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A generalization of the Gelfand–Kolmogoroff theorem

By YUNBAI DONG (Wuhan), PEI-KEE LIN (Memphis) and BENTUO ZHENG (Memphis)

Abstract. We introduce the notion of a ring isomorphism in norm. For such

maps, we obtain an extension of the Gelfand–Kolmogoroff theorem by showing that

a ring isomorphism in norm between spaces of continuous functions on compact spaces

is a weighted composition operator.

1. Introduction

LetX be a compact Hausdorff space, and let C(X) denote the Banach algebra

of all continuous real-valued functions on X equipped with the supremum norm.

The classical Banach–Stone theorem asserts that the linear metric structure of

C(X) determines the topology of X (see [1], [7]). More precisely, every surjective

isometry T between C(X) and C(Y ) must be of the form Tf = h · (f ◦ τ) (that

is, it is a weighted composition operator), where τ : Y → X is a homeomorphism

and h ∈ C(Y ) satisfies |h| = 1. In 1966, Holsztyński [5] showed that any

non-surjetive isometry between spaces of continuous functions is also a weighted

composition operator.

The Banach–Stone theorem has found a large number of extensions, gener-

alizations and variants in many different contexts (see, for example, [2]). Among
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them, one line of research which started with the Banach–Stone theorem estab-

lished a link between the algebraic properties. In this direction, the following

well-known result was obtained by Gelfand and Kolmogoroff [3] in 1939.

Theorem 1.1 (Gelfand–Kolmogoroff). Suppose that X and Y are compact

Hausdorff spaces. If C(X) and C(Y ) are isomorphic as rings, then X and Y are

homeomorphic and every ring isomorphism T : C(X) → C(Y ) is of the form

Tf = f ◦ τ , where τ : Y → X is a homeomorphism.

Indeed, this result can be obtained by the Banach–Stone theorem, since ring

isomorphism implies isometry (see, for example, Gillman and Jerison [4, 1J.6]).

The main purpose of this short note is to generalize this theorem by considering

some class of more general maps.

2. Main results

Let A and B be two unital Banach algebras. If T : A → B is a bijection so

that

‖T (f · g)‖ = ‖Tf · Tg‖ (1)

and

‖T (f + g)‖ = ‖Tf + Tg‖ (2)

for all f, g ∈ A, then we call T a ring isomorphism in norm. We say that T is

unital if T preserves the identity element. A natural question is whether every

unital ring isomorphism in norm from A onto B is indeed a ring isomorphism.

The next theorem provides a positive answer for the class of C(X)-spaces

and strengthens the Gelfand–Kolmogoroff theorem.

Theorem 2.1. Suppose thatX and Y are compact Hausdorff spaces. If there

exists a ring isomorhpism in norm T : C(X)→ C(Y ), then there is a continuous

function h ∈ C(Y ) with |h(y)| = 1 (y ∈ Y ) and a homeomorphism τ : Y → X

such that

(Tf)(y) = h(y) · f(τ(y)) (y ∈ Y, f ∈ C(X)) . (3)

Proof. The proof will be divided into two parts. In the first part, we show

that it is true if T1 = 1. Then, making use of this result, we show in the second

part that the result holds for a general ring isomorphism in norm T .
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Part I. Assume that T1 = 1. Since T is a bijection satisfying (2),

[8, Corollary 1] shows that T is additive, and hence we have T (αf) = α(Tf)

for all α ∈ Q.

In what follows, we show that if f(x) ≥ 0 for all x ∈ X, then

(Tf)(y) ≥ 0 for all y ∈ Y. (4)

Since ∥∥∥∥∥T
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n2

) 1
2
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Therefore, ‖1 − T (f/n)‖ ≤ 1, which implies (T (f/n))(y) ≥ 0 for all y ∈ Y , and

hence (4) holds.

