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The Cotton tensor in the projective geometry of sprays

By MIKE CRAMPIN (Norfolk)

Abstract. I define, by analogy with the projective theory of linear connections,

a Cotton tensor for any spray, and discuss its role in the projective geometry of sprays.

1. Introduction

It may seem that there is little new to be said about the projective geometry

of sprays. After all the subject has a long history, dating back as it does to Dou-

glas and Berwald; has been extensively covered in standard texts by Antonelli

et al. [1] and Shen [15]; and has been brought up to date by J. Szilasi et al. [16],

Z. Szilasi [17], and Youssef et al. [18].

My excuse for writing another paper on the topic is that it seems to me

that there is a curious lacuna in the literature on the projective geometry of

sprays, which I can best explain by comparing it to the special, but longer es-

tablished, case of the projective geometry of symmetric linear connections or

quadratic sprays. In the latter a projectively invariant tensor, the Weyl projec-

tive curvature tensor, is defined, and it is shown that in dimension 3 or more

the vanishing of the Weyl tensor is the necessary and sufficient condition for

the linear connection to be locally projectively flat, that is, locally projectively

equivalent to the flat connection. If one consults the literature on the projective

geometry of general sprays, however, one finds that a great deal of effort has been

put into defining a generalized Weyl projective curvature tensor, but almost none,

so far as I can see, into explaining what it is for, in particular, into deriving the
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consequences of its vanishing. The one exception to these criticisms that I know

of is, I have to confess, a paper of my own [9]: and on reflection, I now think that

it does not really do the matter justice.

Let me explain my title. In the projective theory of symmetric linear con-

nections there is, in addition to the Weyl tensor, a second equally important but

less prominent tensor called the projective Cotton tensor. This comes into its

own in the case of 2-dimensional manifolds with symmetric linear connection.

In 2 dimensions the Weyl tensor vanishes identically, and the necessary and suf-

ficient condition for projective flatness is the vanishing of the Cotton tensor. But

in fact, the Cotton tensor does a lot of the work in the proof of the result that in

dimension 3 or more the vanishing of the Weyl tensor entails projective flatness.

It so happens that the vanishing of the Weyl tensor in such higher dimensions

implies that the Cotton tensor vanishes, and this latter fact is the key to the

proof. Searching for a mention of a generalized Cotton tensor in the projective

theory of sprays should be an indirect way of finding a proof of the missing re-

sults. It produces, for me at least, no hits. (The generalized Cotton tensor to

be introduced below does actually appear in my paper [9] referred to earlier, but

was not named because I did not recognise its significance at the time. A version

also appears in a section of Shen’s book [15] entitled ‘Berwald–Weyl Curvature’;

but Shen, following Berwald [3], really deals only with the 2-dimensional case.

I shall discuss Berwald’s work in my final section.) The aim of this paper is to

rectify the deficiences described above.

In the projective theory of general sprays there is, of course, in addition to

the Weyl and Cotton tensors, a projectively invariant tensor called the Douglas

tensor which has no counterpart in the linear theory, whose vanishing is the

necessary and sufficient condition for the Berwald connection to be projectively

equivalent to a linear connection. And it is well known that in dimension 3 or

more the vanishing of both the Douglas tensor and the Weyl tensor is necessary

and sufficient for the spray to be projectively flat. But the argument for this

assertion first uses the fact that the vanishing of the Douglas tensor ensures that

the Berwald connection is projectively linear; then the Weyl tensor is just that

of any projectively equivalent linear connection, so one can use the result for the

linear case. I want to emphasise that the question of interest in this paper is what

happens when the Weyl tensor is zero but the Douglas tensor is not.

There is another way of looking at this theory, which emphasises the role

of systems of second-order differential equations, such as those which define the

geodesics of a spray, and investigates the invariants of such systems under so-

called point transformations (in which the independent variable is treated on the
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same footing as the dependent ones). Fels [12] solved this problem for a system

of two or more equations (which is locally equivalent to a spray over a base

manifold of at least 3 dimensions), and found invariants which are versions of

the Douglas and Weyl tensors (see [11] for the details). (The case of a single

second-order differential equation – a 2-dimensional spray – had been studied

long before by Cartan [5]: see also [7].) Those who approach the theory from

this starting point ([6], for example) refer to the collection of those systems for

which the equivalent of the Douglas tensor vanishes (but not necessarily the Weyl

tensor) as the projective branch, those for which the equivalent of the Weyl tensor

vanishes (but not necessarily the Douglas tensor) as the conformal branch. The

results to be established in this paper are concerned with the conformal branch,

in this (slightly mysterious) terminology.

It is not very difficult to guess what the results in question might be. As-

sociated with the Berwald connection of any spray, there are two tensors which

are usually described as curvatures: the hv-curvature, which is usually called the

Berwald curvature, and the hh-curvature, which is called the Riemann curvature.

A Berwald connection whose Riemann curvature vanishes, but whose Berwald

curvature is not necessarily zero, is said to be R-flat (the terminology is that

used by Shen in [15]). Then, as I show below, over a manifold of dimension at

least 3, the vanishing of its Weyl projective curvature tensor is the necessary and

sufficient condtion for a spray to be locally projectively equivalent to one which

is R-flat; and over a manifold of dimension 2, the vanishing of its projective

Cotton tensor is the necessary and sufficient condition for a spray to be locally

projectively equivalent to one which is R-flat. In fact, if one were to go through

the basic results of the linear theory subsituting ‘Berwald connection of a spray’

for ‘symmetric linear connection’ and ‘R-flat’ for ‘flat’, one would obtain correct

results for the general theory.

The main aims of this paper are the identification of the Cotton tensor and

the proofs of the sufficiency parts of the theorems just described. The paper also

aims to provide a clear, comprehensive and definitive account of the fundamentals

of the projective geometry of sprays, so that much of what is covered will of

necessity be familiar in one guise or another; but I hope that the methods used

will be of interest.

(The relevant results for linear connections are as follows: see, for example,

[14], or [2] for a modern account which names the Cotton tensor. The Weyl

projective curvature tensor is given by

Wh
kij = Rhkij + skiδ

h
j − skjδhi + (sji − sij)δhk ,
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where

sij =
1

(n2 − 1)
(nRij + Rji)

with Rij = Rhihj , the Ricci tensor: s is often called the Schouten tensor. Notice

that

sij − sji =
1

(n+ 1)
(Rij − Rji).

The Weyl projective curvature tensor is projectively invariant. The projective

Cotton tensor is

ski;j − skj;i = ckij ,

where the semicolon indicates a covariant derivative. The Cotton tensor is not in

general projectively invariant, but satisfies

(n− 2)ckij = −Wh
kij;h.

A linear connection is projectively flat if and only if, in dimension 3 or more the

Weyl tensor vanishes, and in dimension 2 the Cotton tensor vanishes.)

2. Background

I gather together here basic facts and formulae and establish notations.

I denote by τ : T ◦M → M the slit tangent bundle of a manifold M , with

projection the restriction of the usual tangent bundle projection, and with local

coordinates xi, yi where the yi are the canonical fibre coordinates corresponding

to local coordinates xi on M .

