dimensional distribution on T°M containing A. It may be shown that D
contains a spray (see [10]): indeed, it contains many, any two of which must differ
by a suitable multiple of A, say

[ =T —2PA,

where T’ and T are sprays in D, P is a function on T°M, which must be positively-
homogeneous of degree 1, and the numerical coefficient is chosen so that I =
I + Py’

Here is a reminder of the standard terminology. Two sprays related in this
way are projectively equivalent; one is obtained from the other by a projective
transformation; and a set of sprays so related is a projective (equivalence) class.
Geometric objects defined from a spray which do not change under a projective
transformation are projectively invariant.

5.1. The Douglas tensor. With
where P is positively-homogeneous of degree 1, we have

Bjyy = By + Pudi + Pudj, + P b} + Pjny’.

With By = Bfkl, the mean Berwald curvature, we have
By = By + (n+ 1) P,

since Py, is positively-homogeneous of degree —1. It follows that if we set

D3y = By — [CE) (Bridj + By, + Bjrd) + Bjkay') »

then ﬁ;kl = D;kl.

Proposition 3. The tensor whose components are the Dékl is projectively
invariant.
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It is the Douglas tensor of the projective class of sprays.

Now By = F;) &1+ SO given any spray, there is locally — that is to say, over any
coordinate neighbourhood in M — a projectively equivalent one for which By, = 0,
namely the one with

1

_ J
T (n+1) L5
For this spray, B;M = Dl
If we suppose that M is connected and admits a global nowhere-vanishing
n-form, then we can find for any spray a projectively-equivalent globally-defined
spray whose Berwald curvature coincides with its Douglas tensor.
For convenience, I suppose that the n-form is given in (positively oriented)

V(x)(de)™ = /v(x)dzt A--- A da™.

It determines a global 2n-form Q on T'M, whose expression in coordinates is

coordinates by

Uz, y) = v(z)(dz)" A (dy)".

Proposition 4. Given such a 2n-form ) and any spray I, there is a projec-
tively equivalent spray I' such that divol' = 0; and the Berwald curvature of T’
coincides with the Douglas tensor of the projective class.

PROOF. Recall that L) = divgll = d(ipQ). Take =r- 2PA, where P
is positively-homogeneous of degree 1. I first compute d(ipa€2):

d(ipaQ) = d(PianQ) = dP A (iaQ) + Pd(iaQ)
= —ian(dPAQ)+ A(P)Q+nPQ = (n+1)PQ.
So if we take )
P=———divql
30n+ 1)dva ,
then divol = 0. But

d(izQ) =d (VZ ((—1)k+1ykd;v1 coodah o A da™ A (dy)™
k=1

_ 2(_1)n+k+1fwk(dx)n A dyl . d/y\k A dyn>>

— (255 ot 0,

oxk
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Thus, when divel’ = 0,
PE_ 1 i O0logv

k— 2 ok

and therefore,

iy
Y iy

Evidently, if a projective class of sprays contains one whose Berwald con-
nection is linear, then the Douglas tensor of the class vanishes. The converse is
also clear: if the Douglas tensor vanishes, any spray whose Berwald curvature
coincides with the Douglas tensor has linear Berwald connection.

Theorem 1. If the Douglas tensor of a projective class of sprays vanishes,
then the class contains local sprays whose Berwald connections are linear, and if
further the base manifold is connected and admits a global volume form, global
ones.

There is an improved version of the global aspect of this result in [16], in which
the 2n-form €2 on T'M is replaced by what is called there a vertically-invariant
volume form, and it is shown that the tangent manifold of any manifold admits a
vertically-invariant volume form: so, in fact, the vanishing of the Douglas tensor
is the necessary and sufficient condition for the existence of a global spray in the
projective class whose Berwald connection is linear.

5.2. The Weyl tensor. For the horizontal lifts of basic coordinate vector fields
defined by projectively related sprays, we have

~ 0

H; r1 0

Cor oy

=H; — PV, —V,(P)A,
so that

[H;, Hj] = [H; — PV; — Vi(P)A, H; — PV; — V;(P)A]
= [H;, Hj] — (Hi(P) — PVi(P))V; + (H;(P) — PV;(P))V;
— (Hi(V;(P)) — H;(Vi(P)) A,

since [H;,V;] = T} Vi, = [H;, Vi]. Notice that

H;(V;(P)) — H;(Vi(P)) = V;(Hi(P)) — Vi(H;(P))
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So with
p; = H;(P) — PVy(P) = P; — PP;,
we have
thj = R} + pi6) — p;6) + (pij — pi)y";
note that p; is positively-homogeneous of degree 1. That is to say, the difference
of the type (1,2) Riemann curvatures is the type (1,2) isotropic tensor formed
from p.

