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A generalization of the Gelfand—Kolmogoroff theorem

By YUNBAI DONG (Wuhan), PEI-KEE LIN (Memphis) and BENTUO ZHENG (Memphis)

Abstract. We introduce the notion of a ring isomorphism in norm. For such
maps, we obtain an extension of the Gelfand—Kolmogoroff theorem by showing that
a ring isomorphism in norm between spaces of continuous functions on compact spaces
is a weighted composition operator.

1. Introduction

Let X be a compact Hausdorff space, and let C'(X) denote the Banach algebra
of all continuous real-valued functions on X equipped with the supremum norm.
The classical Banach—Stone theorem asserts that the linear metric structure of
C(X) determines the topology of X (see [1], [7]). More precisely, every surjective
isometry T" between C(X) and C(Y') must be of the form T'f = h- (f o 7) (that
is, it is a weighted composition operator), where 7 : Y — X is a homeomorphism
and h € C(Y) satisfies |h| = 1. In 1966, HOLSZTYNSKI [5] showed that any
non-surjetive isometry between spaces of continuous functions is also a weighted
composition operator.

The Banach—Stone theorem has found a large number of extensions, gener-
alizations and variants in many different contexts (see, for example, [2]). Among
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them, one line of research which started with the Banach—Stone theorem estab-
lished a link between the algebraic properties. In this direction, the following
well-known result was obtained by GELFAND and KOLMOGOROFF [3] in 1939.

Theorem 1.1 (Gelfand—Kolmogoroff). Suppose that X and Y are compact
Hausdorff spaces. If C(X) and C(Y') are isomorphic as rings, then X and Y are
homeomorphic and every ring isomorphism T : C(X) — C(Y) is of the form
Tf= for, whereT:Y — X is a homeomorphism.

Indeed, this result can be obtained by the Banach—Stone theorem, since ring
isomorphism implies isometry (see, for example, GILLMAN and JERISON [4, 1J.6]).
The main purpose of this short note is to generalize this theorem by considering
some class of more general maps.

2. Main results

Let A and B be two unital Banach algebras. If T': A — B is a bijection so
that

IT(f -9l =1Tf-Tgl (1)
and

IT(f+ 9l =ITf+Tgl (2)

for all f,g € A, then we call T a ring isomorphism in norm. We say that T is
unital if 7" preserves the identity element. A natural question is whether every
unital ring isomorphism in norm from A onto B is indeed a ring isomorphism.

The next theorem provides a positive answer for the class of C(X)-spaces
and strengthens the Gelfand—Kolmogoroff theorem.

Theorem 2.1. Suppose that X andY are compact Hausdorff spaces. If there
exists a ring isomorhpism in norm T : C(X) — C(Y'), then there is a continuous
function h € C(Y) with |h(y)] =1 (y € Y) and a homeomorphism 7 : Y — X
such that

(TH)y) =hly)- f(r(y) (y €Y, feCX)). (3)

PROOF. The proof will be divided into two parts. In the first part, we show
that it is true if 71 = 1. Then, making use of this result, we show in the second
part that the result holds for a general ring isomorphism in norm 7.
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Part I. Assume that 71 = 1. Since T is a bijection satisfying (2),
[8, Corollary 1] shows that T is additive, and hence we have T'(af) = a(Tf)
for all @ € Q.

In what follows, we show that if f(x) > 0 for all x € X, then

(Tf)(y) >0 forall yeVY. (4)
Since
@

we can choose n large enough such that

Then

<1. (7)

Therefore, |1 —T(f/n)|| < 1, which implies (T'(f/n))(y) > 0 for all y € ¥, and
hence (4) holds.

Fix f € C(X). Put fy = max{f,0}, and f- = max{—f,0}. Clearly,
f=f+—f-. By (1), weget |Tfy Tf—| =0, and then

supp(T'f+) Nsupp(T f-) = 0. (8)
It follows that

ITA = Tf+ =TI = max{[Tf | ITF-N} = T f+ + TS = ITASDI- (9)



266 Yunbai Dong, Pei-Kee Lin and Bentuo Zheng

We next show that

ITAI < I (10)

for all f € C(X). Let X be any rational number so that || f|| < A. Then (4) implies
T(A—|f]) > 0, and hence 0 < T(|f]) < A. Therefore, |T(|f])|| < A, and then
(9) shows ||Tf|| < A. Since A is an arbitrary rational number satisfying || f|] < A,
we obtain (10).

Now the additivity of T and (10) imply that T is continuous and linear.
Since T is a continuous linear bijection, by the open mapping theorem, T is
an isomorphism. Therefore, there is 5 > 0 such that

BIAT<ITFI < IIA] (11)

for all f € C(X).
We claim that 8 in (11) can be chosen to be 1. Suppose not. Then there
exists f € C(X) so that ||f|| = 1 and ||Tf|| < ||f|l. For any positive integer n,

by (1),

[z (=l () (e ) = e ()

— [ () ’4 - T (12)

Since | Tf|| < ||l = 1, choose n large enough so that ||Tf||*" < 3. (12) shows
that ||7 (f2")|| < 8. On the other hand, it is clear that || f2"|| = 1, since || f[| = 1.
Then (11) shows that HT (fzn) ‘ >4 Han || = (3, which leads to a contradiction.

Now (11) becomes ||T'f|| = ||f|| for all f € C(X). Since T is linear, we have
proved that T is a surjective linear isometry with 71 = 1. By the Banach—Stone
theorem, there is a homeomorphism 7 : Y — X such that

(TH)y) = f(7(y)) (13)

forall feC(X)andyeY.

Part II. We claim that |(T1)(y)| = 1 for all y € Y. Assume not. There is
an open subset U of Y and € > 0 such that [(T1)(y)| > 1+ e forally € U or
[(T1)(y)] > 1 —¢ for all y € U. Without loss of generality, we assume that

(THW) =1 -« (14)
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for all y € U. By Urysohn’s lemma, there is a nonzero function h € C(Y") such
that supp(h) C U. Let f be an element in X such that Tf = h (note that T is
surjective). Then

1Bl = ITAI =TI = IT1-Tf| = [ITL- bl <@ =e)llp].  (15)

We get a contradiction.
Clearly, T'/T'1 also satisfies (1) and (2), since [(T'1)(y)| = 1. Replacing T by
T/T1 in Part I, we get that there exists a homeomorphism 7 : Y — X such that

(THy) = (TH(y) - (f(7(y))) (16)

for all f € C(X) and y € Y. Letting h = T'1 finishes the proof. O

Remark 2.2. In the proof of the above theorem, we see that if T is a unital
ring isomorphism in norm, then 7" has the form T'f = for, and hence T is a ring
isomorphism (indeed, an algebraic isomorphism).

Remark 2.5. A direct consequence of Theorem 2.1 is that the existence of
a ring isomorphism in norm between C'(X) and C(Y") implies a homeomorphism
between X and Y. The referee told us this consequence can also be obtained by
the main result of [6].
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