In the Introduction, I have been somewhat cavalier with my use of the term

‘tensor’ when referring to geometric objects associated with general sprays. The

usual approach to the geometry of sprays is to work with τ∗(TM) → T ◦M , the

pullback of TM to T ◦M : this is of course a vector bundle over T ◦M whose fibre at

(x, y) ∈ T ◦M is isomorphic to TxM . One may then form tensor products of copies

of τ∗(TM) and its dual, and a tensor field on T ◦M is a section of such a tensor

product bundle over T ◦M . In short, when referring to a tensor, I expected the

reader to supply the phrase ‘along the tangent bundle projection’.

There is however an alternative, which is to replace τ∗(TM) with V (T ◦M),

the subbundle of T (T ◦M) consisting of vertical vectors, the kernel bundle of τ∗ :

T (T ◦M)→ T ◦M . Its fibre at (x, y) ∈ T ◦M is the vertical subspace of T(x,y)T
◦M ;

it too is isomorphic to TxM , and indeed the two bundles τ∗(TM) and V (T ◦M)

are naturally isomorphic. One can equally well take ‘tensor’ to mean a section
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of a tensor bundle formed from V (T ◦M). For most of the paper, it makes little

difference which interpretation is used. However, there is one section, Section 4,

where there is a distinct advantage in using the V (T ◦M) approach.

I denote by ∆ the Liouville vector field on T ◦M ,

∆ = yi
∂

∂yi
;

it generates dilations in the fibres, and is fundamental to the definition of positive

homogeneity. Any spray Γ is of course positively homogeneous:

[∆,Γ] = Γ.

For a spray on T ◦M , conventionally expressed as

Γ = yi
∂

∂xi
− 2Γi

∂

∂yi
,

where the coefficients Γi are positively-homogeneous of degree 2, I denote by Hi

the horizontal lift to T ◦M , with respect to the horizontal distribution it defines,

of the basic coordinate field ∂/∂xi :

Hi =
∂

∂xi
− Γji

∂

∂yj
, Γji =

∂Γj

∂yi
.

It is often convenient to write Vi for the vertical lift of ∂/∂xi, that is,

Vi =
∂

∂yi
.

The connection coefficients of the corresponding Berwald connection are given by

Γhij =
∂Γhi
∂yj

= Γhji; Γji = ykΓjik.

Covariant derivatives with respect to the Berwald connection are expressed as

follows: for a vector field with components U i, the components of its covariant

derivatives with respect to Hj and Vj respectively are

U i;j = Hj(U
i) + Γ i

jkU
k, U i,j = Vj(U

i).

Note that , j simply stands for partial differentiation with respect to yj , and will

be extensively used with this meaning. Since the Γhij are symmetric in their lower

indices,

[Hi, Vj ] = ΓhijVh = [Hj , Vi].
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The Berwald curvature of the connection is defined componentwise as follows:

Bhijk = Vi(Γ
h
jk) =

∂3Γh

∂yi∂yj∂yk
.

The Riemann curvature comes in three versions. It may be defined in terms of

the geodesic deviation equation or Jacobi equation, as a type (1, 1) tensor with

components Rhk , so that the equation for a Jacobi field J is

∇2
ΓJ

h +RhkJ
k = 0.

Secondly, there is the type (1, 2) tensor with components Rhij which measures the

failure of the horizontal distribution to be involutive:

[Hj , Hk] = −RhjkVh, Rhjk = Hj(Γ
h
k)−Hk(Γhj ).

And thirdly, there is the usual definition in terms of the covariant derivative,

here applied to covariant differentiation with respect to the Berwald connection

in horizontal directions, giving a type (1, 3) tensor

Rhijk = Hj(Γ
h
ik)−Hk(Γhij) + ΓhjlΓ

l
ik − ΓhklΓ

l
ij .

These three tensors are to be regarded as different presentations of the same

geometric object. They are related as follows:

Rhk = yjRhjk = yiyjRhijk,

Rhjk = 1
3 (Rhk,j −Rhj,k) = yiRhijk,

Rhijk = Rhjk,i = 1
3 (Rhk,ij −Rhj,ik).

In referring to them, I shall differentiate between them by their types. I shall most

often use the type (1, 2) Riemann curvature. This is because the involutivity of

the horizontal distribution will be of importance. When the Berwald connection

is actually linear, so that Rhijk is independent of y, Rhjk depends linearly on y; and

so in making comparisons with the linear case, one has to mentally differentiate

with respect to yi (say).

These curvatures have the following properties. The coefficient Bhijk of the

Berwald curvature is positively-homogeneous of degree −1; the coefficient Rhjk of

the type (1, 2) Riemann curvature is positively-homogeneous of degree 1. One

of the Ricci identities for repeated covariant differentiation will be needed, here

exemplified in terms of a vector field with components Uh:

Uh;i,j − Uh,j;i = BhijkU
k.
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The type (1, 1) Riemann curvature satisfies Rhky
k = 0. The type (1, 3) Riemann

curvature satisfies the algebraic Bianchi identity or cyclic identity

Rhijk +Rhjki +Rhkij = 0.

The type (1, 2) Riemann curvature satisfies the differential Bianchi identity

Rhij;k +Rhjk;i +Rhki;j = 0.

(There are other Bianchi identities but they will not be needed.)

The Ricci tensor is defined by Rij = Rhihj . It is not in general symmetric:

rather, from the cyclic identity we have

Rij − Rji = Rhhij .

3. Isotropy

Proposition 1. The following conditions on the Riemann curvatures of

a spray are equivalent:

(1) there is a function ρ, positively-homogeneous of degree 2, and covector τ , of

degree 1, such that

Rhk = ρδhk + τky
h;

(2) there is a covector ξ, of degree 1, and skew-symmetric type (0, 2) tensor η,

of degree 0, such that

Rhjk = ξjδ
h
k − ξkδhj + ηjky

h.

Furthermore, when such conditions hold, we must have

ρ+ τky
k = 0,

and for dimM > 2,

ηjk = ξj,k − ξk,j .

Proof. Using the relations between the variants of the Riemann curvature

quoted in the previous section, one finds that with Rhk = ρδhk + τky
h,

Rhjk = 1
3

(
(ρ,j − τj)δhk − (ρ,k − τk)δhj − (τj,k − τk,j)yh

)
;
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while if Rhjk = ξjδ
h
k − ξkδhj + ηjky

h, then

Rhk = (ξjy
j)δhk + (ηjky

j − ξk)yh.

Now Rhky
k = 0, so ρ+ τky

k = 0. If Rhjk = ξjδ
h
k − ξkδhj + ηjky

h, then also

Rhjk = 1
3

(
(ρ,j − τj)δhk − (ρ,k − τk)δhj − (τj,k − τk,j)yh

)
with ρ = ξjy

j and τk = ηjky
j − ξk. It is easy to see (and proved in the next

section) that if πjδ
h
k − πjδhk + σjky

h = 0 for some π and skew-symmetric σ, then

provided dimM > 2, π = 0 and σ = 0. So

ξj = 1
3 (ρ,j − τj) and ηjk = − 1

3 (τj,k − τk,j),

from which evidently ηjk = ξj,k − ξk,j . �

When dimM = 2, however, it is possible to have πjδ
h
k−πjδhk+σjky

h = 0 with

π and σ nonzero, since −y2δh2 −y1δh1 +yh = 0; and so the final argument does not

work. In fact, the formula for Rhjk in terms of ρ and τ becomes, on substitution

for ρ and τ in terms of ξ and η,

Rh12 = ξ1δ
h
2 − ξ2δh1 + η12y

h +
(
η12 − (ξ1,2 − ξ2,1)

)
(−y2δh2 − y1δh1 + yh),

and gives no new information.