Denote by r the covector whose components, constructed (apart from nu-
merical factors) from R?j in the manner of Lemma 3, are given by

1

ro= =gy (= DR+ RL) = (nRei + Rir)y"-

_ 1
(1)

Proposition 5. The tensor
h h h h h
Wi = R +rid) — ;6 + (rij — 754y
is projectively invariant.

PROOF. Denote by 7; the similar covector constructed from thj When thj
and RZ are projectively related,

R}y — Ry = pidl} —p;of + (pij — pj.)y"
So p; =r; — 7, by Lemma 2 with QZ = RZ — R?j and Lemma 3, and therefore
Rl + 7300 — 500 + (a5 — F3.0)y" = Ry + 0l — r00 + (rij — rj.0)y",
as claimed. (]

The tensor W with components WZ’JL is the Weyl projective curvature tensor
of the projective class of sprays. The expression for the covector field r in terms
of the Ricci tensor shows that it corresponds to the Schouten tensor of the linear
theory: indeed, if the connection is linear, r; = s y".

We shall rarely have to use an explicit expression for r;: in fact, it is the
structure of the additional terms that is important, as the following proposition

reveals.
Proposition 6. The trace WZ]] of W vanishes. Moreover, W is uniquely
determined by the facts that
(1) the tensor WZ}; — R?j is of isotropic type;
(2) the trace of W vanishes.
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PROOF. It is almost evident from the definitions that the trace of W vanishes,
but in detail we have

ng = RZ + (Tl + 1)""1‘ — (’/‘jyj)ﬂ‘
1 1
(n _ 1) ((TL ) + k,z) + (ng . 1)
If r and T are both covector fields, positively-homogeneous of degree 1, such that
Wi, = WZJJ = 0, where

((n—1)Rg;+2R};) =0.

W/ =R\ + 18! — ol + (rij —rja)y"
Wi = Rl + #3060 — 507 + (Fig — 75.)9",
then the trace of

Wi]} - Wz}]l = (ri — fi)5§l — (rj = 7)80 + ((ri = 7i) 5 — (rj = fj),i)yh

vanishes, and so # = r by Lemma 2. |
Just as is the case for the Riemann curvature, the Weyl projective curvature
exists in several equivalent forms. Set

h _ . gurh h _ 117k
Wy =y ij Wijk = ij,i'

Proposition 7. For the Weyl projective curvature of any spray,
h h h i1k
Wi = %(Wk] - Wj,k) = yzWijk'

ProOOF. We know that such relationships hold for RZ The key point is that
h

ijk
plays an important role in the corresponding results for the Riemann curvature:
that it holds for the additional terms is established in Lemma 1. (]

they also hold for the additional terms collectively. The cyclic identity for R

Proposition 8. The type (1,3) Weyl projective curvature tensor satisfies
the cyclic identity
h h h
Wik + Wik + Wi =0

J

and is completely trace-free.

ProOOF. The cyclic identity follows immediately from Lemma 1. We have
Wilz‘k = (Wfk),i = 0 by Proposition 6, and of course, Wﬁcj = 0 also. The vanishing

of W,f? ; then follows from the cyclic identity. (]
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5.3. The Cotton tensor. With r the covector field defined in terms of R as
before, I set

Tig = Tjsi = Tisgs

and call it, by analogy with the corresponding object in the projective theory
of linear connections, the projective Cotton tensor. It is evidently skew, and

positively-homogeneous of degree 1. Notice that by the symmetry of Fi’}, we can
also express 7;; as
rij = Hi(ry) — H;(ri).

Recall that the type (1,2) Riemann curvature satisfies a Bianchi identity
involving its horizontal covariant derivative:

h h h
Rij;k + Rjk;i + Rki;j = 0

I next examine the consequences of this for the Weyl and Cotton tensors.

Proposition 9. We have
Wi+ Wi + Wiy = 1ij0% + 15007 + 10387 + (Fij + T + i )y
ProOF. Using the Bianchi identity quoted above, one finds that

h h h
Wi + Wik + Wi

= rij(SZ + rjk@h + ’l”]ﬂ'(;;-l + (ri,j;k = Tjak t 5 ki — Ty T Thyiyg — T’i’k;j)yh.
Now 7 ki — Tk = th;?ik, so that (for example)
Tikyi = Tikss = Tjyisk — Tisgk = Tigks
by the symmetry of BZ’.’]. i in its lower indices. O
This relation can be solved for r;; rather in the manner of Lemma 2.