Fix f ∈ C(X). Put f+ = max{f, 0}, and f− = max{−f, 0}. Clearly,

f = f+ − f−. By (1), we get ‖Tf+ · Tf−‖ = 0, and then

supp(Tf+) ∩ supp(Tf−) = ∅. (8)

It follows that

‖Tf‖ = ‖Tf+ − Tf−‖ = max {‖Tf+‖, ‖Tf−‖} = ‖Tf+ + Tf−‖ = ‖T (|f |)‖. (9)
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We next show that

‖Tf‖ ≤ ‖f‖ (10)

for all f ∈ C(X). Let λ be any rational number so that ‖f‖ ≤ λ. Then (4) implies

T (λ − |f |) ≥ 0, and hence 0 ≤ T (|f |) ≤ λ. Therefore, ‖T (|f |)‖ ≤ λ, and then

(9) shows ‖Tf‖ ≤ λ. Since λ is an arbitrary rational number satisfying ‖f‖ ≤ λ,

we obtain (10).

Now the additivity of T and (10) imply that T is continuous and linear.

Since T is a continuous linear bijection, by the open mapping theorem, T is

an isomorphism. Therefore, there is β > 0 such that

β‖f‖ ≤ ‖Tf‖ ≤ ‖f‖ (11)

for all f ∈ C(X).

We claim that β in (11) can be chosen to be 1. Suppose not. Then there

exists f ∈ C(X) so that ‖f‖ = 1 and ‖Tf‖ < ‖f‖. For any positive integer n,

by (1), ∥∥∥T (f2n)∥∥∥ =
∥∥∥T (f2n−1

)
· T
(
f2

n−1
)∥∥∥ =

∥∥∥T (f2n−1
)∥∥∥2

=
∥∥∥T (f2n−2

)∥∥∥4 = . . . = ‖Tf‖2
n

. (12)

Since ‖Tf‖ < ‖f‖ = 1, choose n large enough so that ‖Tf‖2n < β. (12) shows

that
∥∥T (f2n)∥∥ < β. On the other hand, it is clear that

∥∥f2n∥∥ = 1, since ‖f‖ = 1.

Then (11) shows that
∥∥T (f2n)∥∥ ≥ β ∥∥f2n∥∥ = β, which leads to a contradiction.

Now (11) becomes ‖Tf‖ = ‖f‖ for all f ∈ C(X). Since T is linear, we have

proved that T is a surjective linear isometry with T1 = 1. By the Banach–Stone

theorem, there is a homeomorphism τ : Y → X such that

(Tf)(y) = f(τ(y)) (13)

for all f ∈ C(X) and y ∈ Y .

Part II. We claim that |(T1)(y)| = 1 for all y ∈ Y . Assume not. There is

an open subset U of Y and ε > 0 such that |(T1)(y)| ≥ 1 + ε for all y ∈ U or

|(T1)(y)| ≥ 1− ε for all y ∈ U . Without loss of generality, we assume that

|(T1)(y)| ≥ 1− ε (14)
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for all y ∈ U . By Urysohn’s lemma, there is a nonzero function h ∈ C(Y ) such

that supp(h) ⊂ U . Let f be an element in X such that Tf = h (note that T is

surjective). Then

‖h‖ = ‖Tf‖ = ‖T (1 · f)‖ = ‖T1 · Tf‖ = ‖T1 · h‖ ≤ (1− ε)‖h‖. (15)

We get a contradiction.

Clearly, T/T1 also satisfies (1) and (2), since |(T1)(y)| = 1. Replacing T by

T/T1 in Part I, we get that there exists a homeomorphism τ : Y → X such that

(Tf)(y) = (T1)(y) · (f(τ(y))) (16)

for all f ∈ C(X) and y ∈ Y . Letting h = T1 finishes the proof. �

Remark 2.2. In the proof of the above theorem, we see that if T is a unital

ring isomorphism in norm, then T has the form Tf = f ◦ τ , and hence T is a ring

isomorphism (indeed, an algebraic isomorphism).

Remark 2.3. A direct consequence of Theorem 2.1 is that the existence of

a ring isomorphism in norm between C(X) and C(Y ) implies a homeomorphism

between X and Y . The referee told us this consequence can also be obtained by

the main result of [6].
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