A spray is said to be isotropic, or to have isotropic Riemann curvature, if its

curvature satisfies the condition of Proposition 1 in either of its forms, and if in

addition, ηjk = ξj,k − ξk,j when dimM = 2 (the case when this does not occur

automatically). The condition for a spray to be isotropic will most often be taken

in the type (1, 2) form

Rhjk = ξjδ
h
k − ξkδhj + (ξj,k − ξk,j)yh,

where ξ is a covector field which is positively-homogeneous of degree 1. (Other

authors, with Shen [15] as the prime example, tend to use the type (1, 1) version.)

The properties of type (1, 2) tensor fields constructed from covectors in the

above manner will be of major importance later. I pause to establish the proper-

ties that will be needed.

Let qi be the components of a covector, positively-homogeneous of degree 1.

Consider the type (1, 2) tensor Q, skew-symmetric in its lower indices, whose

components are given by

Qhij = qiδ
h
j − qjδhi + (qi,j − qj,i)yh.

I shall call Q the type (1, 2) isotropic tensor constructed from q, and say that

such a tensor is of isotropic type.
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Lemma 1. The tensor Q satisfies the cyclic identity

Qhij,k +Qhjk,i +Qhki,j = 0.

Proof. We have

Qhij,k = qi,kδ
h
j − qj,kδhi + (qi,j − qj,i)δhk + (qi,jk − qj,ik)yh,

from which the result is almost self-evident. �

Lemma 2. With Q as above,

qi =
1

(n2 − 1)

(
(n− 1)Qi + (Qky

k),i
)
,

where Qi = Qjij is the trace of Q. In particular, if Q is trace-free, then q = 0,

that is, a type (1, 2) tensor of isotropic type whose trace vanishes itself vanishes.

Proof. We have

Qi = nqi − qi + (qi,j − qj,i)yj = nqi − ((qjy
j),i − qi) = (n+ 1)qi − (qjy

j),i.

Now qjy
j is positively-homogeneous of degree 2, so

(n− 1)(qjy
j) = Qiy

i,

from which the formula follows. Clearly, if Qi=0, then qi=0, and so Qhij=0. �

In the case of an isotropic spray, or indeed for the type (1, 2) Riemann curva-

ture in all generality, the formula derived in the previous lemma may be expressed

in terms of the Ricci tensor.

Lemma 3. If Rhij are the components of the Riemann curvature of a spray,

then with Ri = Rjij ,

(n− 1)Ri + (Rky
k),i = (n− 1)Ri +Rkk,i = −(nRki + Rik)yk,

where Rij are the components of the Ricci tensor. Furthermore,

(
(n− 1)Ri +Rkk,i

)
,j
−
(
(n− 1)Rj +Rkk,j

)
,i

= (n− 1)(Rij − Rji).
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Proof. Firstly, Rhkly
k = Rhl , so Rky

k = Rkk. Furthermore,

(n− 1)Ri + (Rky
k),i = nRi +Rk,iy

k.

The Ricci tensor is given by Rki = Rjkji. Now Rhij = ykRhkij , thus Rjij = ykRjkij =

−ykRki. Moreover, Rhjk,i = Rhijk, and therefore Rk,i = Rjkj,i = Rjikj = −Rik.

Thus

nRi +Rk,iy
k = −(nRki + Rik)yk.

Finally,(
(n−1)Ri+R

k
k,i

)
,j
−
(
(n−1)Rj+Rkk,j

)
,i

= (n−1)(Ri,j−Rj,i) = (n−1)(Rij−Rji)

as claimed. �

I can now deal more fully with the case dimM = 2.

Proposition 2. Any spray over a 2-dimensional base is isotropic.

Proof. Set

ξi = 1
3 (Ri + (Rky

k),i) = − 1
3 (2Rki + Rik)yk

with Ri = Rjij , the values predicted by Lemmas 2 and 3 with n = 2 if the type

(1, 2) Riemann tensor is to be given by

Rhij = ξiδ
h
j − ξjδhi + (ξi,j − ξj,i)yh.

Since the type (1, 2) Riemann tensor is skew, when dimM = 2, it has just two

components which could be nonzero, namely R1
12 and R2

12. Now

R1
12 = y1R1

112 + y2R1
212, R2

12 = y1R2
112 + y2R2

212.

On the other hand,

R11 = R1
111 +R2

121 = −R2
112, R12 = R1

112 +R2
122 = R1

112,

R21 = R1
211 +R2

221 = −R2
212, R22 = R1

212 +R2
222 = R1

212.

Note that

y1R12 + y2R22 = R1
12, y1R11 + y2R21 = −R2

12.

So

R1
12 − ξ1δ1

2 + ξ2δ
1
1 − (ξ1,2 − ξ2,1)y1

= R1
12 − 1

3 (2Rk2 + R2k)yk − 1
3 (R12 − R21)y1

= R1
12 − 1

3 (2R12 + R21 + R12 − R21)y1 − 1
3 (2R22 + R22)y2

= R1
12 − (R12y

1 + R22y
2) = 0;

and similarly, for R2
12. �
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4. Aside: vector-valued forms

There is a nice way of viewing several of the results in the previous sections

which seems worth discussing, though it is really a side issue. It involves the notion

of a vector-valued form. Here it will be advantageous to use V (T ◦M) rather than

τ∗(TM).

Observe first of all that the base manifold plays no essential role in many of

our results: we could regard the coordinates xi as mere parameters. So let us fix

a point x ∈ M , and confine our attention to T ◦xM . Now the curvatures may be

considered to be V (T ◦M) tensors, which means that they can be considered as

defining at any x ∈M tensor fields on the manifold T ◦xM . In particular, tensors of

type (1, r) take their values in TxM , and these values may therefore be expressed

in the form

Thi1i2...ir
∂

∂yh
,

where the ∂/∂yh, or indeed any vertical lifts, may be regarded as constant vector

fields.

A tensor of type (1, r) which is skew-symmetric in its covariant indices defines

a vector-valued r-form

Thi1i2...irdy
i1 ∧ dyi2 ∧ · · · ∧ dyir ⊗ ∂

∂yh
.

Any vector-valued r-form Θ may be expressed as

Θ = θh ⊗ ∂

∂yh

where each θh is an ordinary r-form. Any (vertical) vector field on T ◦xM is a vector-

valued 0-form; any type (1, 1) tensor field is a vector-valued 1-form; in particular,

dyh ⊗ ∂

∂yh

is the identity tensor I, whose components are δhi .

One may extend the wedge product to a product of p-forms and vector-valued

q-forms on T ◦xM in an obvious way:

α ∧
(
βh ⊗ ∂

∂yh

)
= (α ∧ βh)⊗ ∂

∂yh
,
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the result being a vector-valued (p + q)-form. Likewise, the interior product ex-

tends to vector-valued forms:

iU

(
θh ⊗ ∂

∂yh

)
= (iUθh)⊗ ∂

∂yh
,

where U is a vector field on T ◦xM (or a vertical vector field on T ◦M); when applied

to a vector-valued r-form, r ≥ 1, this yields a vector-valued (r − 1)-form.