Proposition 10. Provided n > 2,

1
i = Wk,
Tij (n _ 2) 153k +

- (BaWF_B.WF
(n72)(n+1)( wWy = B W),

where B;; = B’gi ; 1s the mean Berwald curvature. In particular, for n > 2, if the
Weyl projective curvature vanishes, then so does the projective Cotton tensor.
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PROOF. Let me temporarily write W;; for wk

47+ Summing the expressions

in Proposition 9 over h and k gives
Wij = (n—1)ri; + (rjr,; — rik,j)yk.
Contract with 7, and use the skew symmetry of i, and homogeneity:
Wijy’ = (n— 2)rijy’.
It follows that

(n—2)(Tjk,i — Tik,j)Y (n—2) ( Tjky i+ i — (Tikyk) P+ rij)
= ((ngyk) (Wzky )4) +2(n—2)ri;.

Now,
Wiry® = Wiy = Wiy*)a = Wi,
S0
(n=2)(n+1)ri; = (n— )Wg &k T Wkk i Wi’?k,;
But
Wiy =W + BigWi — Big Wi,

and therefore,

Whei = Whe, =Wk —WFE. + BaW} — BjWF

= 3W] -k +B,kW — ]kW
It follows that
(n—2)(n+ )rij = (n+ )W, + BuW} — BuWF,

which gives the stated formula when n > 2. O

When the Berwald connection is linear (or more generally, when the mean

Berwald curvature vanishes) this reduces to (n—2)r;; = Wk, which is equivalent

Y
to the key property of the Cotton tensor in the prOJeCtIJVQ geometry of linear
connections.

The Cotton tensor is not projectively invariant. I now derive, for later use,
its transformation law under a projective transformation: that is, I find the rela-
tionship between 7;; and 7;; where Rh Rh +pl<5h — pjot + (pij — pji)y" with
pi = Hy(P) — PVi(P) and H; = H; — PV, - u( )A.
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Proposition 11.
Fij = 1ij + WiiPh.

PrOOF. It was shown in the proof of Proposition 5 that

Ty =T — Pi-

In order to obtain 7;; = H,(7;) — H;(7;), we shall need H;(p;) — H;(p;). I shall
first compute H;(p;) — H;(p;):

H;(pj) — Hj(pi) = [H;, H;|(P) — Hi(PV;(P)) + H;(PVi(P)).
Now,

H;(PV;(P)) = Hi(P)V;(P) + P([H, V;](P) + V;(Hi(P)))
= piVj(P) + PVj(pi) + 2PV;(P)V;(P) + PV;(Vi(P)) + P[H;, V;](P)

(substituting PV;(P) + p; for H;(P)). Recall that [H;,V;] = I‘ijk = [H;,Vi].
Then

Hi(p;) — H;(pi)
= —RLVi(P) — piVj(P) + p;Vi(P) — (pij — pji) P = —R?th(P)~

Since reversing the projective transformation requires one simply to change the
sign of P, it follows directly that

Hi(p;) — H;(pi) = RYVa(P).

= H;(rj) — Hj(r;) — PVi(r;j) + PV;(r;)

— Vi(P)rj + Vi(P)r; + R} Vi (P)
= Hy(ry) — Hj(r:) + (B + 1387 — 1567 + (rij —15.0)y") P
= Hi(rj) — Hj(ri) + WP,

as claimed. O
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6. The main theorems

There are some preliminary observations to be made before we come to the
proofs of the main theorems.

It was noted in Subsection 5.1 that given any spray there is a projectively
equivalent one for which the mean Berwald curvature vanishes. The key feature
of the Berwald connection of such a spray, established in Proposition 4, is that
"¢ takes the form

Ifzwéﬂ
Oxk

for some function ¢ independent of y, or, in other words, that

. 64)0
ri = 2%
T gk

A spray for which this holds has another important property: its Ricci tensor is
symmetric. In fact,

Rij = Rji; = Hi(Lj,) — H; (L) + ThD, — TG

whence

i i 0 Op 0 Op
Rijk — Rij = Hi(L};) — H;(T3},) = 9ok (aﬂ) ~ 37 (83:’“) =0.