Again, one may make the exterior derivative act on vector-valued forms by

d

(
θh ⊗ ∂

∂yh

)
= (dθh)⊗ ∂

∂yh
.

It is crucial here to note that differentiation is with respect to the variables yi

only, and that the ∂/∂yh are to be treated as constants. The upper indices

such as h on θh are tensorial, but transform with the Jacobian of a coordinate

transformation on the base, that is, effectively with a constant matrix, and it is

this which makes this manoeuvre valid – indeed, all the extensions of exterior

algebra and calculus considered so far.

A vector-valued form Θ such that dΘ = 0 is of course said to be closed.

The type (1, 2) Riemann curvature tensor, whose components are Rhjk, defines

a vector-valued 2-form

Rhjkdy
j ∧ dyk ⊗ ∂

∂yh
.

The type (1, 3) Riemann curvature tensor, with components Rhijk, does not define

a vector-valued form. Consider, however,

d

(
Rhjkdy

j ∧ dyk ⊗ ∂

∂yh

)
= Rhijkdy

i ∧ dyj ∧ dyk ⊗ ∂

∂yh
:

this vanishes, when dimM > 2, precisely because Rhijk satisfies the cyclic identity

Rhijk +Rhjki +Rhkij = 0.

That is, the cyclic identity is equivalent to the property of the vector-valued

2-form defined by Rhjk that it is closed. (When dimM = 2, the vector-valued

2-form defined by Rhij is closed simply for dimensional reasons.)

A vector-valued r-form Θ is positively homogeneous if there is some integer N

such that

L∆Θ = NΘ = L∆

(
θh ⊗ ∂

∂yh

)
=
(
L∆θ

h
)
⊗ ∂

∂yh
− θh ⊗ ∂

∂yh
;
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that is, if each r-form θh satisfies

L∆θ
h = (N + 1)θh;

and therefore if each of its coefficients θhi1i2...ir is positively-homogeneous of degree

N + 1− r. If in addition to being homogeneous Θ is closed, we have

(N + 1)Θ = d(i∆θ
h)⊗ ∂

∂yh
= d(i∆Θ).

Now the vector-valued 2-form defined by the type (1, 2) Riemann curvature is

positively-homogeneous with N = 2 (the coefficients Rhjk are of degree 1) and

closed; in this case, the formula above gives back the previously established rela-

tionship

3Rhjk = Rhk,j −Rhj,k.

In particular, the curvature vector-valued 2-form is exact.

Isotropic type (1, 2) tensors have a special structure; in the first place,

as vector-valued forms they may be written as

ξ ∧ I + η ⊗∆,

where ξ is a 1-form and η a 2-form.

I shall show that for n > 2, if π ∧ I + σ ⊗ ∆ = 0, then π = 0, σ = 0.

At y ∈ T ◦xM we may choose vectors v1, v2 ∈ TyT ◦xM which are linearly independent

of ∆y and of each other. Evaluate the vector-valued 2-form on v1, v2:

πy(v1)v2 − πy(v2)v1 + σy(v1, v2)∆y = 0.

Linear independence then implies that πy vanishes on any vector linearly inde-

pendent of ∆y, and σy vanishes on any pair of such vectors. Now evaluate the

vector-valued 2-form on ∆y, v with v linearly independent of ∆y:

πy(∆y)v + σy(∆y, v)∆y = 0,

which completes the argument. (For any 2-form σ, we get −i∆σ ∧ I + σ ⊗∆ = 0

if n = 2.)

More generally, we may consider vector-valued forms ξ ∧ I + η ⊗∆, where ξ

is an (r − 1)-form, r ≥ 1, η an r-form, and the whole is a vector-valued r-form.

It may be shown, by an extension of the argument used above, that provided that
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r < n, if π ∧ I + σ ⊗ ∆ = 0, then π = 0, σ = 0. But if r = n, then for any

n-form σ, (−1)(n−1)i∆σ ∧ I + σ ⊗∆ = 0.

I now consider the exterior derivative of such a vector-valued r-form, say

d(ξ′ ∧ I + η′ ⊗∆) = (dξ′ + (−1)rη′) ∧ I + dη′ ⊗∆.

That is, the exterior derivative has the same structure:

d(ξ′ ∧ I + η′ ⊗∆) = ξ ∧ I + η ⊗∆,

with

ξ = dξ′ + (−1)rη′, η = dη′ = (−1)rdξ.

This explains the final result of Proposition 1. We have already established that

the curvature vector-valued 2-form is the exterior derivative of a vector-valued

1-form. So if it can be expressed as

(ξjδ
h
k − ξkδhj + ηjky

h)dyj ∧ dyk ⊗ ∂

∂yh
= (2ξkdy

k) ∧ I + (ηjkdy
j ∧ dyk)⊗∆,

then we must have (with r = 1, n > 2)

ηjkdy
j ∧ dyk = −d(2ξkdy

k) = (ξj,k − ξk,j)dyj ∧ dyk.

5. The projective geometry of sprays

The considerations which lead to the study of projective transformations of

sprays may be outlined as follows.

Let σ : S(TM) → M be the sphere bundle of M , that is, the quotient of

T ◦M by the action induced by ∆, so that a point s of S(TM) is an equivalence

class [y] of nonzero vectors y in TxM , x = σ(s), where the equivalence relation is

multiplication by a positive scalar; in other words, s = [y] is the ray through y.

Suppose given a spray Γ. The fact that it is positively homogeneous means that

the 2-dimensional distribution D on T ◦M spanned by it and ∆ is involutive; the

leaves of D project down to S(TM) to define on it a smooth foliation by oriented

1-dimensional submanifolds S which satisfy the so-called second-order property,

namely that if Ss is the submanifold through s, the (oriented) tangent space

to σ(Ss) at x coincides with the ray s. Such a structure is called a path ge-

ometry on M , and captures the idea of a collection of paths – unparametrised

but oriented 1-dimensional submanifolds – with one path through each point
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of M in each direction. It may be shown that every path geometry on M

may be constructed from a spray on T ◦M in this way. In fact, starting from S,

we may define a distribution D on T ◦M by stipulating that v ∈ T(x,y)T
◦M belongs

to D(x,y) if the projection of v to S(TM) is tangent to Ss, s = [y]. Then D is

a two-dimensional distribution on T ◦M containing ∆. It may be shown that D
contains a spray (see [10]): indeed, it contains many, any two of which must differ

by a suitable multiple of ∆, say

Γ̃ = Γ− 2P∆,

where Γ and Γ̃ are sprays in D, P is a function on T ◦M , which must be positively-

homogeneous of degree 1, and the numerical coefficient is chosen so that Γ̃i =

Γi + Pyi.

Here is a reminder of the standard terminology. Two sprays related in this

way are projectively equivalent; one is obtained from the other by a projective

transformation; and a set of sprays so related is a projective (equivalence) class.

Geometric objects defined from a spray which do not change under a projective

transformation are projectively invariant.

5.1. The Douglas tensor. With

Γ̃i = Γi + Pyi,

where P is positively-homogeneous of degree 1, we have

B̃ijkl = Bijkl + P,klδ
i
j + P,jlδ

i
k + P,jkδ

i
l + P,jkly

i.