Proposition 12. Given any spray, there is a projectively equivalent one
whose Ricci tensor is symmetric. For such a spray,
« (n—1ri = Rijy’;
® T =Tj4;5
. WZI; = R?j + ri5§1 —r;00;
o (n—2)ry; = ij;k,

,

Recall that a spray has isotropic Riemann curvature if and only if there is
a covector field &, positively-homogeneous of degree 1, such that

R}y = &6) — §07 + (&5 — &5.0)y"

With Lemma 2 to hand, it is easy to see that this is equivalent to the vanishing
of the Weyl tensor: as before, it is simply a matter of the form of the expression.

Proposition 13. A spray has vanishing Weyl projective curvature tensor if
and only if it has isotropic Riemann curvature.
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Proor. If R?j = fi(;? — &0 + (&, — &5,0)y", then the Weyl tensor also has
isotropic form:

Wi = (& +10)0) — (& +15)00 + (& +71i)5 — (& +75).0)y"
but W is trace-free, so by Lemma 2 it vanishes. Conversely, if W[]‘ =0, then Rfj
has the stated form with & = —r;. O

Corollary 1. For two projectively equivalent sprays, if one is isotropic, so
is the other.

Theorem 2. For dim M > 2, the following properties of a spray are equiv-
alent:

(1) it is isotropic;
(2) its Weyl projective curvature vanishes;

(3) it is locally projectively equivalent to one which is R-flat.

PROOF. The equivalence of the first two statements has already been estab-
lished in Proposition 13.
Under a projective transformation, R}; = Rl + pid! — p;ol' + (pij — pja)y",

where p; is positively-homogeneous of degree 1. So if there is a projective trans-
h
ij =
For the converse, I assume that the Weyl projective curvature vanishes,

formation making R 0, Rfj is isotropic.
so that R\ = —ri6! +1;6! — (r; ; —7;:)y". T have to show that there is a locally-
defined function P, positively-homogeneous of degree 1, such that p; = H;(P) —
PV;(P) = r;, for then the projective transformation with such P makes RZ =0.
We know from Proposition 10 that the projective Cotton tensor vanishes, since
dim M > 2. Furthermore, by Proposition 12 we can, and shall, assume that the
Ricci tensor is symmetric

Consider the manifold T°M xR, with coordinate z on the final factor. On this
manifold I define a modified horizontal distribution, spanned by the vector fields

H; :Hl-—sz-—i—ri27 1=1,2,...,n.
0z
I compute the bracket of two such vector fields:
H; — 2V + ri%,Hj — 2V + rjai]

0
9z

_R?jvh - TiVj + TjVi + (Z(?"i_’j - Tj,i) + HZ'(T'j) - Hj(n-))

0 0
_ h _
= _With + rij% + (Ti,j — Tj,i) (A + Zaz) =0,
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since, by assumption, W/

ij = 0, Tij = 0, and Tig —Tji= 0. FU.I‘theI‘IIlOI‘e7

A—l—z%,Hi—zVi—i—m% :zVi—zVi—I—ri% —ri% =0.
Now A = A 4 28/9z is the generator of dilations in the fibres of T°M x R — M,
so the vector fields H'Z are dilation invariant.

The distribution D on T°M x R spanned by the H; is evidently regular
and n-dimensional. I have just shown that it is involutive, and invariant by A.
So D is integrable. Its integral submanifolds are n-dimensional, and mapped
one to another by dilations of the fibres of T°M x R — M. They are moreover
everywhere transverse to the fibration 7°M x R — T°M. A section of this latter
fibration will be given by z = P, where P is a function on T°M; and D will be
tangent to the image of the section if and only if

. 0
H(z— P)=Hi(z—P)—2Vi(z — P) + TZ&(Z — P)=—H;(P) + 2V;(P) 4+ r;=0,
where z = P, that is, if and only if

Moreover,

A(z— P)+ Z%(Z — P)=z—-A(P),

and so P will be positively-homogeneous of degree 1 if and only if Ais also tangent
to the image of the section z = P.

So a local section of T°M x R — T°M with the property that both D and A
are tangent to its image will provide a function P with the required properties.
It remains to show how to construct such a local section. Take any point zg € M.
Let Py be any function on T,y M x R which is positively-homogeneous of degree 1,
and let oo C T; M be the graph of Py, that is, the section 2 = Fy of the fibration
Ty M xR —Tp M. Then og is a codimension-1 submanifold of T; M x R, and
the restriction of A to Tp M x R is tangent to oo. I denote by L(x,y, z) the leaf
of the integrable distribution D through (z,y, z) € T°M x R. Set

o= U L(xo,y,2) = U L(z0,y, Po(y))-

(y,2)€00 yeTg M

Then o is a codimension-1 submanifold of T°M x R, defined in a neighbourhood
of Ty M xR, transverse to the fibration T°M xR — T°M, to which both D and A
are tangent. It is the image of the required section. O
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Corollary 2. If M, with dim M > 2, is connected and simply connected,
then for any isotropic spray I' on T°M , there is a unique globally-defined function
on T°M, positively-homogeneous of degree 1, with specified values on T; M for
any xog € M, such that I' — 2PA is R-flat.