With Bkl = Biikl, the mean Berwald curvature, we have

B̃kl = Bkl + (n+ 1)P,kl,

since P,kl is positively-homogeneous of degree −1. It follows that if we set

Di
jkl = Bijkl −

1

(n+ 1)

(
Bklδ

i
j +Bjlδ

i
k +Bjkδ

i
l +Bjk,ly

i
)
,

then D̃i
jkl = Di

jkl.

Proposition 3. The tensor whose components are the Di
jkl is projectively

invariant.
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It is the Douglas tensor of the projective class of sprays.

Now Bkl = Γjj,kl, so given any spray, there is locally – that is to say, over any

coordinate neighbourhood in M – a projectively equivalent one for which B̃kl = 0,

namely the one with

P = − 1

(n+ 1)
Γjj .

For this spray, B̃ijkl = Di
jkl.

If we suppose that M is connected and admits a global nowhere-vanishing

n-form, then we can find for any spray a projectively-equivalent globally-defined

spray whose Berwald curvature coincides with its Douglas tensor.

For convenience, I suppose that the n-form is given in (positively oriented)

coordinates by √
ν(x)(dx)n =

√
ν(x)dx1 ∧ · · · ∧ dxn.

It determines a global 2n-form Ω on TM , whose expression in coordinates is

Ω(x, y) = ν(x)(dx)n ∧ (dy)n.

Proposition 4. Given such a 2n-form Ω and any spray Γ, there is a projec-

tively equivalent spray Γ̃ such that divΩΓ̃ = 0; and the Berwald curvature of Γ̃

coincides with the Douglas tensor of the projective class.

Proof. Recall that LΓ̃Ω = divΩΓ̃ = d(iΓ̃Ω). Take Γ̃ = Γ − 2P∆, where P

is positively-homogeneous of degree 1. I first compute d(iP∆Ω):

d(iP∆Ω) = d(Pi∆Ω) = dP ∧ (i∆Ω) + Pd(i∆Ω)

= −i∆(dP ∧ Ω) + ∆(P )Ω + nPΩ = (n+ 1)PΩ.

So if we take

P =
1

2(n+ 1)
divΩΓ,

then divΩΓ̃ = 0. But

d(iΓ̃Ω) = d

(
ν

n∑
k=1

(
(−1)k+1ykdx1 · · · d̂xk · · · ∧ dxn ∧ (dy)n

− 2(−1)n+k+1Γ̃k(dx)n ∧ dy1 · · · d̂yk · · · ∧ dyn
))

=

(
yk
∂ log ν

∂xk
− 2Γ̃kk

)
Ω.
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Thus, when divΩΓ̃ = 0,

Γ̃kk = 1
2y
k ∂ log ν

∂xk
,

and therefore,

B̃ij =
∂2Γ̃kk
∂yi∂yj

= 0 and Di
jkl = B̃ijkl. �

Evidently, if a projective class of sprays contains one whose Berwald con-

nection is linear, then the Douglas tensor of the class vanishes. The converse is

also clear: if the Douglas tensor vanishes, any spray whose Berwald curvature

coincides with the Douglas tensor has linear Berwald connection.

Theorem 1. If the Douglas tensor of a projective class of sprays vanishes,

then the class contains local sprays whose Berwald connections are linear, and if

further the base manifold is connected and admits a global volume form, global

ones.

There is an improved version of the global aspect of this result in [16], in which

the 2n-form Ω on TM is replaced by what is called there a vertically-invariant

volume form, and it is shown that the tangent manifold of any manifold admits a

vertically-invariant volume form: so, in fact, the vanishing of the Douglas tensor

is the necessary and sufficient condition for the existence of a global spray in the

projective class whose Berwald connection is linear.

5.2. The Weyl tensor. For the horizontal lifts of basic coordinate vector fields

defined by projectively related sprays, we have

H̃i =
∂

∂xi
− Γ̃ji

∂

∂yj
= Hi − PVi − Vi(P )∆,

so that

[H̃i, H̃j ] = [Hi − PVi − Vi(P )∆, Hj − PVj − Vj(P )∆]

= [Hi, Hj ]−
(
Hi(P )− PVi(P )

)
Vj +

(
Hj(P )− PVj(P )

)
Vi

−
(
Hi(Vj(P ))−Hj(Vi(P )

)
∆,

since [Hi, Vj ] = ΓkijVk = [Hj , Vi]. Notice that

Hi(Vj(P ))−Hj(Vi(P )) = Vj(Hi(P ))− Vi(Hj(P ))

= Vj
(
Hi(P )− PVi(P )

)
− Vi

(
Hj(P )− PVj(P )

)
.
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So with

pi = Hi(P )− PVi(P ) = P;i − PP,i,

we have

R̃hij = Rhij + piδ
h
j − pjδhi + (pi,j − pj,i)yh;

note that pi is positively-homogeneous of degree 1. That is to say, the difference

of the type (1, 2) Riemann curvatures is the type (1, 2) isotropic tensor formed

from p.

Denote by r the covector whose components, constructed (apart from nu-

merical factors) from Rhij in the manner of Lemma 3, are given by

ri = − 1

(n2 − 1)

(
(n− 1)Ri +Rkk,i

)
=

1

(n2 − 1)
(nRki + Rik)yk.

Proposition 5. The tensor

Wh
ij = Rhij + riδ

h
j − rjδhi + (ri,j − rj,i)yh

is projectively invariant.

Proof. Denote by r̃i the similar covector constructed from R̃hij . When Rhij
and R̃hij are projectively related,

R̃hij −Rhij = piδ
h
j − pjδhi + (pi,j − pj,i)yh.

So pi = ri − r̃i, by Lemma 2 with Qhij = R̃hij −Rhij and Lemma 3, and therefore

R̃hij + r̃iδ
h
j − r̃jδhi + (r̃i,j − r̃j,i)yh = Rhij + riδ

h
j − rjδhi + (ri,j − rj,i)yh,

as claimed. �

The tensor W with components Wh
ij is the Weyl projective curvature tensor

of the projective class of sprays. The expression for the covector field r in terms

of the Ricci tensor shows that it corresponds to the Schouten tensor of the linear

theory: indeed, if the connection is linear, ri = skiy
k.

We shall rarely have to use an explicit expression for ri: in fact, it is the

structure of the additional terms that is important, as the following proposition

reveals.

Proposition 6. The trace W j
ij of W vanishes. Moreover, W is uniquely

determined by the facts that

(1) the tensor Wh
ij −Rhij is of isotropic type;

(2) the trace of W vanishes.
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Proof. It is almost evident from the definitions that the trace ofW vanishes,

but in detail we have

W j
ij = Ri + (n+ 1)ri − (rjy

j),i

= Ri −
1

(n− 1)

(
(n− 1)Ri +Rkk,i

)
+

1

(n2 − 1)

(
(n− 1)Rkk,i + 2Rkk,i

)
= 0.

If r and r̂ are both covector fields, positively-homogeneous of degree 1, such that

W j
ij = Ŵ j

ij = 0, where

Wh
ij = Rhij + riδ

h
j − rjδhi + (ri,j − rj,i)yh

Ŵh
ij = Rhij + r̂iδ

h
j − r̂jδhi + (r̂i,j − r̂j,i)yh,

then the trace of

Wh
ij − Ŵh

ij = (ri − r̂i)δhj − (rj − r̂j)δhi +
(
(ri − r̂i),j − (rj − r̂j),i

)
yh

vanishes, and so r̂ = r by Lemma 2. �

Just as is the case for the Riemann curvature, the Weyl projective curvature

exists in several equivalent forms. Set

Wh
k = yjWh

jk, Wh
ijk = Wh

jk,i.