PROOF. Since D is horizontal with respect to the projection T°M x R — M,
which is to say that for each (z,y,2) € T°M x R, D, ,, . is isomorphic to T, M,
every leaf L(z,y, z) of the integrable distribution D is a covering manifold of M.
But by assumption, M is simply connected, so L(z,y, z) is actually diffeomorphic
to M. This means that o = UyeTEOME(xO,y,PO(y)) defines a global section of
T°M x R — T°M. O

What about the case dim M = 27 In the first place, from Proposition 2,
we know that every spray is isotropic, and therefore WZ} = 0 automatically. But
of course it does not follow automatically that every spray is locally projectively
R-flat. The proof of Theorem 2 made use of the fact that when dim M > 2, the
projective Cotton tensor of an isotropic spray vanishes. When dim M = 2, this
condition has to be imposed.

It follows from Proposition 11 that if WZ}]‘ = 0, then r;; is projectively invari-
ant; and since no restriction was made on dimension, this holds in particular if
dim M = 2. So the vanishing of the Cotton tensor is then a projectively invariant
condition. Moreover, if we assume that the Cotton tensor vanishes, the proof of
Theorem 2 proceeds as before. We can conclude that the projective Cotton tensor
plays the role of the Weyl projective curvature when dim M = 2.

Theorem 3. When dim M = 2, a spray is projectively R-flat if and only if
its projective Cotton tensor vanishes.

7. Finsler spaces

The following property of the type (1,1) Riemann curvature of the Berwald
connection of the geodesic spray of a Finsler space is well-known: it is self-adjoint
with respect to the fundamental tensor, which is to say that if R;; = gikR;‘?, then
R;; = Rj;. (This is to be distinguished from the Ricci tensor.)

Proposition 14. The Riemann curvature of a Finsler space is isotropic if
and only if there is a function x on T°M, positively-homogeneous of degree 0,
such that
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R;; = K((gklykyl)gij - yi?Jj)v
where y; = giry".

PRrROOF. Recall from Proposition 1 that one version of the condition for
the Riemann curvature to be isotropic is that there is a function p, positively-
homogeneous of degree 2, and a covector 7, positively-homogeneous of degree 1,
such that R} = péj» + 7;4"; or equivalently, in the Finsler case,

Rij = pgij + 7jYi-

So evidently, if R;; takes the given form, then the Riemann curvature is isotropic.
For the converse, suppose that R;; = pg;; + 7;¥;. Recall from Proposition 1
that 7;4° = —p. On the other hand, since R;; = R;; we have 7;y; = 7;y;, whence

Tjgklykyl = —PY;-
So R;; takes the given form, with x = p/(gry*y"). O
Forx € M, y,v € T, M, y,v # 0, the flag curvature K, ,)(v) is defined as

Rijvlvj

(gr1y™y") (gpgvPve) — (grsyTv®)?

K(z,y) (’U) =

A Finsler space for which the flag curvature is independent of the flag, in other
words for which K, ,)(v) = k(x,y) for some function x on T°M (which must
be positively-homogeneous of degree 0), is said to have scalar flag curvature.
It should come as no surprise in view of the previous proposition that for a space
to have scalar flag curvature its Riemann curvature must be isotropic. (The flag
curvature is scalar if it is the same in all directions of the flag, which perhaps
finally explains the use of the term ‘isotropic’ in the expression ‘isotropic Riemann
curvature’.)

Theorem 4. Assume that dim M > 2. A Finsler space has scalar flag cur-
vature if and only if its Riemann curvature is isotropic, that is, if and only if
its Weyl tensor vanishes. A Finsler space of scalar flag curvature is projectively
R-flat. If two Finsler spaces over the same base manifold have projectively equiv-
alent geodesic sprays and one is of scalar flag curvature, so is the other.

The last assertion is the analogue in Finsler geometry of Beltrami’s Theorem
in Riemannian geometry: a metric projectively equivalent to a metric of constant
curvature is itself a metric of constant curvature. (An R-flat Finsler space is of
course of zero scalar flag curvature.)