Proposition 7. For the Weyl projective curvature of any spray,

Wh
jk = 1

3 (Wh
k,j −Wh

j,k) = yiWh
ijk.

Proof. We know that such relationships hold for Rhij . The key point is that

they also hold for the additional terms collectively. The cyclic identity for Rhijk
plays an important role in the corresponding results for the Riemann curvature:

that it holds for the additional terms is established in Lemma 1. �

Proposition 8. The type (1, 3) Weyl projective curvature tensor satisfies

the cyclic identity

Wh
ijk +Wh

jki +Wh
kij = 0

and is completely trace-free.

Proof. The cyclic identity follows immediately from Lemma 1. We have

W k
ijk = (W k

jk),i = 0 by Proposition 6, and of course, W k
ikj = 0 also. The vanishing

of W k
kij then follows from the cyclic identity. �
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5.3. The Cotton tensor. With r the covector field defined in terms of R as

before, I set

rij = rj;i − ri;j ,

and call it, by analogy with the corresponding object in the projective theory

of linear connections, the projective Cotton tensor. It is evidently skew, and

positively-homogeneous of degree 1. Notice that by the symmetry of Γkij , we can

also express rij as

rij = Hi(rj)−Hj(ri).

Recall that the type (1, 2) Riemann curvature satisfies a Bianchi identity

involving its horizontal covariant derivative:

Rhij;k +Rhjk;i +Rhki;j = 0.

I next examine the consequences of this for the Weyl and Cotton tensors.

Proposition 9. We have

Wh
ij;k +Wh

jk;i +Wh
ki;j = rijδ

h
k + rjkδ

h
i + rkiδ

h
j + (rij,k + rjk,i + rki,j)y

h.

Proof. Using the Bianchi identity quoted above, one finds that

Wh
ij;k +Wh

jk;i +Wh
ki;j

= rijδ
h
k + rjkδ

h
i + rkiδ

h
j + (ri,j;k − rj,i;k + rj,k;i − rk,j;i + rk,i;j − ri,k;j)y

h.

Now rj,k;i − rj;i,k = rhB
h
jik, so that (for example)

rj,k;i − ri,k;j = rj;i,k − ri;j,k = rij,k,

by the symmetry of Bhijk in its lower indices. �

This relation can be solved for rij rather in the manner of Lemma 2.

Proposition 10. Provided n > 2,

rij =
1

(n− 2)
W k
ij;k +

1

(n− 2)(n+ 1)
(BikW

k
j −BjkW k

i ),

where Bij = Bkkij is the mean Berwald curvature. In particular, for n > 2, if the

Weyl projective curvature vanishes, then so does the projective Cotton tensor.
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Proof. Let me temporarily write Wij for W k
ij;k. Summing the expressions

in Proposition 9 over h and k gives

Wij = (n− 1)rij + (rjk,i − rik,j)yk.

Contract with yj , and use the skew symmetry of rjk and homogeneity:

Wijy
j = (n− 2)rijy

j .

It follows that

(n− 2)(rjk,i − rik,j)yk = (n− 2)
(
(rjky

k),i + rij − (riky
k),j + rij

)
=
(
(Wjky

k),i − (Wiky
k),j
)

+ 2(n− 2)rij .

Now,

Wiky
k = W l

ik;ly
k = (W l

iky
k);l = −W l

i;l,

so

(n− 2)(n+ 1)rij = (n− 2)W k
ij;k +W k

j;k,i −W k
i;k,j .

But

W k
i;k,j = W k

i,j;k +BkkjlW
l
i −BlijkW k

l ,

and therefore,

W k
j;k,i −W k

i;k,j = W k
j,i;k −W k

i,j;k +BikW
k
j −BjkW k

i

= 3W k
ij;k +BikW

k
j −BjkW k

i .

It follows that

(n− 2)(n+ 1)rij = (n+ 1)W k
ij;k +BikW

k
j −BjkW k

i ,

which gives the stated formula when n > 2. �

When the Berwald connection is linear (or more generally, when the mean

Berwald curvature vanishes) this reduces to (n−2)rij = W k
ij;k, which is equivalent

to the key property of the Cotton tensor in the projective geometry of linear

connections.

The Cotton tensor is not projectively invariant. I now derive, for later use,

its transformation law under a projective transformation: that is, I find the rela-

tionship between rij and r̃ij where R̃hij = Rhij + piδ
h
j − pjδhi + (pi,j − pj,i)yh with

pi = Hi(P )− PVi(P ) and H̃i = Hi − PVi − Vi(P )∆.
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Proposition 11.

r̃ij = rij +Wh
ijP,h.

Proof. It was shown in the proof of Proposition 5 that

r̃i = ri − pi.

In order to obtain r̃ij = H̃i(r̃j) − H̃j(r̃i), we shall need H̃i(pj) − H̃j(pi). I shall

first compute Hi(pj)−Hj(pi):

Hi(pj)−Hj(pi) = [Hi, Hj ](P )−Hi(PVj(P )) +Hj(PVi(P )).

Now,

Hi(PVj(P )) = Hi(P )Vj(P ) + P
(
[Hi, Vj ](P ) + Vj(Hi(P ))

)
= piVj(P ) + PVj(pi) + 2PVi(P )Vj(P ) + PVj(Vi(P )) + P [Hi, Vj ](P )

(substituting PVi(P ) + pi for Hi(P )). Recall that [Hi, Vj ] = ΓkijVk = [Hj , Vi].

Then

Hi(pj)−Hj(pi)

= −RhijVh(P )− piVj(P ) + pjVi(P )− (pi,j − pj,i)P = −R̃hijVh(P ).

Since reversing the projective transformation requires one simply to change the

sign of P , it follows directly that

H̃i(pj)− H̃j(pi) = RhijVh(P ).

Thus

H̃i(r̃j)− H̃j(r̃i) = H̃i(rj + pj)− H̃j(ri + pi)

= Hi(rj)−Hj(ri)− PVi(rj) + PVj(ri)

− Vi(P )rj + Vj(P )ri +RhijVh(P )

= Hi(rj)−Hj(ri) +
(
Rhij + riδ

h
j − rjδhi + (ri,j − rj,i)yh

)
P,h

= Hi(rj)−Hj(ri) +Wh
ijP,h,

as claimed. �
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6. The main theorems

There are some preliminary observations to be made before we come to the

proofs of the main theorems.

It was noted in Subsection 5.1 that given any spray there is a projectively

equivalent one for which the mean Berwald curvature vanishes. The key feature

of the Berwald connection of such a spray, established in Proposition 4, is that

Γii takes the form

Γii = yk
∂ϕ

∂xk

for some function ϕ independent of y, or, in other words, that

Γiik =
∂ϕ

∂xk
.

A spray for which this holds has another important property: its Ricci tensor is

symmetric. In fact,

Rkj = Rikij = Hi(Γ
i
jk)−Hj(Γ

i
ik) + ΓiilΓ

l
jk − ΓijlΓ

l
ik,

whence

Rjk − Rkj = Hk(Γiij)−Hj(Γ
i
ik) =

∂

∂xk

(
∂ϕ

∂xj

)
− ∂

∂xj

(
∂ϕ

∂xk

)
= 0.