258 Mike Crampin

ProOOF. If the Riemann curvature is isotropic, and takes the form given in
the proposition above, then the flag curvature is k. If, on the other hand, the
space is of scalar flag curvature x, then

Rijvivj = “((gpqypyq)(grsv’”vs) — (gpqypvq)2) = ﬁ((gpqypyq)gij — yiyj)yivj,
for every v?; so since R;; is symmetric,
Rij = k((9pq¥"y") 915 — Yiy;)

and the Riemann curvature is isotropic. The remaining results follow from known
properties of sprays with isotropic Riemann curvature. O

In this context, I should mention the following local results (see [4], [8]):
for dim M > 2, every R-flat spray is Finsler metrizable (that is to say, there is
a Finsler function of which it is the canonical geodesic spray), and therefore every
isotropic spray is projectively metrizable (that is to say, is projectively equivalent
to the canonical geodesic spray of some Finsler function); and every spray over
a 2-dimensional base is projectively metrizable.

Finally, I must acknowledge that BERWALD analysed fully the case of
a 2-dimensional Finsler space in his paper [3] of 1941. I shall explain below how
his results are related to mine.

In a 2-dimensional Finsler space,

1

Rij = k((9pqy"y")gi5 — yiv;) = £F>(gi5 — Lily), l; = FYi-

It is conventional to work in terms of an orthonormal basis of vector fields {I,m},
with [* = y*/F, and the corresponding covector fields whose components are
li = gi;l! = F; = y;/F as above, m; = g;;m’. This approach dates back at
least to Berwald’s paper [3], though the notation used here is closer to that of
MATsSuMOTO [13]. We have g;; = [;; + m;m;, and so

2
R;j = s F"mymy;.

One useful technique is to express tensors as linear combinations of tensor prod-
ucts of the basis vectors and covectors. Consider, for example, RZ It is skew
in ¢ and j, and satisfies lhR?j = 0 (since H;(F) = H;(F) = 0, and therefore
[H;, Hj](F) = R};F), = 0): it must therefore take the form

RZ = kmh(limj — ljmi)
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for some scalar k. But R;L = yZRZ = Flithj7 whence

— _ 2
Rij = kaimj =kF m;m;,

and therefore
thj = /sth(limj — l]ml)

This identifies x with the curvature of the 2-dimensional Finsler space as defined
in [3], [13] — which is hardly surprising, but one has to be a bit careful about
factors F, etc.

To compute the Cotton tensor, we first need r;, which is given by

ri = —%(Ri + (Riy®) )

We have
Ri = sz = liFli,

so that
ri = —2(kFl; + (kF?) ;) = —3(3kFl; + K, F?).

The Cotton tensor is r;;; — ;. It has but one component which does not vanish
automatically, which may be taken to be (r;,; — rjﬂ-)limj. One can take advantage
of the fact that I!; = 0 to write the first term as (r;l*),;m’ = —Fm/ H;(k). It so

happens that mfili = 0, as I now show, which allows one to carry out a similar

manoeuvre on the second term.

Lemma 4.
mll' = 0.

71" as a linear combination of IV and m/.

But since m;I*l; = (m’l;).;l* = 0, there is no I/ component: m]

PRrROOF. We can express the vector m

. .
;1 = pm? for some

scalar . Now
ii 7k oy — i 7k, i gk _ i, 0j
g7k l" =0 =mgl"m? +m'm; 1" =2pm'm’,
so pu = 0. ([l
It follows that

rial'm? = (rym?)l' = —LFUH(Fm/k j) = =S FI'H;(Fm/ V;(k)).

We have the following expression for the Cotton tensor of a 2-dimensional
Finsler space.
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Proposition 15.
(risj — r)l'm? = gF('Hy(Fm? Vi (k) — 3m? H;(x)).

The expression I'H;(Fm’V;(x)) — 3m/ H;(k) agrees with one for a quan-
tity playing a similar role which occurs in Berwald’s paper [3]. Berwald marks
the effects of the various operators appearing in the formula above by attaching
certain subscripts to their arguments, as follows. For any function ® which is
positively-homogeneous of degree 0,

IHi(®)=®,, m'Hy(®)=,,  Fm'Vy(®) = dy.

In Berwald’s notation, the expression given in the proposition above is (apart
from unimportant factors)

Kys — 3/1(,.

Berwald does indeed show that the vanishing of this quantity is the necessary and
sufficient condition for there to be a projective transformation which makes the
Riemann curvature zero.
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