Proposition 12. Given any spray, there is a projectively equivalent one

whose Ricci tensor is symmetric. For such a spray,

• (n− 1)ri = Rijyj ;
• ri,j = rj,i;

• Wh
ij = Rhij + riδ

h
j − rjδhi ;

• (n− 2)rij = W k
ij;k.

Recall that a spray has isotropic Riemann curvature if and only if there is

a covector field ξ, positively-homogeneous of degree 1, such that

Rhij = ξiδ
h
j − ξjδhi + (ξi,j − ξj,i)yh.

With Lemma 2 to hand, it is easy to see that this is equivalent to the vanishing

of the Weyl tensor: as before, it is simply a matter of the form of the expression.

Proposition 13. A spray has vanishing Weyl projective curvature tensor if

and only if it has isotropic Riemann curvature.
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Proof. If Rhij = ξiδ
h
j − ξjδhi + (ξi,j − ξj,i)yh, then the Weyl tensor also has

isotropic form:

Wh
ij = (ξi + ri)δ

h
j − (ξj + rj)δ

h
i +

(
(ξi + ri),j − (ξj + rj),i

)
yh;

but W is trace-free, so by Lemma 2 it vanishes. Conversely, if Wh
ij = 0, then Rhij

has the stated form with ξi = −ri. �

Corollary 1. For two projectively equivalent sprays, if one is isotropic, so

is the other.

Theorem 2. For dimM > 2, the following properties of a spray are equiv-

alent:

(1) it is isotropic;

(2) its Weyl projective curvature vanishes;

(3) it is locally projectively equivalent to one which is R-flat.

Proof. The equivalence of the first two statements has already been estab-

lished in Proposition 13.

Under a projective transformation, R̃hij = Rhij + piδ
h
j − pjδhi + (pi,j − pj,i)yh,

where pi is positively-homogeneous of degree 1. So if there is a projective trans-

formation making R̃hij = 0, Rhij is isotropic.

For the converse, I assume that the Weyl projective curvature vanishes,

so that Rhij = −riδhj + rjδ
h
i − (ri,j − rj,i)yh. I have to show that there is a locally-

defined function P , positively-homogeneous of degree 1, such that pi = Hi(P )−
PVi(P ) = ri, for then the projective transformation with such P makes R̃hij = 0.

We know from Proposition 10 that the projective Cotton tensor vanishes, since

dimM > 2. Furthermore, by Proposition 12 we can, and shall, assume that the

Ricci tensor is symmetric

Consider the manifold T ◦M×R, with coordinate z on the final factor. On this

manifold I define a modified horizontal distribution, spanned by the vector fields

Ĥi = Hi − zVi + ri
∂

∂z
, i = 1, 2, . . . , n.

I compute the bracket of two such vector fields:[
Hi − zVi + ri

∂

∂z
,Hj − zVj + rj

∂

∂z

]
= −RhijVh − riVj + rjVi +

(
z(ri,j − rj,i) +Hi(rj)−Hj(ri)

) ∂
∂z

= −Wh
ijVh + rij

∂

∂z
+ (ri,j − rj,i)

(
∆ + z

∂

∂z

)
= 0,
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since, by assumption, Wh
ij = 0, rij = 0, and ri,j − rj,i = 0. Furthermore,[

∆ + z
∂

∂z
,Hi − zVi + ri

∂

∂z

]
= zVi − zVi + ri

∂

∂z
− ri

∂

∂z
= 0.

Now ∆̂ = ∆ + z∂/∂z is the generator of dilations in the fibres of T ◦M ×R→M ,

so the vector fields Ĥi are dilation invariant.

The distribution D on T ◦M × R spanned by the Ĥi is evidently regular

and n-dimensional. I have just shown that it is involutive, and invariant by ∆̂.

So D is integrable. Its integral submanifolds are n-dimensional, and mapped

one to another by dilations of the fibres of T ◦M × R → M . They are moreover

everywhere transverse to the fibration T ◦M ×R→ T ◦M . A section of this latter

fibration will be given by z = P , where P is a function on T ◦M ; and D will be

tangent to the image of the section if and only if

Ĥi(z − P )=Hi(z − P )− zVi(z − P ) + ri
∂

∂z
(z − P )=−Hi(P ) + zVi(P ) + ri=0,

where z = P , that is, if and only if

Hi(P )− PVi(P ) = ri.

Moreover,

∆(z − P ) + z
∂

∂z
(z − P ) = z −∆(P ),

and so P will be positively-homogeneous of degree 1 if and only if ∆̂ is also tangent

to the image of the section z = P .

So a local section of T ◦M ×R→ T ◦M with the property that both D and ∆̂

are tangent to its image will provide a function P with the required properties.

It remains to show how to construct such a local section. Take any point x0 ∈M .

Let P0 be any function on T ◦x0
M×R which is positively-homogeneous of degree 1,

and let σ0 ⊂ T ◦x0
M be the graph of P0, that is, the section z = P0 of the fibration

T ◦x0
M × R→ T ◦x0

M . Then σ0 is a codimension-1 submanifold of T ◦x0
M × R, and

the restriction of ∆̂ to T ◦x0
M ×R is tangent to σ0. I denote by L(x, y, z) the leaf

of the integrable distribution D through (x, y, z) ∈ T ◦M × R. Set

σ =
⋃

(y,z)∈σ0

L(x0, y, z) =
⋃

y∈T◦
x0
M

L(x0, y, P0(y)).

Then σ is a codimension-1 submanifold of T ◦M ×R, defined in a neighbourhood

of T ◦x0
M×R, transverse to the fibration T ◦M×R→ T ◦M , to which both D and ∆̂

are tangent. It is the image of the required section. �
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Corollary 2. If M , with dimM > 2, is connected and simply connected,

then for any isotropic spray Γ on T ◦M , there is a unique globally-defined function

on T ◦M , positively-homogeneous of degree 1, with specified values on T ◦x0
M for

any x0 ∈M , such that Γ− 2P∆ is R-flat.

Proof. Since D is horizontal with respect to the projection T ◦M ×R→M ,

which is to say that for each (x, y, z) ∈ T ◦M × R, D(x,y,z) is isomorphic to TxM ,

every leaf L(x, y, z) of the integrable distribution D is a covering manifold of M .

But by assumption, M is simply connected, so L(x, y, z) is actually diffeomorphic

to M . This means that σ = ∪y∈T◦
x0
ML(x0, y, P0(y)) defines a global section of

T ◦M × R→ T ◦M . �

What about the case dimM = 2? In the first place, from Proposition 2,

we know that every spray is isotropic, and therefore Wh
ij = 0 automatically. But

of course it does not follow automatically that every spray is locally projectively

R-flat. The proof of Theorem 2 made use of the fact that when dimM > 2, the

projective Cotton tensor of an isotropic spray vanishes. When dimM = 2, this

condition has to be imposed.

It follows from Proposition 11 that if Wh
ij = 0, then rij is projectively invari-

ant; and since no restriction was made on dimension, this holds in particular if

dimM = 2. So the vanishing of the Cotton tensor is then a projectively invariant

condition. Moreover, if we assume that the Cotton tensor vanishes, the proof of

Theorem 2 proceeds as before. We can conclude that the projective Cotton tensor

plays the role of the Weyl projective curvature when dimM = 2.

Theorem 3. When dimM = 2, a spray is projectively R-flat if and only if

its projective Cotton tensor vanishes.

7. Finsler spaces

The following property of the type (1, 1) Riemann curvature of the Berwald

connection of the geodesic spray of a Finsler space is well-known: it is self-adjoint

with respect to the fundamental tensor, which is to say that if Rij = gikR
k
j , then

Rij = Rji. (This is to be distinguished from the Ricci tensor.)

Proposition 14. The Riemann curvature of a Finsler space is isotropic if

and only if there is a function κ on T ◦M , positively-homogeneous of degree 0,

such that
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Rij = κ
(
(gkly

kyl)gij − yiyj
)
,

where yi = giky
k.

Proof. Recall from Proposition 1 that one version of the condition for

the Riemann curvature to be isotropic is that there is a function ρ, positively-

homogeneous of degree 2, and a covector τ , positively-homogeneous of degree 1,

such that Rij = ρδij + τjy
i; or equivalently, in the Finsler case,

Rij = ρgij + τjyi.

So evidently, if Rij takes the given form, then the Riemann curvature is isotropic.

For the converse, suppose that Rij = ρgij + τjyi. Recall from Proposition 1

that τiy
i = −ρ. On the other hand, since Rij = Rji we have τjyi = τiyj , whence

τjgkly
kyl = −ρyj .

So Rij takes the given form, with κ = ρ/(gkly
kyl). �

For x ∈M , y, v ∈ TxM , y, v 6= 0, the flag curvature K(x,y)(v) is defined as

K(x,y)(v) =
Rijv

ivj

(gklykyl)(gpqvpvq)− (grsyrvs)2
.

A Finsler space for which the flag curvature is independent of the flag, in other

words for which K(x,y)(v) = κ(x, y) for some function κ on T ◦M (which must

be positively-homogeneous of degree 0), is said to have scalar flag curvature.

It should come as no surprise in view of the previous proposition that for a space

to have scalar flag curvature its Riemann curvature must be isotropic. (The flag

curvature is scalar if it is the same in all directions of the flag, which perhaps

finally explains the use of the term ‘isotropic’ in the expression ‘isotropic Riemann

curvature’.)

Theorem 4. Assume that dimM > 2. A Finsler space has scalar flag cur-

vature if and only if its Riemann curvature is isotropic, that is, if and only if

its Weyl tensor vanishes. A Finsler space of scalar flag curvature is projectively

R-flat. If two Finsler spaces over the same base manifold have projectively equiv-

alent geodesic sprays and one is of scalar flag curvature, so is the other.

The last assertion is the analogue in Finsler geometry of Beltrami’s Theorem

in Riemannian geometry: a metric projectively equivalent to a metric of constant

curvature is itself a metric of constant curvature. (An R-flat Finsler space is of

course of zero scalar flag curvature.)
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Proof. If the Riemann curvature is isotropic, and takes the form given in

the proposition above, then the flag curvature is κ. If, on the other hand, the

space is of scalar flag curvature κ, then

Rijv
ivj = κ

(
(gpqy

pyq)(grsv
rvs)− (gpqy

pvq)2
)

= κ
(
(gpqy

pyq)gij − yiyj
)
vivj ,

for every vi; so since Rij is symmetric,

Rij = κ((gpqy
pyq)gij − yiyj)

and the Riemann curvature is isotropic. The remaining results follow from known

properties of sprays with isotropic Riemann curvature. �

In this context, I should mention the following local results (see [4], [8]):

for dimM > 2, every R-flat spray is Finsler metrizable (that is to say, there is

a Finsler function of which it is the canonical geodesic spray), and therefore every

isotropic spray is projectively metrizable (that is to say, is projectively equivalent

to the canonical geodesic spray of some Finsler function); and every spray over

a 2-dimensional base is projectively metrizable.

Finally, I must acknowledge that Berwald analysed fully the case of

a 2-dimensional Finsler space in his paper [3] of 1941. I shall explain below how

his results are related to mine.

In a 2-dimensional Finsler space,

Rij = κ((gpqy
pyq)gij − yiyj) = κF 2(gij − lilj), li =

1

F
yi.

It is conventional to work in terms of an orthonormal basis of vector fields {l,m},
with li = yi/F , and the corresponding covector fields whose components are

li = gij l
j = F,i = yi/F as above, mi = gijm

j . This approach dates back at

least to Berwald’s paper [3], though the notation used here is closer to that of

Matsumoto [13]. We have gij = lilj +mimj , and so

Rij = κF 2mimj .

One useful technique is to express tensors as linear combinations of tensor prod-

ucts of the basis vectors and covectors. Consider, for example, Rhij . It is skew

in i and j, and satisfies lhR
h
ij = 0 (since Hi(F ) = Hj(F ) = 0, and therefore

[Hi, Hj ](F ) = RhijF,h = 0): it must therefore take the form

Rhij = kmh(limj − ljmi)
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for some scalar k. But Rhj = yiRhij = FliRhij , whence

Rij = kFmimj = κF 2mimj ,

and therefore

Rhij = κFmh(limj − ljmi).

This identifies κ with the curvature of the 2-dimensional Finsler space as defined

in [3], [13] – which is hardly surprising, but one has to be a bit careful about

factors F , etc.

To compute the Cotton tensor, we first need ri, which is given by

ri = − 1
3 (Ri + (Rky

k),i).

We have

Ri = Rjij = κF li,

so that

ri = − 1
3 (κF li + (κF 2),i) = − 1

3 (3κF li + κ,iF
2).

The Cotton tensor is ri;j − rj;i. It has but one component which does not vanish

automatically, which may be taken to be (ri;j−rj;i)limj . One can take advantage

of the fact that li;j = 0 to write the first term as (ril
i);jm

j = −FmjHj(κ). It so

happens that mj
;il
i = 0, as I now show, which allows one to carry out a similar

manoeuvre on the second term.

Lemma 4.

mj
;il
i = 0.

Proof. We can express the vector mj
;il
i as a linear combination of lj and mj .

But since mj
;il
ilj = (mj lj);il

i = 0, there is no lj component: mj
;il
i = µmj for some

scalar µ. Now

gij ;kl
k = 0 = mi

;kl
kmj +mimj

;kl
k = 2µmimj ,

so µ = 0. �

It follows that

rj;il
imj = (rjm

j);il
i = − 1

3Fl
iHi(Fm

jκ,j) = − 1
3Fl

iHi(Fm
jVj(κ)).

We have the following expression for the Cotton tensor of a 2-dimensional

Finsler space.
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Proposition 15.

(ri;j − rj;i)limj = 1
3F (liHi(Fm

jVj(κ))− 3mjHj(κ)).

The expression liHi(Fm
jVj(κ)) − 3mjHj(κ) agrees with one for a quan-

tity playing a similar role which occurs in Berwald’s paper [3]. Berwald marks

the effects of the various operators appearing in the formula above by attaching

certain subscripts to their arguments, as follows. For any function Φ which is

positively-homogeneous of degree 0,

liHi(Φ) = Φs, miHi(Φ) = Φb, FmiVi(Φ) = Φϑ.

In Berwald’s notation, the expression given in the proposition above is (apart

from unimportant factors)

κϑs − 3κb.

Berwald does indeed show that the vanishing of this quantity is the necessary and

sufficient condition for there to be a projective transformation which makes the

Riemann curvature zero.
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